A CONTRACTOR OF THE PARTY TH # Water Resources Data Colorado Water Year 1988 Volume 2. Colorado River Basin U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-88-2 Prepared in cooperation with the State of Colorado and with other agencies # CALENDAR FOR WATER YEAR 1988 | | | | | | | | | | | 198 | 37 | | | | | | | | | | |----------|----------|----|------|-----|----|----|---------|------|----|-------|-----|----|----|----------|-------|-------|------|-----|----|----| | | | 00 | гов | CD. | | | | - | NO | VEM | pED | | - | | | שת | CEM | BER | | | | | | UC | LOB | LK | | | | | NO | VEM | DEK | | | | | DE | CEM | DEK | | | | S | M | T | W | T | F | S | | 5 M | T | W | T | F | S | S | M | Т | W | Т | F | S | | | | | | 1 | 2 | 3 | | 2 | 3 | 4 | 5 | 6 | 7 | | | 1 | 2 | 3 | 4 | 5 | | 4 | 5 | 6 | 7 | 8 | 9 | | | 3 9 | | | 12 | | 33 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 16 | | 18 | 19 | 20 | 21 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | | 19
26 | | | 22 | 30 | 31 | | 2 23 | | 25 | 20 | 27 | 20 | 20
27 | 21 28 | 22 | 30 | = | 23 | 26 | | | - | | | | | | | | | 198 | 38 | | |
 | | | | - | | | | | | J | ANU | ARY | | | · · · · | - | F | E BRI | UAR | Y | | | | 1 | MAR | СН | | | | S | M | Т | W | Т | F | S | | s M | Т | W | T | F | S | S | M | Т | W | Т | F | S | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | | 1 | 2 | 3 | 4 | 5 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 7 8 | | 10 | 11 | 12 | 13 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 1 | | 16 | 17 | 18 | 19 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 2 | 22 | 23 | 24 | | 26 | | 20 | 21 | 22 | 23 | 24 | 25 | | | 24
31 | 25 | 26 | 27 | 28 | 29 | 30 | 28 | 3 29 | | | | | | 27 | 28 | 29 | 30 | 31 | APR | IL | | | | | | MA | Y | | | | | • | JUN | E | | | | S | M | T | W | T | F | S | 5 | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | 1 | 2 | | . 2 | 3 | 4 | 5 | 6 | 7 | | | | 1 | 2 | 3 | 4 | | | | | | | | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 1/ | 18 | 19 | 20 | 21 | 22 | 23 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | | | | | | 25 | | 4 | 25 | 26 | 21 | 28 | 29 | 30 | 29 | 30 | 31 | | | | | 26 | 27 | 28 | 29 | 30 | | | | | | | JULY | Z | | | | | AI | JGUS | ST | | | | | SEPT | [EM] | BER | | | | S | M | T | W | T | F | S | 5 | М | T | W | T | F | S | S | M | T | W | T | F | S | | | | | | | 1 | 2 | | | | | | | 6 | | | | | 1 | | 3 | | | 4 | | | | | 9 | - | | | | | | | 4 | | | | | | | | | | | | | | 16 | | | | | | | | 11 | | | | | | | | | | | | | | 23 | | 29 | | | 25 | 26 | 21 | 18 | | 20 27 | | | | 24 | | 31 | | | / | | -1 | 30 | 20 | 23 | 20 | 21 | | | | 2) | 20 | 21 | 20 | 29 | 20 | | # Water Resources Data Colorado Water Year 1988 # Volume 2. Colorado River Basin by R.C. Ugland, B.J. Cochran, R.G. Kretschman, E.A. Wilson, and J.D. Bennett U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-88-2 Prepared in cooperation with the State of Colorado and with other agencies # UNITED STATES DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director For information on the water program in Colorado write to: District Chief, Water Resources Division U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 #### PREFACE This volume of the annual hydrologic data report of Colorado is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface—and ground—water data—collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground—water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Colorado are contained in two volumes: Volume 1. Missouri River, Arkansas River, and Rio Grande basins in Colorado, Volume 2. Colorado River basin. This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data: | R. W. Boulger D. L. Butler R. G. Carver E. J. Charbonneau C. H. Corneille A. C. Duncan J. R. Dungan J. L. Ebling | J. W. Gibbs D. W. Grey Z. D. Hill C. P. Hollowed R. A. Jenkins D. A. Johncox A. L. Jones L. L. Jones | B. E. Kelley J. D. Martinez R. M. Neam G. B. O'Neill A. V. Paillet R. S. Parker K. G. Petty H. E. Petsch Jr. | R. L. Reed S. L. Richardson J. R. Sullivan R. W. Teller J. E. Vaill L. A. Walsh K. D. Wassenaar M. J. Werito M. E. Whiteman | |--|--|--|---| |--|--|--|---| This report was prepared in cooperation with the State of Colorado and with other agencies under the general supervision of C. A. Pascale, District Chief, Colorado. | REPORT DOCUMENTATION PAGE | 1. REPORT NO.
USGS/WRD/HD-89/229 | 2. | 3. Recipient's Accession No. | |---|---|---|--| | 4. Title and Subtitle | | | 5. Report Date | | | a for Colorado, Water Yea | r.1988 | March 1989 | | Volume 2. Colorado | River basin | | 6. | | 7. Author(s) R.C. Ugland,
and J.D. Ben | B.J. Cochran, R.G. Krets
nett | chman, E.A. Wi | 8. Performing Organization Rept. No. USGS-WDR-C0-38-2 | | 9. Performing Organization Name a | nd Address
vey, Water Resources Divi | sion | 10. Project/Task/Work Unit No. | | Box 25046, Mail Sto | | 51011 | 11. Contract(C) or Grant(G) No. | | Denver Federal Cent | | | (C) | | Lakewood, CO 30225 | | | | | | | | (G) | | 12. Sponsoring Organization Name a | | • | 13. Type of Report & Period Covered | | | vey, Nater Resources Divi | sion | AnnualOct. 1, 1987 to | | Box 25046, Mail Sto
Denver Federal Cent | | | Sept. 30, 1988 | | Lakewood, CO 80225 | er | | 14. | | Lakewood, CO 00223 | | | | | | | | | | Prepared in coopera | tion with the State of Co | lorado and oth | ner agencies. | | discharge, and wate and reservoirs; and (Volumes 1 and 2) c of 25 lakes and res for 40 crest-stage for 114 gaging stat pertinent stations were collected and Survey under the dipart of
the Nationa copperating State a | r quality of streams; sta water levels and water quality of streams; sta water levels and water quality of states also computed by the Water Res rection of C.A. Pascale, Water Data System coller of Federal agencies. | ge, contents, uality of well for 310 gagir low-flow stat and 1 miscella ites; and for are included iources Division District Chief cted by the U. | F. These data represent that S. Geological Survey and S | | Gaging stations, La
Sampling sites, Wat | kes, Reservoirs, Chemical
er analyses. | analyses, Sec | diment, Water temperatures, | | b. Identifiers/Open-Ended Terms | | | | | | | | | | c. COSATI Field/Group | | | | 21. No. of Pages 370 22. Price 19. Security Class (This Report) Unclassified 18. Availability Stetement No restriction on distribution. This report may # CONTENTS | | Page | |--|------------------------------| | Preface | III | | List of gaging stations, in downstream order, for which records are published | V114533366895799991233445667 | | | 551 | | ILLUSTRATIONS | | | | Page | | Figures 1-2. Map showing: 1. Locations of lake and stream-gaging stations and water-quality stations in Colorado | 2 | | period 1951-80 | 7 | | Comparison of range and distribution of specific
conductance measured during water year 1988 to | | | long-term values | 11 | | TABLES | Do = r | | Table 1. Precipitation during water year 1988 and departures from | Page | | normal precipitation (water years 1951-80), in inches 2. Peak discharges for water year 1988 and for the period of record at selected gaging stations | 5
10 | | Results of Wilcoxon-Mann-Whitney rank sum tests comparing mean
specific conductance of discharge for water year 1988 with
mean for the period of record at selected gaging stations. | 12 | | | | (Letter after station name designates type and frequency of published data. Daily tables: (D) discharge, (C) specific conductance, (S) sediment, (T) temperature, (e) elevation or contents, (O) dissolved oxygen, (P) pH. Partial tables: (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature) | | Page | |--|--| | COLORADO RIVER BASIN Colorado River below Baker Gulch, near Grand Lake (D) GRAND LAKE OUTLET BASIN North Inlet (head of Grand Lake Outlet): | 29 | | Grand Lake: Alva B. Adams tunnel at east portal, near Estes Park (Dct) Shadow Mountain Lake near Grand Lake (e) Granby Pump Canal near Grand Lake (tom) Lake Granby near Granby (etcb) | 30
33
34
35
37 | | WILLOW CREEK BASIN Willow Creek Reservoir near Granby (e) | 38 | | FRASER RIVER BASIN Fraser River at Upper Station, near Winter Park (D) Fraser River near Winter Park (D) Vasquez Creek at Winter Park (D) Elk Creek near Fraser (D) St. Louis Creek near Fraser (D) Ranch Creek near Fraser (D) Cabin Creek near Fraser (D) Colorado River at Windy Gap, near Granby (D) Colorado River at Hot Sulphur Springs (DetCT) WILLIAMS FORK BASIN | 39
40
41
42
43
44
45
46 | | Bobtail Creek (head of Williams Fork) near Jones Pass (D) | 51234
5555555555661 | | Muddy Creek at Kremmling (DCTcts) | 62 | | Monte Cristo Creek (head of Blue River): Monte Cristo diversion near Hoosier Pass (D) | 66 | | Bemrose-Hoosier diversion near Hoosier Pass (D) Blue River: McCullough Creek: | 67 | | McCullough-Spruce-Crystal diversion near Hoosier Pass (D) Blue River at Blue River (D). Blue River near Dillon (D). Snake River near Montezuma (D). Keystone Gulch near Dillon (D). Tenmile Creek below North Tenmile Creek, at Frisco (D). Blue River below Dillon (D). Straight Creek below Laskey Gulch, near Dillon (D). Rock Creek near Dillon (D). Boulder Creek at upper station, near Dillon (D). Slate Creek at upper station, near Dillon (D). Blue River above Green Mountain Reservoir, near Dillon (CTct) Black Creek below Black Lake, near Dillon (D). Cataract Creek near Kremmling (D). Reservoirs in Blue River basin. Dillon Reservoir (e). Green Mountain Reservoir (e). Blue River below Green Mountain Reservoir (D). Colorado River near Kremmling (D). | 68
69
70
71
73
74
75
77
78
83
84
84
84
86 | | Colorado River near Radium (Dct) | 87 | | Piney River below Piney Lake, near Minturn (D) | 90
91
92
93
94 | | Rock Creek at Crater (Dtcs) | 95
99 | | EAGLE RIVER BASIN Eagle River at Red Cliff (D) Turkey Creek: | 103 | | Wearyman Creek near Red Cliff (D) | 104
105 | | Missouri Creek near Gold Park (D) | 106
107
108
109 | Middle Fork Fish Creek Tributary below Fish Creek Reservoir (D) 210 PAGE | COLORADO RIVERCONTINUED | | |---|------------| | GREEN RIVER BASINContinued Yampa RiverContinued | 2.1 | | Yampa River at Steamboat Springs (D) | 213 | | Elk River above Clark (D) | -214- VV | | Elk River at Clark (D) | 215 | | Trout Creek: Middle Creek near Oak Creek (Dct) | 216 | | Foidel Creek near Oak Creek (DctCT) | | | Foidel Creek at mouth, near Oak Creek (Dct) | 222 | | Elkhead Creek near Elkhead (D) | | | Fortification Creek near Fortification (Dcts) | | | Yampa River below Craig (D) | 229 | | Williams Fork River at mouth, near Hamilton (Dcts) | 230 | | Wilson Creek above Taylor Ćreek near Axial (D) | | | Taylor Creek at mouth, near Axial (D) | | | Yampa River near Maybell (DcmtsCT) | | | Slater Fork near Slater (D) | | | Little Snake River near Dixon, WY (Dcts) | | | Willow Creek near Dixon, WY (D) | | | Little Snake River below Baggs, WY (ctm) | | | Sand Wash near Sunbeam (Dcts) | | | Yampa River at Deerlodge Park (D) | | | North Fork White River: | | | Lost Creek near Buford (D) | | | North Fork White River at Buford (Dtcs) | | | South Fork White River at Budge's Resort (Dtcs) | | | South Fork White River near Budge's Resort (Dtcs) | 260 | | South Fork White River near Buford (Dtc) | 263 | | South Fork White River at Buford (Dtcs) | 265 | | White River above Coal Creek, near Meeker (Dtcs) | | | White River below Meeker (D) | | | Piceance Creek below Rio Blanco (Dtcs) | 277 | | Stewart Gulch above West Fork, near Rio Blanco (tc) | 280 | | Piceance Creek tributary near Rio Blanco (Dtcs) | | | Willow Creek near Rio Blanco (tc) | | | Piceance Creek below Ryan Gulch, near Rio Blanco (DosCTt) | | | Piceance Creek at White River (D) | 290 | | White River above Crooked Wash, near White River City (Dtcs) | 291 | | Yellow Creek: Corral Gulch below Water Gulch, near Rangely (Dct) | 295 | | Corral Gulch near Rangely (DtcCT) | | | Yellow Creek near White River (Dcts) | 301 | | White River below Boise Creek, near Rangely (Dcts) | 304 | | SAN JUAN RIVER BASIN East Fork San Juan River above Sand Creek, near Pagosa Springs (D) | 309 | | San Juan River at Pagosa Springs (D) | | | Rio Blanco below Blanco diversion dam, near Pagosa Springs (D) | 311 | | Navajo River at Banded Peak Ranch, near Chromo (D) | | | Navajo River below Oso diversion dam, near Chromo (D) Little Navajo River below Little Oso Diversion Dam, | 313 | | near Chromo (D) | 314 | | Navajo River at Edith (D) | 315 | | San Juan River near Carracas (D) | | | Piedra River near Arboles (D) | 317 | | Vallecito Creek near Bayfield (Demts) | 318 | | Vallecito Reservoir near Bavfield (e) | 321 | | Los Pinos River at La Boca (Dct) | 322 | | Spring Creek at La Boca (Dct) | 325 | | Animas River at Durango (D) | 327
328 | | La Plata River at Hesperus (D). | 329 | | La Plata River at Hesperus (D) | 330 | | Mancos River near Towaoc (D) | 331 | | Navajo Wash near Towaoc (D) | 332 | | McElmo Creek: McElmo Creek near Cortez (DCTct) | 333 | | McElmo Creek near Colorado-Utah State line (Dct) | 337 | | | • | #### WATER RESOURCES DATA - COLORADO, 1988 #### VOLUME 2: COLORADO RIVER BASIN By R. C. Ugland, B. J. Cochran, R. G. Kretschman, E. A. Wilson, and J. D. Bennett #### INTRODUCTION The Water-Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Colorado each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in the report series entitled "Water Resources Data - Colorado". This report (Volume 2 of two volumes) includes records of surface water in the State, west of the continental divide. Specifically, it contains: (1) discharge records for 173 streamflow-gaging stations, for 5 partial-record streamflow stations and 1 miscellaneous streamflow site; (2) stage and contents for 11 lakes and reservoirs; and (3) water-quality data for 55 streamflow-gaging stations, miscellaneous water-quality data for 121 gaged sites, meteorological data for 2 sites, and groundwater levels for 4 wells.
The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Colorado. Prior to introduction of this series and for several water years concurrent with it, water-resources data for Colorado were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-water Supply of the United States," Parts 6B, 7, and 8." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." Data on ground-water levels for the 1935 through 1955 water years were published annually under the title "Water Levels and Artesian Pressures in Observation Wells in the United States." For the 1956 through 1974 water years the data were published in four 5-year reports under the title "Ground-Water Levels in the United States." Water-supply papers may be purchased from the, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 41, Box 25425, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Beginning with the 1971 water year, water data on streamflow, water quality, and ground-water are published in official survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CO-88-2." These water-data reports are for sale, in paper copy or in micro-fiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (303) 236-4882. Figure 1.--Map showing locations of lakes and stream-gaging stations and water-quality stations in Colorado. Figure 2.--Map showing locations of crest-stage partial-record stations in Colorado. #### COOPERATION The U.S. Geological Survey and organizations of the State of Colorado have had cooperative agreements for the systematic collection of surface-water records since 1895 and for water-quality records since 1941. Organizations that assisted in collecting data for this report through cooperative agreement with the Survey are: ``` Arkansas River Compact Administration, Jim Rodger, Treasurer. Bent County Commissioners, Thomas Pointon. Boulder County Public Works Department, Tim Feehan, Systems Analyst. Boulder County Public Works Department, Tim Feehan, Systems Analyst. Castle Pines Metro District, Sherry Ference. Castle Pines Northern Metro District, Sherry Ference. Chaffee County Commissioners, Jim McFarland. Cherokee Water and Sanitation District, F. S. Loosley, Manager. Cherry Creek Basin Authority, Rhonda Sandquist. City and County of Denver, Board of Water Commissioners, David Little, President. City of Arvada, Scott Daniels, City Engineer. City of Aspen, James Markalunas, City Manager. City of Aurora, Thomas Griswold, acting Director of Utilities. City of Boulder. Tim Feehan. City Manager. City of Aurora, Thomas Griswold, acting Director of Utilities. City of Boulder, Tim Feehan, City Manager. City of Colorado Springs, Gary Bostrom, City Manager. City of Englewood, Stewart Fonda, Director, Wastewater Treatment Plant. City of Fort Collins, Keith Elmund, Civil Engineer II. City of Fruita, Bob Engelke, Mayor. City of Glendale, Robert Taylor. City of Glenwood Springs, Michael Copp, Manager. City of Glenwood Springs, Michael Copp, Manager. City of Longmont, Linn Folsom. City of Loveland, Richard Leffier. City of Steamboat Springs, Harvey Rose. City of Thornton, Nancy Vincent, City Clerk. City of Westminster, Dan Strietelmeier. Colorado Department of Health, Brad Beecam, Executive Director. Colorado Department of Natural Resources, David H. Getches, Executive Director. Colorado Division of Mined Land Reclamation, James Pendelton, Director. Colorado Geological Survey, John Rold, State Geologist. Colorado River Water Conservation District, David Merritt, Secretary-Engineer. Colorado Water Roservation Board, David Walker. Colorado Springs Department of Public Utilities, J. D. Phillips, Director. Colorado Water Conservation Board, David Walker. Delta County Board of County Commissioners, Caroline Clemens, Chairman. Denver Regional Council of Governments, J. W. Belmear, Executive Director. Eagle County Board of Commissioners, Dick Gustafson, Commissioner. Evergreen Metropolitan District, G. C. Schulte, General Manager. Fountain Valley Authority, J. D. Phillips, Secretary. Garfield County, Mark Beam, Director of Administrative Services. Grand County, R. Howard Moody, County Manager. Larimer-Weld Regional Council of Governments, L. L. Pearson, Executive Director. Lost Creek Groundwater Management District, G. H. Bush, Manager. Lower Fountain Water-Quality Management Association, Stuart Loosely, President. Metropolitan Denver Sewage Disposal District No. 1, William Waggy, Manager. Mineral County, Charles Steele, Planning Officer. Mineral County, Charles Steele, Planning Officer. Moffat County, Sheila Cowash, Director. North Kiowa-Bijou Ground Water Management District, Donald F. McClary, Attorney. North LaJunta Water Conservation District, Mark Korbitz. Northern Colorado Water Conservancy District, L. Simpson, Secretary. Pikes Peak Area Council of Governments, Maurice Rahimi. Pikes Peak Regional Building Department, Dan Bunting. Pitkin County Board of County Commissioners, C. Stewart, County Manager. Pitkin County Board of County Commissioners, C. Stewart, County Manager. Pueblo Board of Water Works, Alan Hamel, Executive Director. Pueblo Civil Defense, Betty Jo Hopper, Director. Pueblo West Metro Water District, E. M. Zamecki, Manager. Purgatoire River Water Conservancy District, C. Latuda, President. Rio Blanco County Board of County Commissioners, Terry Lowell. Rio Grande Water Conservation District, Ralph Curtis, Manager. Southeastern Colorado Water Conservancy District, C. L. Thomson, General Manager. Southern Ute Indian Tribe, George Knoll. Southwestern Water Conservation District. Edward Searle. Manager. Southwestern Water Conservation District, Edward Searle, Manager. St. Charles Mesa Water Association, Lee Simpson, Manager. Town of Breckenridge, Gary Roberts, Town Manager. Town of Castle Rock, Tom Gallier, Director of Utilities. Town or Castle Rock, Tom Gallier, Director of Utilities. Trinchera Water Conservancy District, Charlotte Sheely, President. Uncompangre Valley Water Users Association, J. Hokit, Manager. Upper Arkansas River Water Conservancy District, K. Baker, General Manager. Upper Black Squirrel Groundwater Management District, Elvin Henderson, Chairman. Upper Eagle Valley Water and Sanitation District, Michail Blair. Upper Yampa Water Conservancy District, J. Fetcher. Urban Drainage and Flood Control District, L. Scott Tucker, Executive Director. Water Users No. 1. Jim Gayler, Associate Manager Water Users No. 1, Jim Gayler, Associate Manager Yellow Jacket Water Conservancy District, F. G. Cooley, Secretary-Council. ``` Financial assistance was also provided by the U.S. Army, Corps of Engineers, U.S. Army; U.S. Air Force; Bureau of Land Management, Bureau of Mines, Bureau of Reclamation, National Park Service, U.S. Environmental Protection Agency, U.S. Federal Emergency Management Agency, and U.S. National Weather Service. Organizations that supplied data are acknowledged in station descriptions. OVERVIEW OF HYDROLOGIC CONDITIONS [West of the Continental Divide] Prepared by Harold E. Petsch, Jr. #### Precipitation Precipitation data for water year 1988 were obtained from published reports of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Climatic Center, for the National Weather Service division in Colorado that is west of the Continental Divide. These data are listed in table 1. Precipitation and departures from normal precipitation (1951-80) are listed for the first 6 months of the water year when precipitation is predominately snow, and for the remaining 6 months when precipitation is predominately rain. Also listed are the precipitation and departure from normal precipitation for the entire water year. Precipitation for water year 1988 was near normal in the Colorado Drainage Basin Division, as shown in table 1. Graphs of monthly precipitation for the water year and for normal monthly precipitation at selected weather stations are shown in figure 3. Table 1.--Precipitation during water year 1988 and departures from normal precipitation (1951-80), in inches | | Octobe | r-March | April-S | eptember | Water year 1988 | | | |--------------------------------------|--------------------|-----------------------------|--------------------|-----------------------------|--------------------|-----------------------------|--| | National Weather
Service division | Precipi-
tation | Departure
from
normal | Precipi-
tation | Departure
from
normal | Precipi-
tation | Departure
from
normal | | | Colorado Drainage
Basin | 7.57 | -0.04 | 8.20 | 0.45 | 15.77 | 0.41 | | #### Streamflow Monthly mean discharges during water year 1988 at selected streamflow-gaging stations are compared to long-term mean monthly discharges in figure 4. Individual graphs show the varied
streamflow west of the Continental Divide during the water year. The graphs for the gaging stations indicate that monthly discharges during the water year had the same general trend as long-term monthly discharges, but were consistently less than the long-term means during the high-discharge months of May through July. Annual mean discharges for water year 1988 were from 13 to 28 percent less than long-term average at the selected gaging stations. The graphs for gaging stations 09070000, Eagle River below Gypsum (fig. 4, site A); 09251000, Yampa River near Maybell (fig. 4, site E); and 09304500, White River near Meeker (fig. 4, site F), indicate that monthly mean discharges for water year 1988 were greater than the long-term means only for April. The graphs for the remaining gaging stations (fig. 4, sites B-D,G) indicate that the monthly discharges for water year 1988 were greater than the long-term means for either five or six of the low-discharges months. Monthly discharges for May through July of water year 1988 were from 31 to 33 percent less than the long-term means at gaging stations 09070000, Eagle River below Gypsum (fig. 4, site A); 09114500, Gunnison River near Gunnison (fig. 4, site B); 09172500 San Miguel River near Placerville (fig. 4, site D); and 09361500, Animas River at Durango (fig. 4, site G). Monthly discharges for May through July of water year 1988 were 48 percent less than the long-term means at gaging station 09163500, Colorado River near Colorado-Utah State line (fig. 4, site C), and 16 to 21 percent less at gaging stations 09251000, Yampa River near Maybell (fig. 4, site E), and 09304500, White River near Meeker (fig. 4, site F). Peak discharges during water year 1988 and for the period of record for selected gaging stations are listed in table 2. The peak discharge at each of the selected gaging stations was less than the long-term median value. At ten of the selected gaging stations, peak discharges were less than the 25th-percentile values, but were substantially greater than the minimum peak discharges. The peak discharge at gaging station 09152500, Gunnison River near Grand Junction, was lower than any previous peak discharge at that site. | • | | | |---|--|--| | | | | | | | | | | | | | | | | Figure 3.- Comparison of monthly precipitation for water year 1988 to normal monthly precipitation for the reference period 1951-80. # Monthly discharge / for water year 1988 EXPLANATION Mean monthly discharge for reference period A B GAGING STATION— Letter refers to accompanying graph and map (1900-87) REFERENCE PERIOD Figure 4.--Comparison of monthly discharges for water year 1988 to mean monthly discharges for the reference periods indicated on the individual graphs. Figure 4.--(continued) Table 2.--Peak discharges for water year 1988 and for the period of record at selected gaging stations [mi², square miles; ft³/s, cubic feet per second] | Gaging station | | Drainage | • | | Period o | Peak | Remarks on | | |----------------|--|--------------------|-----------------------------------|------|----------------------|---------|----------------------|--| | ide | entification | area
2 | record | | discharge | | discharge | 1988 peak | | | | (mi ²) | (water years) | Date | (ft ³ /s) | Date | (ft ³ /s) | discharge | | 09034500 | Colorado River at Hot
Sulphur Springs | 825 | 1905-87 | 5/20 | 1,550 | 6/15/21 | 10,300 | Less than median | | 09070000 | Eagle River below
Gypsum | 945 | 1947-87 | 6/7 | 2,920 | 5/25/84 | 7,020 | Less than 25th percentile | | 09070500 | Colorado River near
Dotsero | 4,394 | 1941-87 | 6/7 | 6,300 | 5/25/84 | 22,200 | Less than 25th percentile | | 09085000 | Roaring Fork River at
Glenwood Springs | 1,451 | 1906-9,
1911-87 | 6/7 | 4,690 | 7/1/57 | 19,000 | Less than 25th percentile | | 09085100 | Colorado River below
Glenwood Springs | 6,013 | 1967-87 | 6/7 | 11,000 | 5/25/84 | 31,500 | Less than 25th
percentile (4th
lowest) | | 09095500 | Colorado River near
Cameo | 8,050 | 1934-87 | 6/7 | 13,000 | 5/26/84 | 39,300 | Less than 25th percentile | | 09114500 | Gunnison River near
Gunnison | 1,012 | 1911-27,
1945-87 | 6/6 | 2,430 | 6/13/18 | 11,400 | Less than 25th percentile | | 09132500 | North Fork Gunnison
River near Somerset | 526 | 1934-87 | 6/6 | 1,690 | 5/24/84 | 9,220 | Less than 25th
percentile (4th
lowest) | | 09149500 | Uncompahgre River at
Delta | 1,129 | 1903-31,
1939-87 | 9/13 | 1,330 | 5/15/84 | 5,800 | Less than median | | 09152500 | Gunnison River near
Grand Junction | 7,928 | 1897-99,
1902-6,
1917-87 | 5/18 | 3,720 | 5/23/20 | 35,700 | New low | | 09163500 | Colorado River near
Colorado-Utah State
line | 17,843 | 1951-87 | 5/19 | 15,400 | 5/27/84 | 69,800 | Less than 25th
percentile | | 09166500 | Dolores River at
Dolores | 504 | 1896-1903,
1911-12,
1922-87 | 5/18 | 2,410 | 10/5/11 | 10,000 | Less than median | | 09171100 | Dolores River near
Bedrock | 2,145 | 1972-87 | 11/6 | 2,330 | 4/30/73 | 9,500 | Less than 25th
percentile (4th
lowest) | | 09239500 | Yampa River at
Steamboat Springs | 604 | 1904-6,
1910-87 | 6/7 | 3,140 | 6/14/21 | 6,820 | Less than median | | 09251000 | Yampa River near
Maybell | 3,410 | 1904-5,
1916-87 | 5/19 | 10,200 | 5/17/84 | 25,100 | Less than median | | 09304500 | White River near
Meeker | 755 | 1901-5,
1910-87 | 5/18 | 2,720 | 5/25/84 | 6,950 | Less than median | | 09346400 | San Juan River near
Carracas | 1,230 | 1962-87 | 5/18 | 2,300 | 6/6/70 | 9,730 | Less than 25th percentile | | 09361500 | Animas River at
Durango | 692 | 1912-87 | 6/8 | 3,590 | 10/5/11 | 25,000 | Less than 25th percentile | ## Chemical Quality of Streamflow To determine if substantial changes occurred during water year 1988 in the chemical quality of streamflow, an analysis was made of specific conductance, which was measured at gaging stations on five representative streams. The frequency of the specific-conductance measurements was either monthly, bimonthly, or weekly. Each gaging station either is the most downstream station on that stream or is representative of a substantial part of the drainage area of that stream. A comparison of the range and the distribution of the specific conductance for water year 1988 to long-term values for each selected gaging station is shown in figure 5. Specific conductance can be used to estimate the dissolved-solids concentration in water because specific conductance is directly proportional to the concentrations of ions in water. To determine if there were significant differences between values of specific conductance for water year 1988 and values for the period of record used for comparison, a statistical technique called the Wilcoxon-Mann-Whitney rank sum test was used. This test is a non-parametric counterpart to the common t-test and does not require the data to have normal distribution. Figure 5.--Comparison of range and distribution of specific conductance measured during water year 1988 to long-term values. The Wilcoxon-Mann-Whitney rank sum test was applied to the hypothesis that the mean specific conductance for water year 1988 was equal to the mean for the period of record. The procedure for testing the hypothesis involves computing a test statistic from the ranks of the data by using a pooled standard deviation and comparing the test statistic to a value obtained from a table of "Student's" talues (Box and others, 1978). The table value is (1-alpha/2), where alpha (the level of significance) equals 0.05, at the appropriate degrees of freedom for the number of samples. If the absolute value of the computed test statistic (t_R) is greater than the tabular t value (t_{tab}) , the hypothesis is rejected. A rejection of the hypothesis is statistical evidence that the two means are different. Results of the Wilcoxon-Mann-Whitney rank sum tests for the five gaging stations are listed in table 3. For four of the stations, 09152500, Gunnison River near Grand Junction; 09177000, San Miguel River at Uravan; 09306290, White River below Boise Creek, near Rangely; and 09361500, Animas River at Durango, comparisons of mean specific conductance for water year 1988 to that for the period of record indicate that the means of specific conductance are not different statistically. For the gaging station 09095500, Colorado River near Cameo, the test indicated a difference in the means. Published data for gaging station 09095500, Colorado River near Cameo, indicate an inverse relation between specific conductance and discharge. The mean specific conductance for water year 1988 at this gaging station was greater than the mean specific conductance for 1978-87, the period used for comparison (table 3). For water year 1988, mean discharge at this gaging station was less than the 1978-87 mean discharge by 36 percent; therefore, it is reasonable to expect the mean specific conductance for water year 1988 to be greater than the mean specific conductance for 1978-87. Table 3.--Results of Wilcoxon-Mann-Whitney rank sum tests comparing mean specific conductance of discharge for water year 1988 with mean for the period of record at selected gaging stations [Specific conductance, in microsiemens per centimeter at 25 degrees Celsius; R, rejected; A, accepted; t_R , calculated test statistic; t_{tab} , t-values from standard table] | | Specific conductance | | | | | Wilcoxon-Mann-Whitney rank sum test | | | | | |--|------------------------|------|----------------------------|------------------------|------|-------------------------------------|--|------------------|-----------------|---| | | Water year 1988 | | | Period of record | | | Period | | | | | Gaging station identification | Number
of
values | Mean | Standard
devia-
tion |
Number
of
values | Mean | Standard
devia-
tion | used t _R
(water
year) | t _{tab} | Hypoth-
esis | | | 09095500 Colorado River | | | | | | | | | | | | near Cameo
09152500 Gunnison River | 42 | 929 | 274 | 239 | 793 | 288 | 1978-87 | 3.26 | 1.98 | R | | near Grand Junction
09177000 San Miguel River | 9 | 954 | 254 | 92 | 807 | 314 | 1978-87 | 1.59 | 1.99 | Α | | at Uravan
19306290 White River below Boise | 11 | 690 | 282 | 123 | 675 | 323 | 1978-87 | .20 | 1.98 | Α | | Creek, near Rangely | 23 | 627 | 179 | 71 | 676 | 162 | 1983-87 | -1.02 | 1.99 | Α | | at Durango | 14 | 467 | 196 | 131 | 410 | 204 | 1978-87 | 1.07 | 1.98 | Α | #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Bench-Mark Network is a network of 57 small sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. #### EXPLANATION OF THE RECORDS The surface-water records published in this report are for the 1988 water year that began on October 1, 1987, and ended September 30, 1988. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface water. The locations of the stations where the data were collected are shown in figures 1, and 2. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### Station Identification Numbers Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for miscellaneous sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for surface-water stations where only infrequent measurements are made. #### Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downtream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 09010500, which appears just to the left of the station name, includes the two-digit Part number "09" plus the six-digit downstream-order number "010500." The Part number designates the major river basin; for example, Part "09" is the Colorado River basin. #### Latitude-Longitude System The identification numbers for wells, springs, and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.) #### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Locations of crest-stage partial record stations for which data are given in this report are shown in figure 2. #### Data Collection and Computation The data obtained at a complete-record gaging station on a stream or canal consist of a contiuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage. Continuous records of stage are obtained with analog records that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation
is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed. For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outlfow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections. "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### Data Presentation The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information, such as station location; period of record; average discharge; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. ${\tt GAGE.--}$ The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. ${\tt COOPERATION.--Records} \ provided \ by \ a \ cooperating \ organization \ or \ obtained \ for \ the \ Geological \ Survey \ by \ a \ cooperating \ organization \ are \ identified \ here.$ AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum. EXTREMES OUTSIDE PERIOD OF RECORD. -- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. EXTREMES FOR CURRENT YEAR.--Extremes given here are similar to those for the period of record, except the peak discharge listed may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data. ${\tt REVISIONS.--If}\ a\ critical\ error\ in\ published\ records\ is\ discovered,\ a\ revision\ is\ included\ in\ the\ first\ report\ published\ following\ discovery\ of\ the\ error.$ Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL"
gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acrefeet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. If applicable, data collected at partial-record stations follow the information for continuous-record sites. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. #### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for daily values less than 1 ft^3/s ; to the nearest tenth between 1.0 and 10 ft^3/s ; to whole numbers between 10 and 1,000 ft^3/s ; and to 3 significant figures for more than 1,000 ft^3/s . The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Records Available The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that office upon request. Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Colorado District office. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. ### Records of Surface-Water Quality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. ## Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period oaf years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1. #### Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. #### On-site Measurements and Sample Collection In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on pages 30 and 31 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District Office whose address is given on the back of the title page of this report. ### Water temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken
manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published to the nearest 0.1 degree Celcius, but is usually accurate to the nearest 0.5 degrees Celsius. Water temperatures measured at the time of water-discharge measurements are published in this report as supplemental water-quality for gaging stations. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depthintegrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### Laboratory Measurements Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally, all other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., or Doraville, Ga. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. #### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. ${\tt RE\,MA\,RKS.--Re\,marks\ provide\ added\ information\ pertinent\ to\ the\ collection,\ analysis,\ or\ computation\ of\ the\ records.}$ ${\tt COOPERATION.--Records~provided~by~a~cooperating~organization~or~obtained~for~the~Geological~Survey~by~a~cooperating~organization~are~identified~here.}$ EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### Remark Codes The following remarks codes may appear with the water-quality data in this report: #### PRINTED OUTPUT REMARK - E Estimated value - > Actual value is known to be greater than the - Actual value is known to be less than the value shown - K Based on non-ideal colony count - M Presence of material verified but not quantified #### ACCESS TO WATSTORE DATA The National <u>WATer Data STO</u>rage and <u>RE</u>trieval System (WATSTORE) was established for handling water data collected through the activities \overline{of} the U.S. Geological Survey and to provide for more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia. WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from each of the Water Resources Division's District offices (see address given on the back of the title page). General inquires about WATSTORE may be directed to: Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092 #### DEFINITION OF TERMS Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. $\underline{\text{Acre-foot}}$ (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot $\overline{\text{and is equal}}$ to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample. $\underline{\text{Algae}}$ are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and $\underline{\text{lacking}}$ roots, stems, and leaves. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface. Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Total coliform bacteria are a particular group of bacteria
that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C ± 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 $^{\circ}$ C \pm 0.2 $^{\circ}$ C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria found also in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organism which produce red or pink colonies with 48 hours at 35°C \pm 1.0°C on KF-streptocoecus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. $\underline{\mathtt{Bed\ material}}$ is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria. $\underline{\text{Biomass}}$ is the amount of living matter present at any given time, expressed as the mass per unit $\overline{\text{area}}$ or volume of habitat. Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). Dry mass refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. Wet mass is the mass of living matter plus contained water. Bottom material: See Bed material. Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes. <u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common green pigments in plants. Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. <u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. <u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at a gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water. Cubic foot per second (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. Cubic feet per second per square mile $(ft^3/s)/mi^2$ is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. $\underline{\text{Discharge}}$ is the volume of water (or more broadly, volume of fluid plus suspended sediment) that $\underline{\text{passes a given}}$ point within a given period of time. $\underline{\text{Mean discharge}}$ (MEAN) is the arithmetic mean of individual daily mean discharges during a specific time. Instantaneous discharge is the discharge at a particular instant of time. $\frac{\text{Dissolved}}{\text{um membrane filter.}} \text{ to that material in a representative water sample which passes through a 0.45} \\ \frac{\text{um membrane filter.}}{\text{um membrane filter.}} \text{ This is a convenient operational definition used by Federal agencies that collect water data.} \\ \text{Determinations of "dissolved" constituents are made on subsamples of the filters.} \\$ Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change. <u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. $\underline{\text{Drainage basin}} \text{ is a part of the surface of the earth that is occupied by a drainage system,} \\ \text{which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.}$ $\underline{\text{Gaging station}} \ \text{is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.}$ $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number. $\underline{\text{Land-surface datum}}$ (1sd) is a datum plane that is approximately at land surface at each groundwater observation well. Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult. Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. $\underline{\text{Micrograms per gram}}$ (ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. $\underline{\text{Micrograms per liter}} \ (\text{UG/L}, \text{ug/L}) \ \text{is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.}$ Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide
stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which incudes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). Organism is any living entity. Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. $\frac{\text{Organism count/volume}}{\text{adjusted to the number per sample volume, usually milliliter (mL) or liter (L).} \text{ Numbers of planktonic organisms can be expressed in these terms.}$ $\underline{\text{Total organism count}}$ is the total number of organisms collected and enumerated in any particular sample. <u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes. Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter or particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). <u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Unit Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analysis | |----------------|-----------------|------------------------| | Clay | 0.00024 - 0.004 | Sedimentation | | Silt | .004062 | Sedimentation | | Sand | .062 - 2.0 | Sedimentation or sieve | | Gravel | 2.0 - 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis. Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population in terms of types, numbers, mass, or volume. $\underline{\text{Periphyton}} \text{ is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.}$ $\underline{\text{Pesticides}} \text{ are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.}$ Picocurie (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{-10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). \underline{P} lankton is a community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae. $\underline{\mathtt{Blue-green}}$ algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. $\underline{\text{Diatoms}}$ are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. $\frac{\text{Green algae}}{\text{s. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.}$ Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton is dominated by small crustaceans and rotifers. Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method). Milligrams of carbon per area or volume per unit time mg $C/(m^2.time)$ for periphyton and macrophytes and mg $C/(m^3.time)$ for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. Milligrams of oxygen per area or volume per unit time mg0/(m².time) for periphyton and macrophytes and mg0/(m³.time) for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. $\frac{\text{Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.}$ Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. $\underline{\textbf{Return period}} \ \ \text{is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.}$ Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. $\underline{\text{Sediment}}$ is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. $\underline{\text{Bed load}}$ is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.
$\underline{\mbox{Bed load discharge}}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time. $\underline{\underline{Suspended\ sediment}}\ is\ the\ sediment\ that\ at\ any\ given\ time\ is\ maintained\ in\ suspension\ by$ the $\underline{upward\ components\ of}\ turbulent\ currents\ or\ that\ exists\ in\ suspension\ as\ a\ colloid.$ $\underline{Suspended\text{-sediment concentration}} \ \ is \ the \ velocity\text{-weighted concentration of suspended} \\ \text{sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).}$ ${\tt Mean}$ concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft 3 /s) x 0.0027. $\underline{ \text{Suspended-sediment load}} \text{ is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.}$ Total-sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge. $\frac{7-\text{day 10-year low flow}}{10-\text{year low flow}}$ (7 Q₁₀) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow). $\underline{Sodium\text{-}adsorption\text{-}ratio} \text{ (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which generally unsatisfactory for irrigation.$ Solute is any substance that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. <u>Stage-discharge relation</u> is the relation between gage height (stage) and the volume of water, per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is they physical surface upon which an organism lives. ${ m Natural\ substrate}$ refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives. Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton. Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituents. <u>Suspended</u>, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ concentrations of the constituent. Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, $\underline{\text{Hexagenia}}$ $\underline{\text{limbata}}$, is the following: Kingdom Animal Phylum Arthropoda Class Insecta Order Ephemeroptera Family Ephemeridae Genus Hexagenia Species Hexagenia Thermograph is an instrument that continuously records variation of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. $\underline{\text{Tons per day}}$ (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period. Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.) $\underline{\text{Total discharge}} \text{ is the total quantity of any individual constituent, as measured by dry mass or } \\ \text{volume, that passes through a stream cross-section per unit of time. This term needs to be } \\ \text{qualifed, such as "total sediment discharge," "total chloride discharge," } \\ \text{and so on.}$ Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results. $\underline{Tritium\
Network}$ is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year." $\underline{\text{WDR}}$ is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976). Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. $\underline{\text{WSP}}$ is used as an abbreviation for "Water-Supply Paper" in references to previously published reports. #### SELECTED REFERENCES - The following publications are available for background information on the methods for collecting, analyzing, and evaluating the chemical and physical properties of surface waters: - American Public Health Association, and others, 1980, Standard methods for the examination of water and waste water, 13th ed: American Public Health Assoc., New York, 1134 p. - Box, George E. P., Hunter, William G., and Hunter, J. Stuart, 1978, Statistics for Experimenters: New York, John Wiley, and Sons, 653 p. - Cain, D. L., 1984, Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley of Colorado: Water-Resources Investigation Report 84-4273, 91 p. - Carter, R. W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6, 13 p. - Clarke, F. W., 1924, The composition of the river and lake waters of the United States: U.S. Geological Survey Professional Paper 135, 199 p. - Colby, B. R., 1963, Fluvial sediments--a summary of source, transportation, deposition, and measurements of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p. - Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geological Survey Water-Supply Paper 1357, 187 p. - Colby, B. R., and Hubbell, D. W., 1961, Simplified methods for computing total sediment discharge with the modified Einstein procedure: U.S. Geological Survey Water-Supply Paper 1593, 17 p. - Collins, W. D., and Howard, C. S., 1928, Quality of water of Colorado River in 1925-26: U.S. Geological Survey Water-Supply Paper 596-B, p. 33-43. - Corbett, D. M., and others, 1942, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p. - Crouch, T. M., and others, 1984, Water-Resources Appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado: Water-Resources Investigation Report 82-4114, 123p. - Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A1, open-file report 82-272, 136 p. - Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p. - Gregg, D. O., and others, 1961, Public water supplies of Colorado (1959-60): Fort Collins, Colorado State University Agricultural Experiment Station, General Service 757, 128 p. - Guy, H. P., 1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigation, Book 3, Chapter C1, 55 p. - _____1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 57 p. - Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p. - Hawley, Gessner G., 1981, The condensed chemical dictionary; Van Nostrand-Reinhold Publication Corporation, New York, 10th edition, 1135 p. - Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p. - Howard, C. W., 1955, Quality of water of the Colorado River, 1925-40: U.S. Geological Survey open-file report, 103 p. - Iorns, W. V., and others, 1964, Water Resources of the Upper Colorado River basin--basic data: U.S. Geological Survey Professional Paper 442, 1,036 p. - _____1965, Water Resources of the Upper Colorado River basin--technical report: U.S. Geological Survey Professional Paper 441, 370 p. - Lane, E. W., and others, 1947, Reports of Subcommittee on terminology: American Geophysical Union Transaction, v. 28, p. 937. - Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p. - Lohman, S. W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, p. 2. - McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, 1121 p. - Meinzer, O. E., 1923, The occurrence of ground water in the United States: U.S. Geological Survey Water-Supply Paper 489, 321 p. - 1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p. - Moran, R. E., and Wentz, D. A., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 2 of 3, 1972-73: Colorado Water Conservation Board Circular 25, 250 p. - Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p. - Ritter, J. R., and Helley, E. J., 1969, Optical method for determining particle sizes of coarse sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C3, 33 p. - Slack, K. V., and others, 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 165 p. - Spahr, N. E., Blakely, S. R., and Hammond, S. E., 1985, Selected Hydrologic Data for the South Platte River through Denver, Colorado: U. S. Geological Survey open file report 84-703, 225 p. - Stabler, Herman, 1911, Some stream waters of the Western United States: U.S. Geological Survey Water-Supply Paper 274, 188 p. - U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurements and analysis of sediment loads in streams: - Report 11, 1957, The development and calibration of visual accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., 109 p. - Report 12, 1957, Some fundamentals of particle-size analysis: Washington, D. C., U.S. Government Printing Office, 55 p. - Report AA, 1959, Federal Inter-Agency sedimentation instruments and reports: St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn., 41 p. - Report 13, 1961, The single-stage sampler for suspended sediment: Washington, D. C., U.S. Government Printing Office, 105 p. - Report 14, 1963, Determinations of fluvial sediment discharge: Washington, D. C., U.S. Government Printing Office 151 p. The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." - 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages. - 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2,
Chapter D1. 1974. 116 pages. - 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages. - 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. J. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages. - 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Alo. 1984. 59 pages. - 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. - 3-A12. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages. - 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages. - 3-Al4. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter Al4. 1983. 46 pages. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages. - 3-Al6. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter Al6. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programed test for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976, 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. - 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages. - 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. - 4-Bl. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter Bl. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. - 4-Dl. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter Dl. 1970. 17 pages. - 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS-TWRI Book 5, Chapter Al. 1979. 626 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages. - 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages. - 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS-TWRI Book 6, Chapter Al. 1988. 586 pages. - 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. - 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter Al. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages. - 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. # COLORADO RIVER MAIN STEM # 09010500 COLORADO RIVER BELOW BAKER GULCH, NEAR GRAND LAKE, CO LOCATION.--Lat 40°19'33", long 105°51'22", in NE4NW4 sec.12, T.4 N., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft downstream from Baker Gulch, 1.0 mi upstream from Bowen Gulch, and 5.5 mi northwest of town of Grand Lake. DRAINAGE AREA .-- 53.4 mi2. PERIOD OF RECORD .-- May 1953 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,750 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1-8, Nov. 8-13, Nov. 15 to Apr. 21, Aug. 13-24, and Sept. 7-14. Records fair except for estimated daily discharges, which are poor. Transmountain diversion upstream from station by Grand River ditch (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 35 years, 64.1 ft3/s; 46,440 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 976 ft³/s, June 30, 1957, gage height, 7.19 ft; maximum gage height, 7.30 ft, June 25, 1971; minimum daily discharge, 3.0 ft³/s, Jan. 13, 1963. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $648 \text{ ft}^3/\text{s}$ at 0200 June 7, gage height, 6.73 ft; minimum daily, $5.6 \text{ ft}^3/\text{s}$, Dec. 16-18. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|------------------------------------|--|------------------------------------|--|------------------------------------|--|-------------------------------------|-----------------------------------|------------------------------------|---------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
11
11
11 | 17
19
18
16
14 | 7.9
7.7
7.4
7.3
7.1 | 6.4
6.4
6.4
6.4 | 7.0
7.0
7.0
7.0
7.0 | 6.6
6.6
6.6
6.6 | 7.3
7.4
7.6
7.9
8.3 | 93
67
55
58
72 | 248
234
283
405
493 | 132
121
122
106
98 | 31
29
24
23
22 | 15
16
16
15
15 | | 6
7
8
9
10 | 10
10
10
11
11 | 16
15
15
15
15 | 6.9
6.7
6.5
6.4
6.1 | 6.4
6.4
6.4
6.4 | 7.0
7.0
7.0
7.0
7.0 | 6.6
6.6
6.6
6.6 | 9.5
13
23
20
17 | 79
61
49
44
42 | 489
559
532
544
501 | 103
101
88
78
74 | 21
22
24
21
19 | 16
16
17
17 | | 11
12
13
14
15 | 10
10
12
17
18 | 14
13
13
12
12 | 6.0
6.0
6.0
6.0 | 6.4
6.4
6.4
6.4 | 7.0
7.0
7.0
7.0
7.0 | 6.6
6.6
6.6
6.6 | 16
17
19
22
25 | 50
75
108
159
194 | 504
451
367
311
288 | 77
69
62
58
58 |
18
18
17
17 | 17
17
17
17
17 | | 16
17
18
19
20 | 15
13
13
12
12 | 12
11
11
10
10 | 5.6
5.6
6.0
6.0 | 6.6
6.8
7.0
7.0 | 6.6
6.6
6.6
6.6 | 6.6
6.6
6.6
6.6 | 36
50
48
46
45 | 233
273
342
389
240 | 286
281
292
306
317 | 60
50
45
42
39 | 15
15
14
14
13 | 16
16
15
16
18 | | 21
22
23
24
25 | 11
11
11
12
16 | 10
9.8
9.5
9.4
9.2 | 6.0
6.0
6.0
6.0 | 7.0
7.0
7.0
7.0
7.0 | 6.6
6.6
6.6
6.6 | 6.6
6.8
6.9
7.0 | 55
51
41
32
26 | 176
146
128
139
172 | 305
339
281
268
238 | 35
32
30
29
28 | 13
12
12
12
11 | 18
19
19
19 | | 26
27
28
29
30
31 | 15
12
12
12
15
17 | 9.0
8.8
8.5
8.3
8.1 | 6.0
6.0
6.2
6.4
6.4 | 7.0
7.0
7.0
7.0
7.0
7.0 | 6.6
6.6
6.6 | 7.0
7.0
7.0
7.0
7.1
7.2 | 27
25
27
43
72 | 175
203
253
314
409
343 | 228
206
192
181
149 | 28
28
28
29
29
30 | 11
12
10
9.4
11 | 17
17
19
19
20 | | TOTAL
MEAN
MAX
MIN
AC-FT | 383
12.4
18
10
760 | 368.6
12.3
19
8.1
731 | 195.8
6.32
7.9
5.6
388 | 207.4
6.69
7.0
6.4
411 | 197.4
6.81
7.0
6.6
392 | 208.2
6.72
7.2
6.6
413 | 844.0
28.1
72
7.3
1670 | 5141
166
409
42
10200 | 10078
336
559
149
19990 | 1909
61.6
132
28
3790 | 518.4
16.7
31
9.4
1030 | 511
17.0
20
15
1010 | CAL YR 1987 TOTAL 14290.4 MEAN 39.2 MAX 340 MIN 5.6 AC-FT 28350 WTR YR 1988 TOTAL 20561.8 MEAN 56.2 MAX 559 MIN 5.6 AC-FT 40780 # 09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO LOCATION.--Lat 40°19'40", long 105°34'39", in SW4NW4 sec.9, T.4 N., R.73W., Larimer County, Hydrologic Unit 10190006, on right bank at upstream end of Aspen Creek siphon, 700 ft downstream from east portal, and 4.5 mi southwest of Estes Park. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1946 to current year (monthly discharge only for August and September 1947). GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 8,250 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1950, water-stage recorder and Parshall flume at different datum. Oct. 1, 1950, to Sept. 30, 1952, water-stage recorder and Cippoletti weir at different datum. REMARKS.--No estimated daily discharges. Records good. This is a transmountain diversion from Grand Lake and Shadow Mountain Lake for power and irrigation developments in the South Platte River basin as part of the Colorado-Big Thompson project. Diversion point is at west portal near town of Grand Lake, 13.35 mi west of east portal. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. AVERAGE DISCHARGE. -- 42 years, 282 ft3/s; 204,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 592 ft³/s, June 30, 1962; no flow at times in most years. | | | DISCHAR | GE, CUBI | C FEET I | PER SECOND | , WATER
MEAN VAL | YEAR OCTOB
UES | ER 1987 1 | O SEPTEMBER | R 1988 | | | |--------------------------------------|--|------------------------------------|--|--|------------------------------------|--|---------------------------------------|--|---------------------------------|--|--|-------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 275
277
256
254
249 | 309
310
307
40
197 | 340
341
340
342
423 | 306
307
305
309
308 | 445
445
446
445 | 420
33
12
12
12 | 490
485
449
455
456 | 313
303
306
230
113 | 398
502
374
378
397 | 486
486
432
532
531 | 285
485
486
485
484 | | 6
7
8
9
10 | .00
.00
.00
.00 | 263
261
261
260
261 | 286
304
305
135
195 | 425
425
424
426
429 | 308
307
307
306
304 | 446
445
446
446
498 | 11
11
11
11
11 | 491
490
492
493
489 | 304
304
306
306
306 | 504
373
353
351
350 | 524
527
500
497
489 | 490
496
498
504
503 | | 11
12
13
14
15 | .00
.00
109
374
272 | 260
262
263
262
259 | 196
196
195
444
333 | 426
435
437
440
449 | 311
307
306
309
309 | 409
447
446
450
448 | 5.5
.00
.00
226
402 | 488
489
482
445
383 | 304
303
305
360
355 | 352
370
501
393
400 | 314
534
535
535
535 | 500
503
503
470
404 | | 16
17
18
19
20 | .00
115
407
407
405 | 279
393
262
224
256 | 337
339
340
342
340 | 445
444
445
443
448 | 305
291
289
289
290 | 450
435
401
433
435 | 403
403
402
401
448 | 382
354
380
382
380 | 377
396
529
530
533 | 398
399
400
488
397 | 537
524
502
535
487 | 421
480
477
479
452 | | 21
22
23
24
25 | 406
406
407
240
250 | 253
255
252
252
252 | 341
339
344
342
340 | 428
364
303
307
312 | 292
287
290
288
290 | 431
430
431
431
424 | 451
448
451
449
453 | 194
380
410
380
404 | 542
541
542
505
376 | 402
449
441
483
484 | 486
485
484
485
486 | 452
446
403
400
399 | | 26
27
28
29
30
31 | 253
261
262
263
278
278 | 250
255
251
253
251 | 339
343
339
343
342
338 | 306
306
308
315
308
307 | 317
431
432
442 | 422
421
419
419
419
421 | 448
448
464
521
491 | 431
430
297
244
218
190 | 375
379
377
378
374 | 484
484
485
485
484
485 | 468
383
381
385
131
127 | 421
491
490
448
428 | | TOTAL
MEAN
MAX
MIN
AC-FT | 5393.00
174
407
.00
10700 | 7861
262
393
224
15590 | 9200
297
444
40
18250 | 11891
384
449
303
23590 | 9142
315
442
287
18130 | 13529
436
498
401
26830 | 7858.50
262
521
.00
15590 | 12533
404
493
190
24860 | 372
542
113 | 13244
427
504
350
26270 | 14343
463
537
127
28450 | 13783
459
504
285
27340 | CAL YR 1987 TOTAL 115086.10 MEAN 315 MAX 555 MIN .00 AC-FT 228300 WTR YR 1988 TOTAL 129949.50 MEAN 355 MAX 542 MIN .00 AC-FT 257800 31 PERIOD OF RECORD. -- September 1970 to current year. REMARKS.--Field data collected prior to 1974 water year are available in district office. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | ANCE | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |------------------|---|---|---|--------------------------------|--------------------------------------|---|---|--|---|--|---| | OCT
19 | 1350 | 413 | 40 | 7.8 | 11.0 | 7.8 | 17 | 5.1 | 0.95 | 1.5 | 0.2 | | NOV
19 | 1105 | 86 | 46 | 8.2 | 7.0 | 8.6 | 19 | 5.6 | 1.2 | 1.8 | 0.2 | | DEC
16 | 1300 | 506 | 49 | 7.7 | 5.0 | 8.2 | 21 | 6.4 | 1.2 | 1.8 | 0.2 | | JAN
14 | 1210 | 551 | 55 | 8.4 | 4.0 | 8.6 | 22 | 6.7 | 1.2 | 1.9 | 0.2 | | FEB 17 | 1050 | 427 | 55 | 7.9 | 4.0 | 7.4 | 22 | 6.7 | 1.3 | 2.2 | 0.2 | | MAR
17 | 0940 | 525 | 55 | 7.6 | 5.0 | 7.9 | 24 | 7.3 | 1.3 | 2.1 | 0.2 | | APR
14 | 1240 | 309 | 50 | 6.7 | 6.0 | 8.5 | 21 | 6.4 | 1.2 | 2.1 | 0.2 | | MAY
17 | 1055 | 204 | 48 | 6.5 | 7.5 | 8.3 | 20 | 6.0 | 1.2 | 1.9 | 0.2 | | JUN
21 | 0805 | 544 | 23 | 6.2 | 10.0 | 8.5 | 9 | 2.7 | 0.50 | 1.0 | 0.2 | | JUL
11 | 1230 | 494 | 21 | 6.9 | 17.0 | 7.3 | 8 | 2.5 | 0.53 | 1.0 | 0.2 | | AUG
16 | 0820 | 540 | 49 | 6.3 | 17.5 | 7.8 | 19 | 5.8 | 1.1 | 1.9 | 0.2 | | SEP
19 | 1330 | 477 | 48 | 8.1 | 12.5 | 7.8 | 20 | 5.9 | 1.3 | 1.9 | 0.2 | | DATE | POTAS
SIUM
DIS-
SOLVE:
(MG/L
AS K) | , LINITY
LAB | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS- | (MG/L | SILICA,
DIS-
SOLVEI
(MG/L
AS
SIO2) | CONSTI- | SOLVED
(TONS | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | _ | | OCT
19 | 0.60 | 18 | 3.9 | 0.40 | 0.20 | 3.5 | 27 | 30.1 | 0.04 | <0.10 | | | NOV
19 | 0.70 | 19 | 4.8 | 1.0 | 0.10 | 3.9 | 31 | 7.07 | 0.04 | <0.10 | | | DEC
16 | 0.80 | 21 | 4.8 | 1.2 | 0.20 | 4.3 | 33 | 45.5 | 0.05 | <0.10 | | | JAN
14 | 0.90 | 24 | 5.0 | 0.40 | 0.20 | 4.5 | 35 | 52.4 | 0.05 | <0.10 | | |
FEB
17
MAR | 0.80 | 24 | | 0.50 | 0.20 | 4.5 | | | | <0.10 | | | 17
APR | 2.7 | 25 | 4.3 | 0.40 | 0.20 | 4.8 | 38 | 54.0 | 0.05 | <0.10 | | | 14 | 0.80 | 22 | 5.4 | 0.40 | 0.20 | 5.2 | 35 | 29.5 | 0.05 | <0.10 | | | MAY
17
JUN | 0.70 | 21 | 5.1 | 0.50 | 0.20 | 4.7 | 33 | 18.2 | 0.05 | <0.10 | | | 21
JUL | 0.30 | 9.0 | 5.0 | 0.40 | 0.50 | 3.7 | 20 | 28.7 | 0.03 | <0.10 | | | 11
AUG | 0.30 | 9.0 | 3.0 | 0.30 | 0.10 | 3.3 | 16 | 22.0 | 0.02 | <0.10 | | | 16
SEP | 0.60 | 21 | 4.0 | 0.30 | 0.10 | 3.8 | 30 | 44.1 | 0.04 | <0.10 | | | 19 | 0.60 | 21 | 3.9 | 0.40 | 0.10 | 3.6 | 30 | 39.1 | 0.04 | <0.10 | | GRAND LAKE OUTLET BASIN 09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |-----------|---|---|---|--|--|--|--|--|--|--|--| | OCT | | - h | | | | | | | | _ | -0 | | 19
NOV | <0.10 | 0.4 | 0.02 | <0.01 | <1 | 2 | 13 | < 5 | <1 | 2 | <3 | | 19
DEC | <0.10 | 0.4 | 0.02 | 0.03 | | | 27 | | 2 | | | | 16
JAN | <0.10 | 0.6 | 0.02 | 0.02 | | | 18 | | 1 | | | | 14
FEB | <0.10 | <0.2 | 0.01 | <0.01 | <1 | 3 | 21 | < 5 | 2 | <1 | 4 | | 17
MAR | <0.10 | 0.2 | <0.01 | 0.01 | | | 20 | | 3 | | | | 17
APR | <0.10 | <0.2 | 0.02 | 0.02 | | | 30 | | 7 | | | | 14
MAY | 0.10 | 0.2 | 0.01 | <0.01 | <1 | 1 | 68 | < 5 | 6 | <1 | 4 | | 17
JUN | <0.10 | 0.3 | 0.02 | <0.01 | | | 67 | | 3 | | | | 21
JUL | <0.10 | 0.3 | <0.01 | <0.01 | | | 40 | | 2 | | | | 11
AUG | <0.10 | <0.2 | <0.01 | <0.01 | <1 | 3 | 40 | < 5 | <1 | <1 | 9 | | 16
SEP | | 0.6 | 0.02 | 0.02 | | | 77 | | 2 | | | | 19 | <0.10 | <0.2 | 0.02 | 0.01 | | | 35 | | 1 | | | # 09014500 SHADOW MOUNTAIN LAKE NEAR GRAND LAKE, CO LOCATION.--Lat 40°12'26", long 105°50'27", in SWHNWH sec.19, T.3 N., R.75 W., Grand County, Hydrologic Unit 14010001, in gate house on left side of outlet gates near center of Shadow Mountain Dam on Colorado River, 1.0 mi upstream from Pole Creek and 3.2 mi south of town of Grand Lake. DRAINAGE AREA .-- 185 mi2. PERIOD OF RECORD. -- April 1947 to current year. Prior to October 1960, published as Shadow Mountain Reservoir near Grand Lake. REVISED RECORDS .-- WSP 1149: 1947-48. WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Supplementary water-stage recorder on Grand Lake, 800 ft north of outlet gates and 2.9 mi north of Shadow Mountain Dam. REMARKS.--Lake is formed by earth and rockfill dam and dikes. Storage began in April 1947. Capacity, 17,860 acre-ft, including usable capacity of Grand Lake above elevation 8,365 ft, between elevation 8,347 ft, sill of outlet gate, and 8,367 ft, maximum water surface. Dead storage in Shadow Mountain Lake, 506 acre-ft. Dead storage in Grand Lake not determined. Shadow Mountain Lake is used for stabilization of water level in Grand Lake. Usable capacity for diversion through Alva B. Adams tunnel, 3,660 acre-ft between elevations 8,365 ft, crest of tunnel inlet and 8,367 ft, maximum water surface. Figures given represent usable contents as determined from summation of individual contents of Grand Lake and Shadow Mountain Lake. Transmountain diversion from Colorado River basin, including water pumped from Lake Granby, is effected through Grand Lake and Alva B. Adams tunnel, for power and irrigation in South Platte River basin. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 17,920 acre-ft, May 22, 1955, elevation, 8,367.03 ft; minimum since appreciable storage was first attained, 2,630 acre-ft, May 14, 1948. EXTREMES FOR CURRENT YEAR.--Maximum contents, 17,590 acre-ft, Aug. 17, elevation, 8,366.90 ft; minimum, 16,590 acre-ft, June 5, elevation, 8,366.21 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Da | ate | Contents Change in content Elevation (acre-feet) (acre-feet) | | |-------------|-----|--|--| | Nov. 30 | | 8,366.66 17,260 - 8,366.62 17,160 -100 8,366.65 17,210 +50 8,366.65 17,210 0 | | | CAL YR 1987 | | -80 | | | Feb. 29 | | 8,366.56 17,040 -170 8,366.68 17,240 +200 8,366.69 17,250 +10 8,366.71 17,300 +50 8,366.53 17,000 -300 8,366.64 17,190 +190 8,366.81 17,460 +270 8,366.74 17,370 -90 8,366.77 17,400 +30 | | | WTR YR 1988 | | +140 | | # 09018300 GRANBY PUMP CANAL NEAR GRAND LAKE, CO LOCATION.--Lat 40°12'25", long 105°50'56", in SW4NE4 sec.24, T.3 N., R.76 W., Grand County, Hydrologic Unit 14010001, at road crossing at south end of Shadow Mountain Lake, 4 mi southwest of Grand Lake, and 13.5 mi northeast of Granby. PERIOD OF RECORD.--September 1970 to September 1975, March 1978 to current year. REMARKS. -- No flow at time of visit for May, June, and July of 1988 water year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
TOTAL,
IMMED.
(COLS.
PER
100 ML) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | |--|---|--|---|--|--|--|--|--| | NOV | | | | | | | | | | 20 | 0630 | 717 | 61 | | 6.5 | 6.6 | К9 | K<1 | | JAN
07
27 | 0700
0700 | 701
694 | 54
54 | 6.6
6.8 | 3.0
3.0 | 7.7 | K<1 | K<1 | | FEB 24 | 0700 | 363 | 50 | 6.5 | 2.0 | | K < 1 | K<1 | | MA R
31 | 0630 | 709 | 56 | 7.6 | 2.0 | 7.0 | K<1 | K < 1 | | APR 27 | 0630 | 710 | 60 | 6.8 | 3.5 | 7.4 | K17 | K < 1 | | AUG
04 | 1725 | 250 | | 7.3 | 8.0 | 5.4 | | | | SEP
01
22 | 0700
0705 | 200
250 | 55
52 | | 7.0
6.0 | 4.4
3.2 | K4
K6 | K<1
K<1 | | | | | | | | | | | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | NOV
20 | GEN,
NO2+NO3
TOTAL
(MG/L | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L | PHOROUS
TOTAL
(MG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | NOV
20
JAN
07
27 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOROUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | | NOV
20
JAN
07
27
FEB
24 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOROUS
TOTAL
(MG/L
AS P)
0.02 | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | | NOV
20
JAN
07
27
FEB
24
MAR
31 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.3
0.4 | PHOROUS
TOTAL
(MG/L
AS P)
0.02
0.01
0.01 | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | | NOV 20 JAN 07 27 FEB 24 MAR 31 APR 27 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
<0.10 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.3
0.4
<0.2 | PHOROUS
TOTAL
(MG/L
AS
P)
0.02
0.01
0.01 | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | | NOV 20 JAN 07 27 FEB 24 MAR 31 APR 27 AUG 04 | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
<0.10

<0.10
<0.10 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.3 0.3 0.4 <0.2 0.3 | PHOROUS
TOTAL
(MG/L
AS P)
0.02
0.01
0.01
0.01 | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | | NOV 20 JAN 07 27 FEB 24 MAR 31 APR 27 AUG | GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
<0.10

<0.10
<0.10 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
0.3
0.4
<0.2
0.3 | PHOROUS
TOTAL
(MG/L
AS P)
0.02
0.01
0.01
0.01
<0.01 | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS ZN) | K BASED ON NON-IDEAL COLONY COUNT. # 09018500 LAKE GRANBY NEAR GRANBY, CO LOCATION.--Lat 40°10'55", long 105°52'14", in NW4NE4 sec.35, T.3 N., R.76 W., Grand County, Hydrologic Unit 14010001, in Granby pumping plant at north shore of lake, 2.5 mi north of Granby Dam on Colorado River and 7.5 mi northeast of Granby. DRAINAGE AREA. -- 312 mi2. # RESERVOIR ELEVATIONS AND CONTENTS RECORDS PERIOD OF RECORD.--October 1949 to current year. Prior to October 1955, published as Granby Reservoir near Granby. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Prior to Apr. 9, 1951, nonrecording gage at dam at present datum. REMARKS.--Lake is formed by earthfill dam and dikes. Regulation began Sept. 13, 1949, and usable storage began June 14, 1950, while dam was under construction. Usable capacity, 465,600 acre-ft, between elevations 8,186.00 ft, trash rack sill at outlet, and 8,280.00 ft, top of radial spillway gates. Dead storage, 74,190 acre-ft. Figures given represent usable contents. Lake is used to store water for pumping to Shadow Mountain Lake for transmountain diversion through Alva B. Adams tunnel for, power and irrigation in South Platte River basin. COOPERATION. -- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 465,900 acre-ft, July 13, 1962, elevation, 8,280.05 ft; minimum since appreciable storage was attained, 13,070 acre-ft, Apr. 16, 1978, elevation, 8,190.93 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 418,300 acre-ft, July 5, elevation, 8,273.35 ft; minimum, 261,400 acre-ft, Apr. 2, elevation, 8,248.70 ft. # MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | | | | | | | | | 1 | Dai | te | | | | | | | | | | | | | | Elevation
(feet) | Contents
(acre-feet) | Change in co
(acre-fe | | |--|--|---|----|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|------|---|---|--|---|---|---|---|---|--|---|--|----------------------------------| | Sept.
Oct.
Nov.
Dec. | 30
31
30
31 | | : | : | : | • | : | : | : | : | : | : | : | : | : | : | : | : | : | • | ٠ | | • | | | | : | 8,265.28
8,263.92
8,261.83
8,259.23 | 363,500
354,600
341,100
324,700 | -8,90
-13,50
-16,40 | 00 | | CAL | YR | 1 | 98 | 7 | • | | • | • | • | | | | | • | • | • | • | • | | • | • | | • | • | • | | • | - | - | -79,10 | 00 | | Jan. Feb. Mar. Apr. May June July Aug. Sept. | 31
29
31
30
31
30
31
31 | | | | : | | • | | : | : | : | : | : | | | | | |
 | | | | | | | • | | 8,255.80
8,253.01
8,248.85
8,249.24
8,257.37
8,273.10
8,273.10
8,273.61
8,267.61
8,263.39 | 303,500
286,700
262,300
264,500
313,100
416,500
405,000
378,900
351,200 | -21,20
-16,80
-24,40
+2,20
+48,60
+103,40
-11,50
-26,70 | 00
00
00
00
00
00 | | WT R | YR | 1 | 98 | 8 | _ | - | -12,30 | 00 | # COLORADO RIVER BASIN # 09018500 LAKE GRANBY NEAR GRANBY, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1973 to June 1975, June 1979, June 1980, July 1981, June 1982, July 1983, June 1984, July 1985, July 1986, July 1987, and July 1988. REMARKS.--A complete taxonomic identification with cell counts for phytoplankton available in district office. WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | MAIEN | -QUALI | II DA | LA, WA. | IEN IE. | AR OC | LODE | 1 1901 | 10 3 | er ien | DEN 19 | 100 | | | |-------------------|--------------|---|---|--|--|----------------------------|-----------------------------------|------------------------------|---|---|---|---|--|--| | | | DAT | E | ŢIME | PL
DE: | M-
ING
PTH
EET) | PH
(STA
AR
UNIT | ND-
RD | TEMPE
ATUR
WATE
(DEG | E
R | XYGEN,
DIS-
SOLVED
(MG/L) |) | | | | | ĵ | UL 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 | | 1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1030
1031
1032
1033
1034 | | .0 | 8.8.7777777777777 | 44075422111110000000 | 19.
187.
16.
14.
12.
10.
7.
6.
6.
6.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5.
5. | 055000055500555555000 | 777776555555555555555555555555555555555 | | | | | DA TE | TIME | SAM
PLI
DEP
(FE | N G
TH | SPE -
CIFIC
CON -
DUCT-
AN CE
(US/CN | - (s | PH
TAND-
ARD
ITS) | A T
WA | IPER-
URE
TER
(G C) | TRAI
PAI
EN
(SEC)
DISI | R-
CY 0:
CHI
K) : | XYGEN,
DIS-
SOLVED
(MG/L) | F01
T0'
IM
(C01
P1 | LI-
RM,
TAL,
MED.
LS.
ER
ML) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | | JUL
13
13 | 1050
1105 | 0
1 7 0 | • 1 | 60
59 | | 8.3
7.0 | | 9.0
5.0 | 88 | .0 | 7.7
5.0 | | K3 | K<1 | | DATE
JUL
12 | NO
T
(| ITRO-
GEN,
2+NO3
OTAL
MG/L
S N) | NITE
GEN,A
MONIA
ORGAN
TOTA
(MG/
AS N | AM-
A + F
NIC PF
AL 7
VL (| PHOS-HOROUS
FOTAL
(MG/L
AS P) | D
:02
(U) | MIUM
IS-
LVED
G/L
CD) | (00 | VED
VL
CU) | LEAD
DIS-
SOLVI
(UG/I
AS PI | ED S | CKEL,
DIS-
OLVED
UG/L
S NI) | D
SO
(U | NC,
IS-
LVED
G/L
ZN) | | 13
13 | | 0.10 | <0.
<0. | | 0.01 | | <1
<1 | | 2 | | < 5
< 5 | 1 | | <10
<10 | K BASED ON NON-IDEAL COLONY COUNT. # 09019500 COLORADO RIVER NEAR GRANBY, CO LOCATION.--Lat 40°07'15", long 105°54'00", in SW4NW4 sec.22, T.2 N., R.76 W., Grand County, Hydrologic Unit 14010001, on right bank 0.3 mi upstream from bridge on U.S. Highway 34, 1.3 mi upstream from Willow Creek, and 3.2 mi northeast of Granby. DRAINAGE AREA. -- 323 mi². MIN AC-FT --- PERIOD OF RECORD.--October 1907 to September 1911 (published as Grand River near Granby), October 1933 to September 1953. May 1961 to current year (irrigation season only). Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,960 ft above National Geodetic Vertical Datum of 1929, fro topographic map. June 10, 1908, to Sept. 30, 1911, and May 12 to June 10, 1934, nonrecording gage, at site 300 ft upstream at different datums. June 11, 1934, to Sept. 30, 1953, water-stage recorder at present site and datum. REMARKS.--No estimated daily discharges: Records good. Flow regulated by Lake Granby (station 09018500) since Sept. 13, 1949. Several diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station by Eureka and Grand River ditches and Alva B. Adams tunnel (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF SEASONAL RECORD.--Maximum discharge, 2,510 ft³/s, July 11, 1983, gage height, 5.39 ft; minimum daily, 9.6 ft³/s, Sept. 21, 1981. EXTREMES FOR PERIOD OF CONTINUOUS RECORD.--Maximum discharge observed, 4,100 ft³/s, June 20, 1909, gage height, 5.5 ft, site and datum then in use; minimum daily, 6.6 ft³/s, Jan. 29, 1950; minimum observed prior to starting construction of
Shadow Mountain Lake, 20 ft³/s, Apr. 6, 1936 (discharge measurement). EXTREMES FOR CURRENT SEASON.--Maximum discharge, 116 ft^3/s at 2300 June 21, gage height, 1.33 ft ; minimum daily, 18 ft^3/s , Sept. 10. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MAR APR MAY JUN JUI. AUG SEP 41 73 54 32 73 ---___ ---___ ___ ___ ---2 72 72 ---57 73 23 ---------3 ------73 70 40 22 75 78 75 77 69 72 ------41 21 21 5 ------39 78 38 21 6 ------------___ ___ ---75 75 ___ ___ ---------76 76 73 75 75 73 21 ------37 38 ------------------73 73 10 ---78 76 37 18 11 78 73 38 23 ------73 38 22 12 ---------------76 81 13 ___ ---___ ---___ ---76 76 73 37 21 76 75 73 72 21 14 ___ ___ ___ 70 37 73 ------___ ---___ ---___ 36 21 15 16 ___ 83 80 70 36 21 17 18 ------------___ 67 67 ------81 78 38 21 ___ ___ ---78 80 21 ---20 ------___ ---___ ------72 72 70 41 21 21 21 76 78 71 42 ------___ ___ ------81 81 73 41 21 22 23 ------------------80 78 81 MO 21 ---75 78 76 75 81 40 24 ------------------20 ---------------40 25 ------21 76 26 ------___ ---___ ___ ___ 80 73 72 41 21 ---------78 73 73 73 72 73 75 75 27 ---------41 21 28 ___ ---___ 35 40 21 49 75 72 29 ------41 30 ---45 76 41 21 41 ___ ___ 75 ------___ ___ 75 TOTAL ---___ 2331 2271 2257 1232 642 ------------------75.2 86 75.7 81 39.7 54 21.4 MEAN ---72.8 ---8 1 MA X 32 18 ___ 41 4500 4480 2440 1270 4620 # 09020700 WILLOW CREEK RESERVOIR NEAR GRANBY, CO LOCATION.--Lat 40°08'49", long 105°56'31", in SE4 sec.7, T.2 N., R.76 W., Grand County, Hydrologic Unit 14010001, in shaft house near right end of Willow Creek Dam, 3.2 mi upstream from mouth, and 4.2 mi north of Granby. DRAINAGE AREA. -- 134 mi2. PERIOD OF RECORD. -- May 1953 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by earth and rockfill dam; storage began March 1953. Dead storage pool filled May 3, 1953. Usable capacity, 9,060 acre-ft between elevations 8,077.00 ft, trash rack sill at outlet, and 8,130.00 ft, crest of spillway. Dead storage, 1,490 acre-ft. Figures given represent usable contents. Water is pumped to Lake Granby for transmountain diversion for irrigation and power in South Platte River basin. Records are provided by U.S. Bureau of Reclamation. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,100 acre-ft, May 24, 1984, elevation, 8,130.12 ft; minimum 50 acre-ft, Dec. 4, 1985 to Jan. 17, 1986, drawdown for maintenance, elevation, 8,077.50 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,530 acre-ft, May 21, elevation, 8,128.17 ft; minimum, 5,690 acre-ft, Oct. 28, elevation, 8,116.75 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | | | | | | | | I | at | е | | | | | | | | | | | | | | Elevation | Contents (acre-feet) | Change in contents
(acre-feet) | |-----------------------|-------------------|---|---|---|---|---|---|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----------------------------------|-------------------------|-----------------------------------| | Sept.
Oct.
Nov. | 31.
30. | : | : | : | : | : | : | : | : | : | : | : | : | : | : | | • | • | • | : | : | : | : | : | : | : | 8,120.55
8,117.08
8,119.02 | 6,540
5,760
6,180 | -780
+420 | | Dec.
CAL | 31.
YR | 8,119.85 | 6,370 | +190
-320 | | Jan. | 31. | 8,121.06 | 6,650 | +280 | | Feb.
Mar.
Apr. | 29.
31.
30. | | | | | | | | | | | | | | | | | • | | | | | | | | | 8,122.39
8,124.33
8.120.58 | 6,980
7,470
6,540 | +330
+490
- 930 | | May
June | 31. | | • | | | | | | | | | | | | • | • | | | | | | | | | | • | 8,126.26
8,123.34 | 7,990
7,220 | +1,450
-770 | | July Aug. | 31. | | | | | | | | | | | | | | | • | | | | | | | | | | | 8,121.65
8,124.99 | 6,800
7,640 | -420
+840 | | Sept. | 30.
R YR | 8,126.65 | 8,100 | +460
+1.560 | # 09022000 FRASER RIVER AT UPPER STATION, NEAR WINTER PARK, CO LOCATION.--Lat 39°50'45", long 105°45'05", in Sec.26, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 0.8 mi upstream from Parsenn Creek and 2.5 mi south of Winter Park. DRAINAGE AREA .-- 10.5 mi2 PERIOD OF RECORD.--May to September 1908, July to November 1909 (published as "at upper station near Fraser"), October 1968 to September 1973, Aug. 21, 1984 to current year. January to September 1911, gage heights only (published as "near Fraser"). Records for August to December 1910, published in WSP 289 as "near Fraser" are unreliable and should not be used. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1968, nonrecording gage at site 0.9 mi upstream at different datum. Since Oct. 1, 1968, supplementary water-stage recorder and Parshall flume on Berthoud Pass ditch. REMARKS.--Estimated daily discharges: Oct. 20-23, 27, 28, Nov. 9, 10, 12, 13, 19-22, and Apr. 13-18. Records good. Transmountain diversions upstream from station through Berthoud Pass ditch to Moffat water tunnel, (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained, and are published elsewhere in this report. AVERAGE DISCHARGE. -- 9 years, 14.6 ft3/s; 10,580 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 181 ft³/s, June 5, 1972, gage height, 2.15 ft; minimum daily, 1.3 ft³/s, Feb. 20, 1971. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 130 $\rm ft^3/s$ at 1600 June 4, gage height 1.91 $\rm ft$; minimum daily, 1.5 $\rm ft^3/s$, Mar. 18, 19. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
CAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|---------------------------------|--|--|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.5
4.5
4.5
4.3
4.3 | 4.7
4.7
4.2
3.9
4.7 | 2.4
2.4
2.7
3.0
3.1 | 2.7
2.7
2.7
2.8
2.8 | 2.2
2.2
2.2
2.1
2.2 | 2.0
2.1
2.1
2.0
1.9 | 1.8
1.9
2.1
2.5
2.4 | 8.0
7.3
6.7
6.4
7.3 | 49
50
70
97
81 | 55
52
45
44
44 | 18
16
15
15 | 8.2
8.0
7.8
7.5
7.3 | | 6
7
8
9
10 | 4.4
4.3
4.2
4.3
4.3 | 3.7
3.5
3.6
3.7
3.8 | 3.0
3.1
2.8
2.8
3.0 | 2.8
2.6
2.6
2.5
2.5 | 2.4
2.5
2.6
2.2
2.2 | 2.1
1.9
2.0
1.9 | 2.5
4.0
4.5
3.7
3.1 | 8.0
7.5
7.3
6.9 | 81
75
76
90
92 | 40
36
33
31
29 | 15
15
14
14
13 | 7.3
6.9
6.6
6.6
6.9 | | 11
12
13
14
15 | 4.2
4.2
4.7
5.1
4.7 | 3.9
3.8
3.6
3.4
3.3 | 3.1
3.2
3.3
3.3
3.1 | 2.5
2.2
2.4
2.6
2.6 | 2.2
2.2
2.2
2.2
2.2 | 1.6
1.6
1.6
1.6 | 3.6
4.8
5.0
5.6
6.0 | 7.2
9.0
14
20
26 | 98
100
91
81
83 | 27
26
25
24
23 | 13
12
12
11
11 | 7.5
8.0
7.2
7.3
7.1 | | 16
17
18
19
20 | 4.5
4.7
4.2
4.0
4.1 | 3.6
3.0
2.8
3.0
3.4 | 3.1
3.3
3.1
3.3
3.0 | 2.5
2.4
2.7
2.6
2.4 | 2.2
2.2
2.1
2.2
2.2 | 1.6
1.6
1.5
1.5 | 5.8
5.7
5.4
5.3
5.8 | 29
37
38
40
34 | 84
81
85
82
77 | 21
20
19
19
18 | 12
12
11
11 | 6.4
6.0
5.8
5.7
5.6 | | 21
22
23
24
25 | 4.2
4.2
4.3
4.3
4.5 | 3.7
3.5
3.4
3.3
3.7 | 3.0
3.0
3.1
3.0
3.0 | 2.6
2.5
2.4
2.4
2.4 | 2.2
2.1
2.1
2.1
2.1 | 1.7
1.8
1.8
1.6 | 6.4
5.7
5.5
5.3
4.8 | 28
24
24
25
28 | 81
98
96
85
85 | 18
17
18
17
16 | 10
10
10
9.6
9.3 | 5.6
5.8
5.7
5.7 | | 26
27
28
29
30
31 | 4.3
4.3
4.3
4.5
4.7 | 3.6
3.3
3.3
3.0
2.6 | 3.0
2.8
2.8
2.8
2.7
2.7 | 2.4
2.5
2.4
2.4
2.2
2.2 | 2.1
2.2
2.2
2.0 | 1.8
2.2
2.0
1.7
1.7 | 4.8
4.7
5.0
6.7 | 32
38
42
53
67
60 | 81
76
69
68
60 | 16
16
16
16
15 | 9.0
9.3
8.8
8.5
8.5 | 5.5
5.3
5.3
5.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 135.9
4.38
5.1
4.0
270 | | 92.0
2.97
3.3
2.4
182 | 78.0
2.52
2.8
2.2
155 | 63.8
2.20
2.6
2.0
127 | 55.4
1.79
2.2
1.5
110 | 135.2
4.51
6.7
1.8
268 | 747.5
24.1
67
6.4
1480 | 2422
80.7
100
49
4800 | 812
26.2
55
15
1610 | 366.2
11.8
18
8.2
726 | 195.0
6.50
8.2
5.3
387 | CAL YR 1987 TOTAL 3900.1 MEAN 10.7 MAX 67 MIN 1.4 AC-FT 7740 WTR YR 1988 TOTAL 5210.7 MEAN 14.2 MAX 100 MIN 1.5 AC-FT 10340 #### 09024000 FRASER RIVER NEAR WINTER PARK. CO LOCATION.--Lat 39°54'00", long 105°46'34", in SEL sec.4, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft
downstream from bridge on U.S. Highway 40, 1.1 mi northwest of Winter Park, 2.0 mi upstream from Vasquez Creek, 3.5 mi downstream from point of diversion for Moffat water tunnel, and 3.9 mi southeast of Fraser. DRAINAGE AREA . -- 27.6 mi2. PERIOD OF RECORD.--September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Arrow" 1910-23 and as "near West Portal" 1924-39. Records since June 9, 1936, equivalent to earlier records if transmountain diversions are added to flow past station. REVISED RECORDS .-- WSP 929: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,906.23 ft, Colorado State Highway Datum (levels by U.S. Geological Survey). Sept. 23, 1910, to May 12, 1916, nonrecording gage at trail bridge 0.6 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 9, 10, 12, 13, 15-21, 25, Nov. 28 to Dec. 2, Dec. 9-12, 22-24, and Feb. 4 to Apr. 22. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through Berthoud Pass ditch (see elsewhere in this report) and to Moffat water tunnel (not known since 1968). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 820 ft³/s, June 13, 1918, gage height, 2.9 ft; minimum daily determined, 2.0 ft³/s, Mar. 30, Apr. 9, 1912, Jan 23, 1915. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 246 ft³/s at 2300 June 8; gage height, 1.80 ft; minimum daily, 3.3 ft³/s, Nov. 11. 271 1730 22 2.0/ DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | · | | M | EAN VALUE | S | | | | | | |--------------------------------------|--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
13
13
13 | 4.9
5.9
4.9
4.6 | 3.6
3.7
3.7
3.6
4.0 | 4.6
4.5
4.7
4.7 | 4.7
4.5
4.5
4.5
4.5 | 4.5
4.5
4.5
4.5 | 4.0
4.2
4.5
4.7
5.0 | 18
14
12
11
14 | 31
33
36
38
35 | 91
72
63
53
35 | 10
9.7
9.9
9.7
9.8 | 9.4
8.5
9.2
9.8
9.6 | | 6
7
8
9
10 | 12
12
12
12
11 | 3.8
3.8
3.7
3.5 | 4.2
4.2
3.8
3.8
3.9 | 4.9
4.8
4.7
4.8
4.7 | 4.5
4.5
4.5
4.5 | 4.5
4.5
4.5
4.5 | 5.4
6.2
7.0
6.2
5.0 | 16
13
13
12
12 | 35
43
33
40
54 | 18
13
20
18
17 | 9.8
11
10
10
9.8 | 9.7
9.8
9.8
9.7
9.9 | | 11
12
13
14
15 | 11
11
12
14
13 | 3.3
3.4
3.4
3.5 | 3.9
4.0
4.0
4.1
4.0 | 4.6
4.3
4.8
4.7
4.6 | 4.5
4.5
4.5
4.5 | 4.0
3.7
3.7
3.7 | 5.6
6.4
7.4
9.0 | 13
19
21
22
23 | 34
29
26
24
22 | 16
14
13
14
14 | 9.8
9.9
11
11 | 10
10
10
10
8.6 | | 16
17
18
19
20 | 11
5.4
4.8
5.9
5.5 | 3.5
3.6
3.7
3.7 | 4.1
4.1
4.2
4.2
4.2 | 4.6
4.5
4.7
4.6
4.8 | 4.5
4.5
4.5
4.5 | 3.7
3.7
3.5
3.5
3.7 | 13
12
12
11
11 | 26
25
28
33
28 | 21
20
19
19
18 | 13
13
13
15
13 | 12
11
11
10
10 | 6.0
5.4
5.3
4.9
6.7 | | 21
22
23
24
25 | 5.9
5.1
6.3
4.6
4.9 | 3.7
3.7
3.7
3.5
3.6 | 4.2
4.4
4.7
4.9
5.0 | 4.7
4.6
4.5
4.8 | 4.5
4.5
4.5
4.5
4.5 | 3.7
4.0
4.0
4.0 | 10
10
10
9.0
8.6 | 23
19
19
23
25 | 40
139
128
50
39 | 9.9
10
11
10
11 | 11
10
10
9.9
9.8 | 11
11
8.8
5.7
5.6 | | 26
27
28
29
30
31 | 4.4
4.2
3.9
4.0
4.9
5.4 | 3.7
3.6
3.6
3.6 | 5.0
5.1
4.9
4.8
4.9 | 4.6
4.5
4.4
4.3
4.5 | 4.5
4.5
4.5
 | 4.0
4.8
4.5
4.2
4.0
4.0 | 9.1
8.4
8.6
13 | 28
29
33
36
37
33 | 40
87
142
169
123 | 11
10
10
11
10 | 10
9.6
9.7
9.6
9.4
9.4 | 5.5
5.9
6.0
5.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 271.2
8.75
14
3.9
538 | 114.3
3.81
5.9
3.3
227 | 132.0
4.26
5.1
3.6
262 | 143.3
4.62
4.9
4.3
284 | 130.7
4.51
4.7
4.5
259 | 127.1
4.10
4.8
3.5
252 | 256.3
8.54
17
4.0
508 | 678
21.9
37
11
1340 | 1567
52.2
169
18
3110 | 652.9
21.1
91
9.9
1300 | 314.8
10.2
12
9.4
624 | 243.7
8.12
11
4.9
483 | CAL YR 1987 TOTAL 5432.6 MEAN 14.9 MAX 184 MIN 3.3 AC-FT 10780 WTR YR 1988 TOTAL 4631.3 MEAN 12.7 MAX 169 MIN 3.3 AC-FT 9190 41 # 09025000 VASQUEZ CREEK AT WINTER PARK, CO (Formerly published as Vasquez Creek near Winter Park, CO) LOCATION.--Lat 39°55'13", long 105°47'05", in NE4NW4 sec.33. T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 30 ft downstream from bridge on U.S. Highway 40, 0.2 mi upstream from mouth, 2.5 mi northwest of Winter Park, 2.5 mi southeast of Fraser, and 4.5 mi downstream from Moffat water tunnel diversion. DRAINAGE AREA . -- 27.8 mi². PERIOD OF RECORD.--June to August 1907, July to November 1909, October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for June to October 1908, published in WSP 269, are unreliable and should not be used. Published as Vasquez River at lower station, near Fraser 1907-9, as "near West Portal" 1934-39, and as "near Winter Park" 1940-87. Records for May 26, 1937, to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station. REVISED RECORDS .-- See PERIOD OF RECORD. GAGE.--Water-stage recorder and concrete control. Datum of gage is 8,768.48 ft above National Geodetic Vertical Datum of 1929. June 1, 1907, to Oct. 31, 1909, nonrecording gage at site 0.8 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 7 to Apr. 2. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 526 ft³/s, June 27, 1983, gage height, 4.14 ft, from rating curve extended above 286 ft³/s; no flow at times in 1944, 1946, 1956, 1960, 1966. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 211 ft³/s at 2000 June 22, gage height, 3.04 ft; minimum daily, 3.0 ft³/s, Mar. 4. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JUL AUG SEP JAN FEB MAR APR MA Y JUN 4.9 3.1 3.1 4.0 11 19 71 13 10 3.3 3.5 3.5 3.5 9.9 2 4.2 5.4 3.2 3.1 3.1 4.2 20 66 12 11 3.2 3.2 5.0 4.4 4.1 3.1 3.1 3.1 21 11 10 59 4.7 3.0 8.6 4.1 4.6 10 5 4.1 4.6 3.5 3.2 4.7 11 18 36 11 10 6 3.5 18 17 10 4.0 5.0 3.2 3.1 3.1 5.0 12 11 3.5 3.1 4.0 4.7 3.2 3.1 6.1 18 10 11 4.5 8 3.9 3.5 3.2 3.1 3.1 6.1 11 15 12 10 9 3.9 4.5 3.5 3.2 3.1 3.1 5.0 10 15 12 10 9.9 10 3.9 4.5 3.5 3.2 3.1 3.1 5.5 10 16 12 11 10 11 3.9 4.5 3.2 10 16 11 10 11 3.1 6.0 3.8 3.2 3.2 12 4.5 3.5 3.1 3.1 6.8 14 14 10 11 11 3.5 3.3 3.1 3.1 13 4.5 6.8 18 14 10 11 11 4.5 3.2 6.8 5.0 3.1 22 12 13 9.7 15 7.0 16 4 . 4 4.0 3.3 3.3 3.2 3.2 3.1 3.1 3.2 3.2 7.7 8.2 28 12 8.5 6.9 4.8 13 13 17 4.3 4.0 30 5.9 9.0 5.9 18 4.6 4.0 3.2 3.1 3.2 7.2 14 3.2 3.2 19 4.0 3.3 3.1 8.0 34 10 12 5.7 4.0 8.6 20 3.3 3.1 29 15 8.9 10 5.7 21 4.4 4.0 3.3 3.1 3.1 3.3 9.4 25 20 9.0 10 3.3 3.3 3.3 3.1 3.1 3.1 3.1 3.3 9.1 7.7 9.5 5.8 22 4.5 4.0 23 103 10 23 4.6 22 5.7 4.0 136 10 4.8 3.1 3.3 7.1 25 5.1 4.0 3.3 3.1 3.1 3.3 23 59 8.9 10 5.6 26 3.3 3.3 8.5 5.0 4.0 3.1 3.1 3.1 3.4 7.4 63 10 5.6 4.7 25 4.0 3.1 7.0 10 10 28 4.5 4.0 3.3 3.1 3.1 3.5 3.6 6.9 25 88 5.5 10 10 29 30 3.3 4.6 4.0 3.1 3.1 8.2 23 88 11 10 5.5 4.0 5.4 78 22 5.1 3.1 3.7 11 11 11 3.3 TOTAL. 130.3 89.9 3.10 3.1 3.1 340 238.7 136.1 104.9 98.2 203.6 602.4 1110 550.6 100.4 3.38 3.17 3.3 3.1 MEAN 4.39 3.24 6.79 19.4 17.8 37.0 11.0 7.96 3.5 MAX 5.1 5.4 3.8 34 136 4.8 MTN 4.0 4.0 8.6 10 6.9 10 AC-FT 270 258 208 195 178 199 404 1190 2200 1090 674 473 CAL YR 1987 TOTAL 3048.9 MEAN 8.35 MAX 105 MIN 1.5 AC-FT 6050 WTR YR 1988 TOTAL 3705.1 MEAN 10.1 MAX 136 MIN 3.0 AC-FT 7350 # 09025400 ELK CREEK NEAR FRASER, CO LOCATION.--Lat 39°55'09", long 105°49'31", in SE4NW4 sec.31, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 100 ft upstream from unnamed tributary 1,150 ft downstream from West Elk Creek, 2.0 mi southwest of Fraser, and 2.5 mi upstream from mouth. DRAINAGE AREA. -- 7.15 mi2. PERIOD OF RECORD. -- September 1970 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,805 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10 to Mar. 21. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel. Diversions for irrigation of about 100 acres of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 106 ft³/s, May 24, 1984, gage height, 3.13 ft, maximum gage height, 3.97 ft, Mar. 12,
Apr. 10-16, 1987 (backwater from ice); minimum daily discharge, 0.10 ft³/s, Jan. 13, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 34 ft³/s at 1800 May 19, gage height, 2.34 ft; minimum daily, 0.33 ft³/s, 0ct. 21, 23. | | | DISCHARGE, | CUBIC | FEET PER | | VATER YEAR
EAN VALUES | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|--|-----------------------------------|--|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .40
.44
.44
.45 | .40
.50
.46
.36 | .42
.42
.42
.42 | .42
.42
.42
.42
.42 | .40
.40
.40
.40 | .41
.41
.41
.41 | .52
.49
.45
.50 | 6.4
4.4
3.5
3.9
5.6 | 6.0
5.5
5.1
4.8
4.4 | 7.9
6.8
6.2
6.3
6.5 | 3.7
3.1
2.2
1.6
1.6 | 1.0
1.0
.88
.56 | | 6
7
8
9
10 | .48
.53
.55
.55 | .34
.39
.42
.34
.34 | . 44
. 44
. 44
. 44 | .42
.42
.42
.42
.42 | .40
.40
.40
.40 | .41
.41
.41
.41 | .57
.79
.90
1.0 | 6.1
5.2
5.3
5.5
5.4 | 3.9
6.4
6.4
6.2
5.7 | 5.6
4.3
3.4
3.2
3.2 | 1.6
1.7
1.7
1.6 | .67
.66
.68
.69 | | 11
12
13
14
15 | .54
.53
.63
.82 | •34
•34
•34
•34 | .46
.46
.46
.46 | .42
.42
.42
.42
.42 | .40
.40
.40
.40 | .41
.41
.41
.41 | .82
1.1
1.4
1.6
1.7 | 6.0
8.1
11
14
16 | 3.4
2.9
2.8
2.6
2.3 | 3.0
2.7
2.5
2.7
2.7 | 1.4
1.5
1.5
1.4
1.3 | .82
.93
.89
1.1 | | 16
17
18
19
20 | .51
.43
.39
.38 | .36
.36
.36
.36 | .46
.46
.46
.46 | .40
.40
.40
.40 | .41
.41
.41
.41 | .41
.41
.41
.41 | 1.9
2.0
2.5
2.1
2.5 | 17
18
19
26
21 | 2.1
2.1
2.1
1.8
1.9 | 2.7
2.6
2.5
2.4
2.3 | 1.6
1.9
1.8
1.5 | .90
.83
.88
.94 | | 21
22
23
24
25 | .33
.35
.33
.37 | .38
.38
.38
.38 | . 44
. 44
. 44 | .40
.40
.40
.40 | .41
.41
.41
.41 | .41
.41
.41
.42
.42 | 3.0
2.7
2.1
1.7
1.6 | 19
17
14
13
9.8 | 3.0
7.5
18
16
16 | 2.2
2.1
2.1
2.1
2.0 | 1.3
1.4
1.4
1.4 | 1.0
1.1
1.1
1.1 | | 26
27
28
29
30
31 | .43
.39
.35
.37
.40 | .40
.40
.40
.40
.40 | . 44
. 44
. 44
. 44 | .40
.40
.40
.40
.40 | .41
.41
.41
.41 | .43
.51
.51
.52
.52 | 1.6
1.7
2.1
3.3
6.0 | 9.1
9.4
8.3
8.1
7.5
6.8 | 15
13
11
12
9.8 | 2.0
2.0
2.3
2.8
3.0
3.2 | 1.2
1.3
1.2
1.1
1.1 | 1.0
.99
1.0
1.1
1.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 14.26
.46
.82
.33
28 | 11.29 1
.38
.50
.34
22 | 3.74
.44
.46
.42
27 | 12.70
.41
.42
.40
25 | 11.74
.40
.41
.40
23 | 13.28
.43
.52
.41
26 | 50.08
1.67
6.0
.45 | 329.4
10.6
26
3.5
653 | 199.7
6.66
18
1.8
396 | 105.3
3.40
7.9
2.0
209 | 49.1
1.58
3.7
1.0
97 | 27.18
.91
1.1
.55
54 | CAL YR 1987 TOTAL 514.39 MEAN 1.41 MAX 11 MIN .33 AC-FT 1020 WTR YR 1988 TOTAL 837.77 MEAN 2.29 MAX 26 MIN .33 AC-FT 1660 #### 09026500 ST. LOUIS CREEK NEAR FRASER. CO LOCATION.--Lat 39°54'36", long 105°52'40", in SE4SW4 sec.34, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 300 ft downstream from West St. Louis Creek and 4.1 mi southwest of Fraser. DRAINAGE AREA . -- 32.9 mi2. PERIOD OF RECORD.--October 1933 to current year. Prior to August 1934, monthly discharge only, published in WSP 1313. Records for May 1956 to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,980.17 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Nov. 9-26, Dec. 16-18, 23-28, and Jan. 11 to Apr. 21. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 470 ft³/s, June 15, 1952, gage height, 2.89 ft; maximum gage height, 3.21 ft, June 10, 1952 (backwater from log on control); minimum discharge not determined, probably occurred during January or February 1961. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 216 $\rm ft^3/s$ at 1700 June 22, gage height, 2.19 ft; minimum daily, 5.0 $\rm ft^3/s$, Jan. 25, 26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, M | WATER YEAR | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|-----------------------------------|--|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.1
6.1
6.0
6.0 | 7.6
8.3
7.6
6.8
6.2 | 5.8
6.0
6.2
6.1
6.1 | 6.1
6.1
6.1
6.1 | 5.2
5.2
5.2
5.2
5.2 | 5.4
5.4
5.4
5.4 | 6.0
6.0
6.0
6.0 | 12
11
11
9.7
11 | 38
37
37
45
49 | 66
59
56
54
50 | 22
20
19
19
19 | 11
11
10
10 | | 6
7
8
9
10 | 5.9
5.9
5.9
5.9 | 7.2
6.3
6.2
6.2
6.2 | 6.1
6.0
6.0
6.1 | 6.3
6.3
6.3
6.3 | 5.2
5.2
5.2
5.2
5.2 | 5.4
5.4
5.4
5.4 | 6.1
6.3
6.5
6.7
6.9 | 12
11
11
10
10 | 53
69
44
41
45 | 39
28
30
29
29 | 19
19
19
19
18 | 10
11
11
11
10 | | 11
12
13
14
15 | 5.9
5.8
6.6
8.2
7.5 | 6.2
6.2
6.2
6.2
6.2 | 6.1
6.0
5.9
6.0
6.3 | 6.0
5.9
5.8
5.7
5.6 | 5.2
5.4
5.4
5.4 | 5.4
5.4
5.4
5.4 | 7.2
7.4
7.7
7.9
8.2 | 11
14
18
21
25 | 40
39
37
36
36 | 28
28
26
31
28 | 18
18
17
17
16 | 11
12
11
12
11 | | 16
17
18
19
20 | 7.4
6.2
6.1
6.5
5.7 | 6.2
6.2
6.0
6.0 | 6.9
6.9
6.8
6.4 | 5.4
5.3
5.2
5.2
5.2 | 5.4
5.4
5.4
5.4 | 5.6
5.6
5.6
5.6 | 8.4
8.8
9.2
9.4
9.6 | 33
35
38
43
38 | 37
37
29
33
33 | 29
28
28
31
28 | 17
19
18
16
15 | 9.0
7.7
7.6
7.6
7.4 | | 21
22
23
24
25 | 6.5
7.1
6.4
7.6
8.9 | 6.0
6.0
6.0
6.0 | 6.2
6.1
6.0
6.0 | 5.2
5.2
5.2
5.0 | 5.4
5.4
5.4
5.4 | 5.6
5.6
5.6
5.6 | 9.8
10
9.7
8.9
8.3 | 35
33
32
34
36 | 36
115
162
112
64 | 22
22
23
23
23 | 14
14
13
13
12 | 7.2
7.6
7.5
7.4
7.3 | | 26
27
28
29
30
31 | 8.0
6.9
6.8
6.4
7.5
7.5 | 6.0
6.1
5.9
6.0
5.9 | 6.0
5.9
5.9
5.9
5.9 | 5.0
5.2
5.2
5.2
5.2
5.2 | 5.4
5.4
5.4
 | 6.0
6.0
6.0
6.0
6.0 | 9.8
7.9
8.2
10
12 | 37
38
38
40
41
40 | 48
77
106
106
89 | 21
19
20
24
23
23 | 13
13
12
12
11
11 | 7.2
7.2
7.4
7.0
7.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 205.2
6.62
8.9
5.7
407 | 189.9
6.33
8.3
5.9
377 | 90.7
6.15
6.9
5.8
378 | 174.1
5.62
6.3
5.0
345 | 154.4
5.32
5.4
5.2
306 | 173.0
5.58
6.0
5.4
343 | 240.9
8.03
12
6.0
478 | 788.7
25.4
43
9.7
1560 | 1730
57.7
162
29
3430 | 968
31.2
66
19
1920 | 502
16.2
22
11
996 | 274.3
9.14
12
7.0
544 | CAL YR 1987 TOTAL 5435.0 MEAN 14.9 MAX 127 MIN 5.2 AC-FT 10780 WTR YR 1988 TOTAL 5591.2 MEAN 15.3 MAX 162 MIN 5.0 AC-FT 11090 #### 09032000 RANCH CREEK NEAR FRASER, CO LOCATION.--Lat 39°57'00", long 105°45'54", in NW4NE4 sec.22, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 450 ft downstream from Middle Fork and 2.7 mi east of Fraser. DRAINAGE AREA .-- 19.9 mi2. PERIOD OF RECORD.--August 1934 to current year. Records since May 15, 1949, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station. REVISED RECORDS .-- WSP 1243: 1935. GAGE.--Water-stage recorder. Elevation of gage is 8,685 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 17-20, Mar. 26-29, Apr. 9-11. Records good. Diversion upstream from station for irrigation of hay meadows along Fraser River. Transmountain diversion upstream from station to Moffat water tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 451
ft³/s, June 27, 1983, gage height, 3.96 ft; minimum daily, 0.40 ft³/s, Sept. 21, Oct. 6, 1960, Sept. 24-26, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 222 ft³/s at 0100 June 29, gage height, 3.07 ft; minimum daily, 0.40 ft³/s, Sept. 24-26. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, ME | WATER YEAR
AN VALUES | ROCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|---------------------------------|--|--|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|--------------------------------------|--|--|------------------------------------| | DA Y | OCT | NOA | DE C | JAN | FEB | MA R | APŖ | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.5
12
1.8
1.8 | 4.0
4.3
4.0
3.6
3.3 | 2.8
2.8
2.9
2.9
2.9 | 2.6
2.6
2.7
2.8
2.8 | 2.1
2.2
2.3
2.3 | 1.9
1.9
1.9
1.9 | 1.8
1.8
2.0
2.1
2.0 | 11
10
11
8.5
9.9 | 21
18
26
31
21 | 81
70
63
58
51 | 7.4
6.8
5.7
5.7
6.5 | 3.7
3.7
3.6
3.5
3.3 | | 6
7
8
9
10 | 1.7
1.7
1.8
1.6 | 3.4
3.5
3.6
7.3
5.2 | 2.9
2.8
2.8
2.6
2.6 | 2.8
2.7
2.6
2.6
2.6 | 2.3
2.3
2.3
2.3
2.3 | 1.9
2.0
2.1
2.1
2.1 | 2.3
3.2
3.7
3.8
3.8 | 11
10
9.7
9.4
9.1 | 22
21
21
25
29 | 34
6.4
6.5
4.7
4.4 | 6.4
6.2
6.3
6.0 | 3.4
3.3
3.2
3.2
3.2 | | 11
12
13
14
15 | 1.4
1.4
1.9
3.7
3.8 | 4.0
5.2
4.0
3.4
5.2 | 2.8
2.8
2.8
2.8 | 2.6
2.6
2.5
2.5 | 2.3
2.3
2.3
2.2
2.1 | 2.1
2.1
2.1
2.1
2.1 | 3.8
3.8
4.5
4.8
5.0 | 10
13
17
19
22 | 27
20
13
9•7
12 | 4.5
4.1
4.2
5.7
5.4 | 6.8
6.6
6.3
6.0 | 3.5
4.1
4.1
4.7
4.4 | | 16
17
18
19
20 | 3.6
3.4
3.3
3.5
3.7 | 4.7
4.0
3.4
4.0
4.4 | 2.9
3.0
3.0
3.0 | 2.6
2.6
2.6
2.6
2.6 | 2.1
1.9
1.9
1.9 | 2.0
1.8
1.8
1.8 | 6.1
7.1
6.6
7.0
7.7 | 24
27
31
40
33 | 16
9.3
7.4
8.0
6.9 | 3.5
3.1
3.4
6.9
7.9 | 5.3
5.9
5.8
4.9 | 4.0
2.8
.53
.46 | | 21
22
23
24
25 | 5.3
4.4
4.0
3.4
3.8 | 4.6
4.3
3.8
3.6
3.3 | 3.0
3.0
3.0
2.8
2.6 | 2.4
2.3
2.3
2.3
2.3 | 1.9
1.9
1.9
1.9 | 2.0
2.0
1.8
1.9 | 8.4
8.1
6.4
6.1
5.1 | 28
25
23
23
23 | 11
63
91
73
63 | 7.2
6.9
7.7
7.0
7.2 | 4.8
5.0
4.5
4.3
4.2 | .44
.43
.45
.40 | | 26
27
28
29
30
31 | 3.6
3.3
3.3
3.8
4.2 | 3.3
3.1
3.0
2.9
2.9 | 2.6
2.6
2.6
2.6
2.6
2.6 | 2.3
2.3
2.3
2.3
2.2
2.1 | 2.0
2.1
1.9
1.9 | 1.9
1.9
1.9
1.9
1.9 | 7.3
5.1
5.3
7.1
9.7 | 24
27
31
38
40
30 | 60
63
· 90
133
96 | 6.1
5.9
7.3
7.5
7.1
7.2 | 4.1
4.2
4.1
3.9
3.8
3.8 | .40
.43
.47
.51 | | TOTAL
MEAN
MAX
MIN
AC-FT | 99.2
3.20
12
1.4
197 | | 36.9
2.80
3.0
2.6
172 | 77.7
2.51
2.8
2.1
154 | 61.0
2.10
2.3
1.9
121 | 60.3
1.95
2.1
1.8
120 | 151.5
5.05
9.7
1.8
301 | 647.6
20.9
40
8.5
1280 | 1107.3
36.9
133
6.9
2200 | 504.8
16.3
81
3.1
1000 | 168.9
5.45
7.4
3.8
335 | 67.63
2.25
4.7
.40
134 | CAL YR 1987 TOTAL 3168.1 MEAN 8.68 MAX 143 MIN 1.4 AC-FT 6280 WTR YR 1988 TOTAL 3152.13 MEAN 8.61 MAX 133 MIN .40 AC-FT 6250 # 09032100 CABIN CREEK NEAR FRASER, CO LOCATION.--Lat 39°59'09", long 105°44'40", in NW4SE4 sec.2, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 200 ft downstream from concrete diversion dam, 2.7 mi upstream from mouth and 4.6 mi northeast of Fraser. DRAINAGE AREA . - - 4.87 mi². PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,560 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 8 to May 19. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Moffat water tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 5 years, 6.76 ft3/s; 4,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 126 $\rm ft^3/s$, June 13, 1984, gage height, 2.37 ft; minimum daily, 0.04 $\rm ft^3/s$ May 7, 1985. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 88 $\rm ft^3/s$ at 2100 June 4, gage height, 2.20 ft; minimum daily, 1.1 $\rm ft^3/s$, Mar. 6-14. | | | DISCHARGE, | CUBIC | FEET PER | | VATER YEAR
CAN VALUES | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|----------------------------------|----------------------------------|----------------------------------|--|----------------------------------|-------------------------------------|----------------------------------|-----------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.0
2.0
1.9
1.9 | 2.8
3.0
2.5
2.5
2.5 | 1.6
1.6
1.5
1.5 | 1.4
1.4
1.4
1.4 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.8
1.9
2.1
2.2
2.2 | 19
17
27
51
64 | 25
23
21
20
19 | 5.8
5.1
5.2
4.8
4.7 | 2.0
2.0
1.9
2.0
1.9 | | 6
7
8
9
10 | 1.9
1.9
1.9
1.9 | 2.6
2.6
2.5
2.4 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3 | 1.2
1.2
1.2
1.2
1.2 | 1.1
1.1
1.1
1.1 | 1.2
1.3
1.3
1.3 | 2.3
2.4
2.4
2.5
2.5 | 58
59
57
60
62 | 17
16
15
14
13 | 4.6
4.5
4.5
4.2
4.0 | 1.9
1.8
1.8
1.7 | | 11
12
13
14
15 | 1.7
1.8
1.9
2.1
2.2 | 2.4
2.3
2.3
2.3
2.2 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3 | 1.2
1.2
1.2
1.2
1.2 | 1.1
1.1
1.1
1.1 | 1.4
1.5
1.5
1.5 | 2.5
2.6
2.6
2.7 | 60
54
47
45
44 | 12
11
10
9.8
9.3 | 3.8
3.5
3.2
3.1 | 2.2
2.3
2.2
2.7
2.5 | | 16
17
18
19
20 | 2.2
2.1
2.0
1.9
1.8 | 2.2
2.1
2.1
2.1
2.0 | 1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.6
1.7
1.7
1.8
1.8 | 2.7
2.8
2.9
3.0
2.0 | 40
42
42
46
42 | 8.7
8.2
8.1
8.3
7.9 | 3.4
3.7
3.4
3.1
2.9 | 2.3
2.2
2.1
2.0
2.0 | | 21
22
23
24
25 | 2.1
2.0
1.9
1.9
2.1 | 2.0
2.0
1.9
1.8
1.8 | 1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.9
2.0
2.0
1.8
1.7 | 1.5
1.6
1.5
2.7
3.6 | 41
42
37
34
32 | 7.4
7.0
6.7
6.4
6.0 | 2.9
3.0
2.6
2.5
2.4 | 2.0
2.2
2.1
2.0
2.0 | | 26
27
28
29
30
31 | 2.1
2.0
2.0
1.9
2.5
2.7 | 1.8
1.7
1.7
1.7 | 1.4
1.4
1.4
1.4
1.4 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2
1.2 | 1.7
1.7
1.7
1.7 | 3.8
5.0
8.6
18
33
27 | 31
30
29
36
29 | 6.3
5.9
6.5
6.4
5.8 | 2.3
2.2
2.2
2.1
2.0
2.0 | 2.0
2.1
2.2
2.2
2.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 61.9
2.00
2.7
1.7
123 | | 46.1
1.49
1.6
1.4
91 | 39.2
1.26
1.4
1.2
78 | 34.8
1.20
1.2
1.2
69 | 36.3
1.17
1.2
1.1
72 | 46.5
1.55
2.0
1.2
92 | 155.0
5.00
33
1.5
307 | 1277
42.6
64
17
2530 | 346.6
11.2
25
5.8
687 | 107.5
3.47
5.8
2.0
213 | 62.2
2.07
2.7
1.7
123 | CAL YR 1987 TOTAL 1982.0 MEAN 5.43 MAX 52 MIN 1.0 AC-FT 3930 WTR YR 1988 TOTAL 2279.1 MEAN 6.23 MAX 64 MIN 1.1 AC-FT 4520 # 09034250 COLORADO RIVER AT WINDY GAP NEAR GRANBY, CO LOCATION.--Lat 40°06'30", long 106°00'13" in NW4 sec.27, R.77 W., T.2 N., Grand County, Hydrologic Unit 14010001, on right bank 300 ft downstream from county highway bridge, 1.1 mi downstream from Windy Gap diversion dam, 2.4 mi downstream from mouth of Fraser River and 3.8 mi northwest of Granby. DRAINAGE AREA. -- 789 mi2. PERIOD OF RECORD. -- October 1981 to current year. GAGE.--Water-stage recorder. Elevation of gage is 7,790 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 16 to Mar. 27. Natural flow of stream affected by transmountain diversions, storage reservoirs, and diversions for irrigation. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 7 years, 336 ft 3/s; 243,400 acre-ft/year. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,260 ft³/s, May 25, 1984, gage height, 7.34 ft; minimum daily, 42 ft³/s, Oct. 11, 2, 1981. EXTREMES
FOR CURRENT YEAR.--Maximum discharge, 1,590 ft³/s at 0200 May 20, gage height, 4.77 ft; minimum daily, 61 ft³/s, 0ct. 6. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | VATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|------------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|--|-----------------------------------|--|-------------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 67
70
74
65
64 | 96
106
119
94
82 | 74
74
74
74
74 | 70
70
70
70
70 | 76
76
76
76
76 | 74
74
74
74
74 | 100
97
96
86
85 | 476
392
331
351
345 | 300
143
126
151
203 | 647
552
499
458
424 | 205
158
144
136
130 | 86
81
77
74
73 | | 6
7
8
9 | 61
62
64
65
66 | 81
97
95
84
78 | 74
74
74
74
74 | 70
70
70
70
70 | 74
74
74
74
74 | 74
74
74
74
74 | 96
148
174
214
204 | 396
337
329
342
327 | 220
273
218
229
236 | 364
290
256
244
253 | 125
126
132
123
115 | 75
92
77
75
68 | | 11
12
13
14
15 | 66
66
72
91
96 | 81
78
76
83
88 | 74
74
74
74
74 | 70
70
70
70
70 | 74
74
74
74
74 | 74
74
74
74
74 | 203
273
366
399
471 | 315
348
413
476
537 | 184
203
158
121
96 | 247
234
221
217
227 | 113
116
112
111
109 | 69
97
84
86
86 | | 16
17
18
19
20 | 89
87
81
7 8
73 | 86
80
76
76
76 | 74
74
74
74
74 | 76
76
76
76
76 | 74
74
74
74
74 | 80
80
80
80 | 524
558
484
528
489 | 607
644
701
1130
1340 | 96
120
183
195
188 | 233
237
218
205
207 | 108
114
122
113
107 | 92
88
82
77
62 | | 21
22
23
24
25 | 69
68
65
69
85 | 76
76
76
76
76 | 74
74
74
74
74 | 76
76
76
76
76 | 74
74
74
74
74 | 80
80
80
80 | 505
444
333
283
251 | 913
701
591
510
494 | 175
432
679
225
136 | 201
193
187
193
191 | 108
111
106
104
101 | 62
65
66
66 | | 26
2 7
28
29
30
31 | 86
79
76
83
84
96 | 76
76
76
76
76 | 70
70
70
70
70
70 | 76
76
76
76
76
76 | 74
74
74
74
 | 80
80
82
73
80
93 | 232
250
237
326
424 | 505
536
534
558
589
578 | 172
173
366
551
447 | 178
178
187
196
192
228 | 100
102
101
97
95
92 | 66
73
72
66
66 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2317
74.7
96
61
4600 | 83.1
119
76 | 2270
73.2
74
70
4500 | 2266
73.1
76
70
4490 | 2156
74.3
76
74
4280 | 2398
77.4
93
73
4760 | 8880
296
558
85
17610 | 16646
537
1340
315
33020 | 6999
233
679
96
13880 | 8357
270
647
178
16580 | 3636
117
205
92
7210 | 2269
75.6
97
62
4500 | CAL YR 1987 TOTAL 56005 MEAN 153 MAX 1010 MIN 43 AC-FT 111100 WTR YR 1988 TOTAL 60686 MEAN 166 MAX 1340 MIN 61 AC-FT 120400 #### 09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO LOCATION.--Lat 40°05'00", long 106°05'15", in NE4NE4 sec.2, T.1 N., R.78W., Grand County, Hydrologic Unit 14010001, on left bank about 1,000 ft north of U.S. Highway 40, 1 mi northeast of Hot Sulphur Springs, and 4.5 mi upstream from Beaver Creek. DRAINAGE AREA. -- 825 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1904 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to 1907 and 1914-18, published as Grand River at Hot Sulphur Springs, and as Grand River at Sulphur Springs 1907-13. REVISED RECORDS. -- WSP 1313: 1905. WSP 1924: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,670 ft, from railroad elevations. July 28, 1904, to Apr. 16, 1906, nonrecording gage on bridge 1.7 mi downstream at different datum. Apr. 17, 1906, to Sept. 18, 1930, nonrecording gage at bridge 1.4 mi downstream at datum 7,651.26 ft, National Geodetic Vertical Datum of 1929. Supplemental water-stage recorder (nonrecording gage prior to Jan. 1, 1963) at different datum at site 1.7 mi downstream, used for winter records some years. REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 10. Records good except for estimated daily discharges, which are poor. Flow affected by transmountain diversions, storage reservoirs, and diversions upstream from station for irrigation of about 13,000 acres. AVERAGE DISCHARGE.--39 years (1905-09, 1911-47), 675 $\rm ft^3/s$; 489,000 acre-ft, prior to storage by Lake Granby; 35 years (1954-88), 246 $\rm ft^3/s$; 178,200 acre-ft, subsequent to storage by Lake Granby. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 10,300 ft³/s, June 15, 1921, gage height, 8.7 ft, site and datum then in use; minimum daily, 33 ft³/s, Sept. 27, 1956. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,550 ft³/s at 0300 May 20, gage height, 2.62 ft; minimum daily, 60 ft³/s, Sept. 21. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT DEC AUG SEP NOV FEB MAR JUN JUL JAN APR MAY 76 146 66 76 74 74 67 q 74 431 82 70 76 578 86 72 23 69 76 72 72 76 86 70 72 76 81 70 72 ___ TOTAL. 2584.0 72.6 70.8 MEAN 74.9 86.1 75.1 76 80.8 74.1 70 60 MIN AC-FT CAL YR 1987 TOTAL 54880.0 MEAN 150 MAX 904 MIN 42 AC-FT 108900 WTR YR 1988 TOTAL 64208.0 MEAN 175 MAX 1330 MIN 60 AC-FT 127400 # 09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1947 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1947 to current year. WATER TEMPERATURE: April 1949 to current year. REMARKS. -- Limited temperature data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 524 microsiemens, Dec. 24, 1986; minimum daily, 48 microsiemens, June 2, 1947. WATER TEMPERATURE: Maximum daily, 29°C, Aug. 3, 1981; minimum daily, freezing point on many days during winter months each year. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum daily, 230 microsiemens, Dec. 26; minimum daily, 81 microsiemens, May 30. WATER TEMPERATURE: Maximum daily, 23°C, Aug. 14 and 16; minimum daily, freezing point on many days during winter months. WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|---|---|---|--|---|---|---|---|---| | JAN
Oʻ | 7 | 1200 | 69 | 125 | | 0.0 | | 54 | 17 | 2.9 | | APR
2 | 7 | 1430 | 275 | 152 | 7.8 | 8.0 | 11.9 | 55 | 17 | 3.1 | | JUN
29 | 9 | 1445 | 627 | 91 | 7.1 | 15.0 | 7.2 | 41 | 13 | 2.1 | | SEP
1 | 9 | 1215 | 69 | 134 | | 9.0 | 9.8 | 55 | 17 | 3.1 | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | JAN
07 | 7 | 6.5 | 0.4 | 1.1 | 59 | 8.1 | 2.2 | 0.2 | 13 | 88 | | | 7 | 6.9 | 0.4 | 1.5 | 62 | 13 | 2.8 | 0.2 | 12 | 94 | | | 9 | 3.9 | 0.3 | 1.0 | 43 | 7.2 | 1.1 | 0.3 | 10 | 65 | | SEP
1 | 9 | 6.8 | 0.4 | 1.3 | 64 | 7.6 | 2.0 | 0.2 | 30 | 107 | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | | JAN
O | 7 | 0.12 | 16.4 | 2 | 0.30 | 0.26 | 0.4 | 0.3 | 0.05 | <0.01 | | APR | 7 | 0.13 | 69.7 | <1 | <0.10 | <0.10 | 0.3 | 0.3 | 0.05 | 0.04 | | | 9 | 0.09 | 109 | 21 | <0.10 | <0.10 | 0.4 | 0.4 | 0.04 | 0.03 | | SEP
19 | 9 | 0.14 | 19.9 | <1 | <0.10 | <0.10 | 0.3 | 0.3 | 0.04 | 0.04 | 49 COLORADO RIVER MAIN STEM # 09034500
COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB) | ARSEN
TOTA
(UG.
AS A | NIC D
AL SO
/L (U | ENIC
IS-
LVED
G/L
AS) | BARI
DIS
SOLV
(UC | ED | BER
LIU
DIS
SOL
(UG
AS | M,
-
VED
/L | ERA
(UG | AL
OV-
BLE | CA DM
DI
SOL
(UG
AS | S-
VED
/L | CHR
MIU
TOT
REC
ERA
(UG
AS | M,
AL
OV-
BLE
/L | CHRO
MIUM
DIS-
SOLV
(UG/
AS C | ,
ED
L | |--|-------|---|---|--|-----------------------------------|--|------------|---------------------------------------|--|------------------------|-------------------------|---------------------------------|---|--|-------------------------------------|--|--------------| | JAN
07 | | <1 | | 2 | 1 | | 24 | < | 0.5 | | <1 | | <1 | | 1 | | <1 | | APR 27 | | <1 | | 1 | 1 | | 22 | < | 0.5 | | 13 | | <1 | | 2 | | <1 | | JUN
29 | | 1 | | 1 | <1 | | 20 | < | 0.5 | | 1 | | <1 | | 2 | | <1 | | SEP
19 | | <1 | | 2 | 1 | | 70 | < | 0.5 | | <1 | | 2 | | 1 | | <1 | | JAN
07
APR
27
JUN
29
SEP | DATE | TO
RE
E R
(U | PER,
TAL
COV-
ABLE
G/L
CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | D
SOI
(U-
AS | ON,
IS-
LVED
G/L
FE)
89
170
81
280 | ERA
(UG | AL
COV-
BLE | | S-
VED
/L | NES
DI
SOL
(UC | S-
VED | MERC
TOT
REC
ERAS
(UG
AS | AL
OV-
BLE
/L
HG) | <0
<0 | ED
L | | | | DATE | TO
RE
ER
(U | KEL,
TAL
COV-
ABLE
G/L
NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NI
TO
(U | LE-
UM,
TAL
G/L
SE) | SOL
(UG | M,
S-
VED | SILV
TOT
REC
ERA
(UG
AS | AL
OV-
BLE
/L | (UG | S-
VED | ZIN
TOT.
REC
ERAI
(UG
AS | AĹ
OV-
BLE
/L | ZINC
DIS
SOLV
(UG/
AS Z | ED
L | | | JAN
07 | | | <1 | 1 | | <1 | | < 1 | | <1 | | 1.0 | | <10 | | 6 | | | | | | 4 | <1 | | <1 | | <1 | | <1 | < | 1.0 | | <10 | | 7 | | | | | | 2 | 1 | | <1 | | <1 | | < 1 | | 2.0 | | 10 | | 7 | | | SEP
19 | • • • | | 3 | 3 | | <1 | | <1 | | < 1 | < | 1.0 | | <10 | | < 3 | | # 09034500 COLORADO RIVER AT HOT SULPHUR SPRINGS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ONCE DAILY JUL SEP DA Y OCT NOV DEC JAN FEB MAR APR MA Y JUN AUG 95 98 135 149 140 134 133 143 124 100 142 126 135 138 133 141 135 138 134 132 92 122 2 150 129 133 142 124 124 148 134 151 122 100 147 136 133 123 132 128 125 108 105 5 137 150 135 135 131 135 150 121 101 107 148 133 138 6 129 133 134 145 120 106 114 149 134 152 134 123 127 7 137 148 127 130 135 100 146 136 135 153 121 138 134 147 130 134 135 144 118 108 147 127 148 132 134 126 145 136 128 136 141 116 119 136 147 1Ó 148 124 154 117 134 130 130 135 109 144 128 138 138 126 133 11 147 127 133 135 173 116 112 140 148 145 134 135 136 140 112 140 12 132 126 151 115 13 146 144 113 134 144 141 129 120 140 139 128 14 146 143 128 136 106 142 148 15 147 144 135 138 136 138 98 133 142 138 131 16 147 134 134 137 136 93 136 142 138 132 17 18 146 145 90 87 141 146 135 132 136 143 133 136 141 140 135 130 132 143 143 133 130 137 140 132 148 145 135 138 138 19 91 133 20 146 139 139 135 135 103 134 142 130 130 138 21 147 140 144 139 136 134 131 143 100 136 128 141 130 138 129 22 147 143 176 140 130 102 143 126 140 23 150 140 139 135 131 138 137 98 140 130 146 102 24 149 134 156 134 122 140 149 106 109 136 128 141 25 148 134 142 135 126 140 147 106 122 137 126 141 26 147 142 230 134 136 141 152 104 119 138 144 127 27 28 147 134 151 134 137 146 154 138 127 149 122 137 138 137 135 138 147 114 100 113 136 129 125 146 146 149 130 82 29 139 146 147 135 136 30 148 149 81 134 136 130 95 134 141 163 142 ---31 148 135 146 94 133 132 129 MEAN 144 143 133 133 143 131 136 TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ONCE DAILY DAY OCT NOV DEC JAN FEB MA R APR MA Y JUN JUL AUG SEP 6.0 9.0 0.0 0.0 0.0 17.0 0.0 0.0 9.0 13.0 16.0 19.0 18.0 13.0 5.0 11.0 6.0 5.0 8.0 10.0 19.0 2 .0 .0 .0 .0 .0 16.0 7.0 .0 .0 .0 .0 10.0 16.0 19.0 17.0 ٠0 4.0 19.0 17.0 21.0 .0 -0 - 0 .0 .0 8.0 16.0 17.0 5 12.0 4.0 .0 16.0 18.0 .0 .0 .0 9.0 . 0 6 12.0 4.0 .0 .0 .0 .0 2.0 7.0 15.0 17.0 20.0 16.0 11.0 16.0 17.0 18.0 5.0 .0 4.0 16.0 19.0 15.0 19.0 18.0 7 8 .0 .0 .0 1.0 6.0 7.0 .0 .0 .0 .0 .0 10.0 5.0 .0 .0 .0 5.0 16.0 .0 20.0 10 5.0 .0 12.0 .0 .0 .0 3.0 15.0 19.0 20.0 12.0 11.0 5.0 .0 .0 .0 .0 9.0 8.0 15.0 16.0 19.0 12.0 12 13 10.0 10.0 .0 .0 .0 .0 5.0 11.0 17.0 16.0 18.0 13.0 10.0 5.0 - 0 .0 .0 .0 11.0 17.0 19.0 19.0 9.0 7.0 .0 .0 .0 .0 5.0 11.0 19.0 18.0 19.0 23.0 11.0 15 5.0 3.0 .0 .0 5.0 20.0 .0 .0 11.0 16.0 11.0 16 10.0 4.0 .0 - 0 ٠.0 . ∩ 5.0 4.0 17.0 17.0 15.0 23.0 17.0 6.0 11.0 17 10.0 .0 .0 .0 .0 .0 11.0 15.0 8.0 .0 .0 .0 17.0 18.0 17.0 12.0 .0 6.0 9.0 .0 8.0 19 4.0 .0 .0 .0 .0 7.0 20.0 17.0 20.0 5.0 8.0 20 .0 .0 .0 .0 .0 6.0 8.0 20.0 18.0 19.0 13.0 21 7.0 .0 .0 .0 .0 .0 4.0 7.0 15.0 19.0 20.0 15.0 17.0 13.0 18.0 22 7.0 .0 .0 .0 .0 .0 4.0 7.0 18.0 19.0 13.0 23 .0 .0 .0 ٠.0 .0 4.0 8.0 17.0 18.0 20.0 8.0 .0 .0 .0 .0 .0 4.0 12.0 20.0 14.0 25 6.0 .0 .0 .0 3.0 .0 .0 11.0 21.0 16.0 20.0 12.0 9.0 7.0 8.0 26 5.0 .0 .0 17.0 17.0 16.0 18.0 17.0 18.0 9.0 8.0 .0 .0 12.0 .0 8.0 .0 .0 .0 .0 .0 8.0 7.0 28 .0 .0 .0 .0 .0 13.0 17.0 12.0 7.0 29 12.0 .0 .0 .0 .0 .0 14.0 17.0 19.0 5.0 5.0 13.0 .0 .0 .0 ---.0 13.0 20.0 17.0 10.0 31 9.0 .0 .0 10.0 .0 16.0 19.0 ---MEAN 8.2 .0 ---.0 -0 4.1 17.0 19.1 _------ # 09034900 BOBTAIL CREEK NEAR JONES PASS, CO LOCATION.--Lat 39°45'37", long 105°54'21", in sec.28, T.3 S., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 320 ft upstream from diversion dam and 0.4 mi south of entrance to August P. Gumlick Tunnel. DRAINAGE AREA. -- 5.49 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 10,430 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 12, 16-23, 27-29, Nov. 2 to May 16, Sept. 19, 29, 30. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--23 years, 10.3 ft^3/s ; 7,460 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 290 ft³/s, June 28, 1988, gage height, 5.19 ft; maximum recorded gage height, 7.57 ft, May 15, 1984 (backwater from ice); minimum daily discharge, 0.44 ft³/s, Feb. 11, 1972. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 90 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|---------|------|----------------------|---------------------| | June 9 | 1800 | 162 | 4.61 | June 28 | 1500 | *290 | *5.19 | | | | 3 0.3 1 11 6 . | • | | | | | Minimum daily, $0.78 \text{ ft}^3/\text{s}$, Mar. 6-18. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, M | WATER YEAR
EAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.7
1.6
1.6
1.6 | 1.6
1.6
1.6
1.6 | 1.4
1.4
1.4
1.4 | 1.1
1.1
1.1
1.1 | .84
.84
.82
.82
.82 | .80
.80
.80
.80 | .80
.84
.86
.88 | 1.7
1.7
1.8
1.8 | 26
31
54
87
87 | 51
44
37
37
33 | 7.7
6.9
6.4
6.2
5.9 | 3.4
3.2
2.9
2.8
2.6 | | 6
7
8
9
10 | 1.5
1.6
1.4
1.4 | 1.6
1.6
1.6
1.6 | 1.4
1.4
1.3
1.3 | 1.1
1.0
1.0
1.0 | .82
.82
.82
.82 | .78
.78
.78
.78 | .94
.98
1.0
1.1 | 1.8
1.9
1.9
1.9
2.0 | 97
93
97
113
122 | 30
28
27
24
22 | 6.4
7.1
6.9
5.9
5.5 | 2.6
2.5
2.4
2.4
2.6 | | 11
12
13
14
15 | 1.3
1.6
1.6
1.9 | 1.5
1.5
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3 | 1.0
.98
.98
.96 | .82
.82
.82
.82
.82 | .78
.78
.78
.78 | 1.1
1.1
1.2
1.2 | 2.0
2.0
3.5
17
45 | 101
94
76
69
75 | 20
18
18
17
15 | 5.3
5.1
4.6
4.3
4.3 | 3.2
3.1
3.2
3.1 | | 16
17
18
19
20 | 1.6
1.6
1.6
1.6 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3 | .94
.94
.92
.92 | .82
.80
.80
.80 | .78
.78
.78
.80 | 1.3
1.4
1.4
1.5 | 26
23
28
27
15 | 84
81
83
89
88 | 14
12
11
11
9.7 | 5.0
5.3
4.7
4.3
4.1 | 2.7
2.5
2.4
2.4
2.3 | | 21
22
23
24
25 | 1.6
1.6
1.6
1.6 | 1.5
1.5
1.5
1.4
1.4 |
1.2
1.2
1.2
1.2
1.2 | .90
.88
.88
.86 | .80
.80
.80
.80 | .80
.80
.80
.80 | 1.5
1.5
1.5
1.6 | 11
9.1
8.8
13
18 | 88
85
80
72
71 | 8.8
7.9
7.7
7.4
7.1 | 4.1
4.1
3.9
3.6
3.6 | 2.2
2.9
2.5
2.4
2.2 | | 26
27
28
29
30
31 | 1.3
1.6
1.6
1.4
1.6 | 1.4
1.4
1.4
1.4 | 1.2
1.2
1.2
1.1
1.1 | . 84
. 84
. 84
. 84
. 84 | .80
.80
.80 | .80
.80
.80
.80 | 1.6
1.6
1.7
1.7 | 22
28
35
44
43
31 | 66
58
98
93
63 | 7.4
6.9
6.9
7.7
6.9
8.7 | 3.7
3.6
3.4
3.2
3.2 | 2.1
2.1
2.2
2.2
2.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 47.9
1.55
1.9
1.2
95 | 45.2
1.51
1.6
1.4
90 | 39.6
1.28
1.4
1.1
79 | 29.52
.95
1.1
.84
59 | 23.56
.81
.84
.80
47 | 24.54
.79
.80
.78
49 | 38.12
1.27
1.7
.80
76 | 469.7
15.2
45
1.7
932 | 2421
80.7
122
26
4800 | 562.1
18.1
51
6.9
1110 | 152.0
4.90
7.7
3.2
301 | 78.5
2.62
3.4
2.1
156 | CAL YR 1987 TOTAL 2818.72 MEAN 7.72 MAX 66 MIN .76 AC-FT 5590 WTR YR 1988 TOTAL 3931.74 MEAN 10.7 MAX 122 MIN .78 AC-FT 7800 # 09035500 WILLIAMS FORK BELOW STEELMAN CREEK, CO LOCATION.--Lat 39°46'44", long 105°55'40", in sec.20, T.3 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 700 ft downstream from Steelman Creek and 6.5 mi southeast of Leal. DRAINAGE AREA. -- 16.3 mi². PERIOD OF RECORD.--July 1933 to September 1941, published as Williams River below Steelman Creek, October 1965 to current year. Monthly discharge only for some periods, published in WSP 1313. GAGE.--Water-stage recorder. Elevation of gage is 9,800 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 21, 1933, nonrecording gage, and July 21, 1933, to Sept. 30, 1941, water-stage recorder at site 600 ft upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 12 to June 24, and June 30 to July 15. Records fair except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through August P. Gumlick Tunnel (station 09036000) since May 10, 1940. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--31 years, 26.1 ft³/s; 18,910 acre-ft/yr. The figures published in the 1986, and 1987 reports are in error; the correct figures are; 29 years, 26.4 ft³/s, 19,130 acre-ft/yr; and 30 years, 26.1 ft³/s; 18,910 acre-ft/yr, including diversions to August P. Gumlick Tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441 ft³/s, June 21, 1938, gage height, 2.48 ft, site and datum then in use, from rating curve extended above 260 ft³/s; maximum gage height, 6.96 ft, May 15, 1984 (backwater from ice); minimum daily discharge, 0.20 ft³/s, Mar. 6, 1967. EXTREMES FOR CURRENT YEAR.--Maximum discharge, unknown, occurred June 10; minimum daily, 0.55 ft³/s, Sept. 26, 27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | , | | , M | EAN VALUE | S | , | | , , | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|----------------------------|----------------------------|-----------------------------------|------------------------------------|-----------------------------------|----------------------------------|--------------------------------------|------------------------------------|--------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.2
1.2
1.1
1.0 | 1.7
1.6
1.5
1.5 | .80
.80
.80
.80 | .80
.80
.80
.79 | .64
.64
.65
.66 | .66
.66
.66 | .71
.77
.81
.89 | 3.7
3.2
3.2
3.0
3.4 | 31
36
48
93
137 | 105
97
89
85
80 | 23
21
20
18
18 | .91
.88
.74
.69 | | 6
7
8
9
10 | 1.0
.97
.97
.97 | 1.3
1.3
1.3
3.3 | .80
.80
.80
.80 | .78
.77
.76
.75 | .66
.66
.66
.66 | .66
.66
.66
.66 | 1.0
1.1
1.2
1.2 | 3.7
3.4
3.4
3.4 | 146
170
157
203
210 | 72
4.0
2.2
2.0
1.9 | 18
20
19
17
15 | .64
.64
.59
.59 | | 11
12
13
14
15 | .97
.91
1.1
1.7 | 1.3
1.2
1.1
1.0
.94 | .80
.80
.80
.80 | 1.5
2.9
2.8
2.7 | .66
.66
.66 | .66
.66
.66
1.6
2.8 | 1.4
1.5
1.6
1.7 | 3.4
4.2
5.1
6.3
7.8 | 196
190
149
96
102 | 33
52
50
49
43 | 15
14
12
12
11 | .85
.96
.79
.97 | | 16
17
18
19
20 | 3.8
1.6
1.4
3.4
1.6 | .88
.80
.80
.80 | .80
.80
.80
.80 | .70
.70
.69
.68 | .66
.66
.66
.66 | 2.8
2.8
2.8
2.8
2.8 | 2.0
2.1
2.3
2.5
2.6 | 15
14
15
17
12 | 100
126
167
177
178 | 39
36
34
33
29 | 13
15
13
11 | .75
.69
.64
.64 | | 21
22
23
24
25 | 3.7
4.6
4.2
1.5 | .80
.80
.80
.80 | .80
.80
.80
.80 | .67
.67
.66
.65 | .66
.66
.66 | 2.8
2.8
1.3
.66 | 2.9
2.7
2.6
2.4
2.2 | 9.6
8.0
9.4
8.7
9.6 | 177
179
168
160
153 | 28
26
25
24
23 | 11
11
9.6
9.3
8.8 | .59
.71
.72
.64 | | 26
27
28
29
30
31 | 3.0
5.1
3.8
5.6
3.9
1.6 | .80
.80
.80
.80 | .80
.80
.80
.80 | .63
.63
.63
.63 | .66
.66
.66 | .66
.66
.66
.66 | 2.4
2.4
2.7
3.2 | 11
13
15
37
47
51 | 147
132
154
153
126 | 23
22
22
23
23
26 | 9.0
9.0
8.5
5.6
1.1 | • 55
• 55
• 58
• 62
• 64 | | TOTAL
MEAN
MAX
MIN
AC-FT | 66.96
2.16
5.6
.91
133 | 35.72
1.19
3.3
.80
71 | .24.80
.80
.80
.80
49 | 29.59
.95
2.9
.63 | 19.07
.66
.66
.64 | 39.16
1.26
2.8
.66
78 | 55.42
1.85
3.2
.71
110 | 352.7
11.4
51
3.0
700 | 4261
142
210
31
8450 | 1201.1
38.7
105
1.9
2380 | 399.81
12.9
23
.91
793 | 21.09
.70
.97
.55
42 | CAL YR 1987 TOTAL 5321.30 MEAN 14.6 MAX 153 MIN .35 AC-FT 10550 WTR YR 1988 TOTAL 6506.42 MEAN 17.8 MAX 210 MIN .55 AC-FT 12910 09035700 WILLIAMS FORK ABOVE DARLING CREEK, NEAR LEAL, CO LOCATION.--Lat 39°47'22", long 106°01'18", in NWdSWd sec.16, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 1.0 mi upstream from Darling Creek and 1.9 mi southeast of Leal. DRAINAGE AREA. -- 34.7 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,970 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1972, May 6, 1981 to Jan. 31, 1983, at site 0.6 mi downstream at different datum. REMARKS.--Estimated daily discharges: Nov. 14 to Apr. 14. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--23 years, 38.0 $\rm ft^3/s$; 27,530 acre-ft/yr. The figure published in the 1987 report was in error; the correct figure is, 22 years, 38.2 $\rm ft^3/s$; 27,680 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 677 ft³/s, June 24, 1971, gage height, 7.12 ft, site and datum then in use, from rating curve extended above 430 ft³/s; minimum daily, 2.7 ft³/s, Apr. 5, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 370 ${\rm ft}^3/{\rm s}$ at 2100 June 9, gage height, 5.02 ft; minimum daily, 4.8 ${\rm ft}^3/{\rm s}$, Mar. 1-5. | | | DISCHARGE, | CUBIC | FEET PER | | WATER YEAR
MEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.4
6.1
6.0
6.0 | 7.5
8.0
7.0
6.3
6.2 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 5.0
5.0
5.0
5.0 | 4.8
4.8
4.8
4.8 | 5.4
5.8
6.2
6.8
7.2 | 22
19
19
18
20 | 62
66
92
175
237 | 175
161
148
141
133 | 40
34
33
32
31 | 11
11
10
9.9
9.4 | | 6
7
8
9
10 | 6.0
6.0
6.0
6.0 | 6.5
6.4
6.0
6.4 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 7.8
8.4
9.0
9.6 | 22
20
20
19
20 | 243
283
253
312
324 | 120
56
42
40
38 | 31
32
33
29
27 | 9.1
8.9
8.8
8.8 | | 11
12
13
14
15 | 6.0
6.0
6.0
6.0 | 6.6
5.9
5.8
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 11
12
13
13 | 20
25
30
37
46 | 307
297
254
191
195 | 66
86
84
81
71 | 26
26
26
25
24 | 9.1
9.7
8.6
9.0
8.7 | | 16
17
18
19
20 |
6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 15
15
15
14
15 | 68
61
66
75
53 | 198
221
265
281
283 | 66
62
57
54
50 | 25
26
25
23
23 | 8.2
7.8
7.6
7.6
7.6 | | 21
22
23
24
25 | 7.5
6.5
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 5.8
5.6
5.4
5.2
5.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 17
16
15
14
13 | 42
35
41
38
42 | 281
284
266
254
244 | 47
44
42
42
41 | 23
22
21
20
20 | 7.6
7.9
7.7
7.6
7.6 | | 26
27
28
29
30
31 | 6.9
6.8
6.5
8.0
9.1
8.1 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0
6.0 | 5.0
5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0 | 5.0
5.0
5.0
5.0
5.0 | 14
14
14
16
19 | 46
54
66
89
104
113 | 238
219
226
240
194 | 42
41
38
41
40
40 | 20
19
19
18
12 | 7.6
7.6
7.6
7.6
7.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 197.9
6.38
9.1
6.0
393 | | 86.0
6.00
6.0
6.0
369 | 177.0
5.71
6.0
5.0
351 | 145.0
5.00
5.0
5.0
288 | 154.0
4.97
5.0
4.8
305 | 365.2
12.2
19
5.4
724 | 1350
43.5
113
18
2680 | 6985
233
324
62
13850 | 2189
70.6
175
38
4340 | 776
25.0
40
11
1540 | 255.7
8.52
11
7.6
507 | CAL YR 1987 TOTAL 10622.2 MEAN 29.1 MAX 235 MIN 5.8 AC-FT 21070 WTR YR 1988 TOTAL 12967.8 MEAN 35.4 MAX 324 MIN 4.8 AC-FT 25720 # 09035800 DARLING CREEK NEAR LEAL, CO LOCATION.--Lat 39°48'20", long 106°01'05", in NE4SW4 sec.9, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 0.6 mi upstream from mouth and 1.4 mi southeast of Leal. DRAINAGE AREA. -- 8.21 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,090 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 14 to Apr. 15. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 23 years, 9.84 ft 3/s; 7,130 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 241 ft³/s, June 30, 1984, gage height, 4.30 ft, from rating curve extended above 100 ft³/s; minimum daily, 1.0 ft³/s, Jan. 12, 1975. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 101 $\rm ft^3/s$ at 1800 June 11, gage height, 3.63 $\rm ft$; minimum daily, 1.8 $\rm ft^3/s$, Mar. 2-7. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | VATER YEAR
EAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|-----------------------------------|--|-----------------------------------|--|------------------------------------|-----------------------------------|----------------------------------|--|------------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.0
5.0
5.0
5.0 | 5.5
5.5
5.2
5.2
5.1 | 2.9
2.7
2.5
2.5
2.5 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 1.9
1.8
1.8
1.8 | 2.1
2.2
2.4
2.5
2.6 | 5.7
5.1
4.9
4.9
5.1 | 26
28
38
52
57 | 32
29
27
25
23 | 6.9
6.4
6.1
6.0
5.8 | 4.0
4.0
3.9
3.9 | | 6
7
8
9
10 | 5.0
4.9
4.9
4.9 | 5.2
5.1
5.0
4.6
5.1 | 2.5
2.5
2.5
2.5
2.4 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 1.8
1.9
2.0
2.0 | 2.8
3.0
3.1
3.3
3.5 | 5.4
5.2
5.1
5.0
4.9 | 61
63
66
71
74 | 21
19
18
17
16 | 5.7
5.9
5.7
5.4
5.3 | 3.8
3.7
3.7
3.7
3.9 | | 11
12
13
14
15 | 4.8
4.9
5.1
5.7
5.5 | 4.9
4.8
5.0
5.0
4.8 | 2.3
2.2
2.1
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 3.7
4.0
4.2
4.4
4.7 | 5.2
6.4
8.4
12
16 | 76
69
62
58
58 | 15
14
13
13 | 5.2
5.1
4.9
4.7
4.6 | 4.1
4.1
4.0
4.2
4.1 | | 16
17
18
19
20 | 5.5
5.2
5.2
5.1
4.8 | 4.6
4.2
3.7
3.3
3.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 4.8
4.6
4.7
4.8 | 18
19
22
22
17 | 62
59
57
61
61 | 11
10
9.6
9.2
8.7 | 5.0
5.1
4.8
4.6
4.5 | 4.1
3.9
3.9
3.9 | | 21
22
23
24
25 | 5.0
5.0
5.2
5.3 | 3.0
3.0
3.0
3.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 5.0
4.8
4.6
4.5
4.5 | 15
13
13
13
15 | 60
61
54
49
47 | 8.2
7.8
7.5
7.2
7.0 | 4.6
4.5
4.3
4.2
4.1 | 3.8
4.1
4.0
3.9
3.8 | | 26
27
28
29
30
31 | 5.3
5.2
5.1
5.1
5.3
5.5 | 3.0
3.0
3.0
3.0
3.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0
2.0 | 4.4
4.5
4.4
4.7
5.4 | 17
19
24
32
36
30 | 45
42
41
43
36 | 7.8
7.2
6.8
9.3
7.6
7.3 | 4.3
4.3
4.1
4.1
4.1 | 3.8
3.8
3.9
4.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 158.4
5.11
5.7
4.8
314 | 124.8
4.16
5.5
3.0
248 | 68.1
2.20
2.9
2.0
135 | 62.0
2.00
2.0
2.0
123 | 58.0
2.00
2.0
2.0
115 | 60.6
1.95
2.0
1.8
120 | 119.0
3.97
5.4
2.1
236 | 424.3
13.7
36
4.9
842 | 1637
54.6
76
26
3250 | 425.2
13.7
32
6.8
843 | 154.3
4.98
6.9
4.0
306 | 117.6
3.92
4.2
3.7
233 | CAL YR 1987 TOTAL 2827.9 MEAN 7.75 MAX 52 MIN 2.0 AC-FT 5610 WTR YR 1988 TOTAL 3409.3 MEAN 9.32 MAX 76 MIN 1.8 AC-FT 6760 55 09035880 SOUTH FORK WILLIAMS FORK BELOW OLD BALDY MOUNTAIN, NEAR LEAL, CO LOCATION.--Lat $39^{\circ}45'32"$, long $106^{\circ}02'08"$, in Grand County, Hydrologic Unit 14010001, on right bank 5.3 mi northwest of Ptarmigan Pass, and 3.6 mi south of Leal. DRAINAGE AREA. -- 21.8 mi². PERIOD OF RECORD. -- October 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,330 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10, and Nov. 20 to Apr. 7. Records good except for estimated daily discharges, which are poor. No diversions upstream from station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 285 ft³/s, June 19, 1986, gage height, 3.37 ft; maximum gage height, 3.39 ft, June 9, 1988; minimum daily discharge, 5.6 ft³/s, Feb. 12-19, 1986, Jan. 13-20, 1988. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 18
May 29 | 2230
2100 | 104
152 | 2.07
2.50 | June 9 | 2000 | *275 | *3.39 | DISCULDED CUDIC PERT DED SECOND. WATER VEAR OCTORED 1087 TO SERTEMBER 1088 Minimum daily discharge, 5.6 ft3/s, Jan. 13-20. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, M | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO S | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|---------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|--------------------------------|-----------------------------------| | DA Y | ост | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.1
7.9
7.8
7.7
7.6 | 9.9
10
9.0
8.4
8.0 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 18
16
16
14
15 | 85
94
123
165
175 | 95
87
80
76
70 | 25
22
22
21
20 | 11
11
11
10
10 | | 6
7
8
9
10 | 7.5
7.4
7.5
7.4
7.3 | 8.8
8.4
8.1
7.8
8.0 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
6.7 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.2
7.5
7.2 | 17
16
15
14
14 | 181
195
196
219
235 | 65
61
58
54
51 | 20
21
21
18
17 | 9.8
9.5
9.2
9.0
9.9 | | 11
12
13
14
15 | 7.1
7.0
7.9
11 | 8.2
8.2
8.3
7.8
7.8 | 8.0
8.0
8.0
8.0 | 6.3
6.0
5.6
5.6 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.8
8.1
10
11 | 16
22
34
49
62 | 216
204
182
163
169 | 48
46
44
43 | 17
16
16
15
14 | 12
13
11
12
11 | | 16
17
18
19
20 | 10
9.3
9.0
8.7
7.6 |
7.8
7.8
8.1
8.0
8.0 | 8.0
8.0
8.0
8.0 | 5.6
5.6
5.6
5.6 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 12
13
12
12
13 | 69
72
82
81
61 | 178
182
179
191
191 | 38
36
34
34
32 | 16
17
16
14
14 | 9.9
9.3
9.0
8.9
8.9 | | 21
22
23
24
25 | 7.9
8.0
7.9
8.3
9.3 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 14
13
12
11 | 51
45
43
49
58 | 190
186
174
161
148 | 30
28
27
26
25 | 14
15
13
12
12 | 8.7
10
9.9
9.1
8.8 | | 26
27
28
29
30
31 | 8.7
8.5
8.3
8.1
9.3
9.4 | 8.0
8.0
8.0
8.0 | 8.0
8.0
7.4
7.0
7.0 | 6.0
6.0
6.0
6.0
6.0 | 6.0
6.0
6.0 | 6.0
6.0
6.0
6.0
6.0 | 11
9.2
9.1
11
16 | 68
78
91
111
117
97 | 141
131
125
132
107 | 26
24
26
26
26 | 12
12
12
11
11 | 8.5
8.5
9.2
9.6
9.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | 257.5
8.31
11
7.0
511 | | 7.88
8.0
7.0
485 | 192.8
6.22
7.0
5.6
382 | 174.0
6.00
6.0
6.0
345 | 186.0
6.00
6.0
6.0
369 | 288.1
9.60
16
6.0
571 | 1511
48.7
117
14
3000 | 5018
167
235
85
9950 | 1382
44.6
95
24
2740 | 497
16.0
25
11
986 | 297.4
9.91
13
8.5
590 | CAL YR 1987 TOTAL 8368.6 MEAN 22.9 MAX 156 MIN 6.0 AC-FT 16600 WTR YR 1988 TOTAL 10294.6 MEAN 28.1 MAX 235 MIN 5.6 AC-FT 20420 # 09035900 SOUTH FORK WILLIAMS FORK NEAR LEAL, CO LOCATION.--Lat 39°47'45", long 106°01'48", in NEt sec.17, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 800 ft upstream from highway bridge, 0.6 mi upstream from mouth, and 1.2 mi southeast of Leal. DRAINAGE AREA. -- 27.3 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,950 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 9-13, and Nov. 15 to Apr. 28. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 23 years, 32.8 ft3/s; 23,760 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 464 ft³/s, June 15, 1978, gage height 3.37 ft; maximum gage height, 4.22 ft, Nov. 22, 1979 (backwater from ice); minimum daily discharge, 2.6 ft³/s, Mar. 6, 1967. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|----------|-------------|----------------------|---------------------| | June 19 | 1900 | *375 | *3.83 | No other | r peak grea | ater than base di | scharge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 5.6 ft3/s, Mar. 2-7. | | | DIBORA | .de, cobic | , LEDI LEN | | EAN VALUE | S CLOBER | 1907 10 | nadnai 1ac | 1900 | | | |--------------------------------------|-----------------------------------|-----------------------------------|--|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|----------------------------------|---------------------------------|--------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
10
10
9.9
9.9 | 13
14
12
11 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
6.0 | 5.8
5.6
5.6
5.6 | 6.4
6.8
7.2
7.5
7.8 | 22
19
26
18
19 | 118
131
176
237
217 | 98
88
80
76
70 | 29
25
23
22
21 | 13
13
13
12
12 | | 6
7
8
9
10 | 9.8
9.5
9.6
9.4
9.4 | 12
11
11
11
11 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
6.0 | 5.6
5.6
6.0
6.0 | 8.0
8.5
9.0
9.5 | 21
19
19
18
18 | 213
218
213
241
248 | 65
61
56
51
50 | 21
22
23
20
19 | 12
11
11
11
12 | | 11
12
13
14
15 | 9.3
9.1
10
15
14 | 11
11
11
10
9.4 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 11
11
12
13
14 | 19
25
39
57
77 | 227
220
200
170
181 | 49
51
52
52
48 | 19
19
18
17
16 | 14
15
13
14
14 | | 16
17
18
19
20 | 14
12
12
12
9.8 | 8.7
8.2
8.0
8.0 | 8.0
8.0
8.0
8.0 | 7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 15
16
17
18
19 | 89
95
114
124
82 | 192
200
261
302
244 | 45
43
40
38
36 | 17
19
18
16
15 | 13
12
12
11
11 | | 21
22
23
24
25 | 11
10
10
11
13 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.0 | 6.8
6.6
6.4
6.2
6.0 | 6.0
6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 20
18
16
14
12 | 63
54
49
56
69 | 212
210
189
175
161 | 34
32
31
30
29 | 16
16
15
14
13 | 11
12
13
12
11 | | 26
27
28
29
30
31 | 11
11
11
11
12
12 | 8.0
8.0
8.0
8.0 | 7.9
7.6
7.4
7.1
7.0
7.0 | 6.0
6.0
6.0
6.0
6.0 | 6.0
6.0
6.0 | 6.0
6.0
6.0
6.0 | 10
10
10
13
18 | 84
99
123
158
171
139 | 152
139
129
142
113 | 30
30
28
29
30
29 | 13
14
14
13
13 | 11
10
11
11
12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 339.7
11.0
15
9.1
674 | 289.3
9.64
14
8.0
574 | 244.0
7.87
8.0
7.0
484 | 208.0
6.71
7.0
6.0
413 | 174.0
6.00
6.0
6.0
345 | 183.4
5.92
6.0
5.6
364 | 367.7
12.3
20
6.4
729 | 1985
64.0
171
18
3940 | 5831
194
302
113
11570 | 1481
47.8
98
28
2940 | 553
17.8
29
13
1100 | 364
12.1
15
10
722 | CAL YR 1987 TOTAL 8904.8 MEAN 24.4 MAX 134 MIN 7.0 AC-FT 17660 WTR YR 1988 TOTAL 12020.1 MEAN 32.8 MAX 302 MIN 5.6 AC-FT 23840 #### 09036000 WILLIAMS FORK NEAR LEAL, CO LOCATION.--Lat 39°50'02", long 106°03'21", in sec.31, T.2 S., R.77 W., Grand County, Hydrologic Unit 14010001, on right bank at downstream side of bridge, 100 ft downstream from Kinney Creek, and 1.7 mi northwest of Leal. DRAINAGE AREA .-- 89.5 mi2. PERIOD OF RECORD.--July 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Prior to October 1958, published as Williams River near Leal. REVISED RECORDS. -- WSP 1733: 1951. WSP 2124: Drainage area. WRD Colo. 1973: 1972. GAGE..-Water-stage recorder. Elevation of gage is 8,790 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 16, 1953, at site 15 ft downstream at present datum. REMARKS.--Estimated Daily discharges: Dec. 14 to Apr. 5. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (see table below for figures of diversion). Diversions for irrigation of about 200 acres of hay meadows upstream from station and about 40 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. COOPERATION.--Diversions, in acre-feet, through August P. Gumlick Tunnel, provided by Colorado Division of Water Resources. AVERAGE DISCHARGE.--55 years, 104 ft3/s; 75,350 acre-ft/yr, including diversions to August P. Gumlick Tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,720 ft³/s, June 10, 1952, gage height, 4.23 ft; maximum gage height, 5.46 ft, June 29, 1971 (backwater from log); minimum daily discharge, 13 ft³/s, at times in 1939, 1963, 1964, and 1967. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 912 ft³/s at 2400 June 9, gage height, 3.70 ft; minimum daily,16 ft³/s, Mar. 6-15. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 17 28 17 17 68 17 26 16 30 20 հհ 9 25 45 34 MO 17 17 231 98 ------TOTAL 25.1 27 19.1 818 MEAN 31.2 30.4 17.0 16.7 35.7 54.9 31.2 MAX MIN AC-FT CAL YR 1987 TOTAL 25998 MEAN 71.2 MAX 444 MIN 17 AC-FT 51570 WTR YR 1988 TOTAL 34313 MEAN 93.8 MAX 818 MIN 16 AC-FT 68060 a-Diversions, in acre-feet, through August P. Gumlick Tunnel, provided by Colorado Division of Water Resources. #### 09037500 WILLIAMS FORK NEAR PARSHALL, CO LOCATION.--Lat 40°00'01", long 106°10'45", in SW4SW4 sec.31, T.1 N., R.78 W., Grand County, Hydrologic Unit 14010001, on left bank 150 ft downstream from bridge on State Highway 286, 3.7 mi downstream from Skylark Creek, 3.9 mi south of Parshall, and 4.2 mi upstream from Williams Fork Reservoir Dam. DRAINAGE AREA .-- 184 mi2. PERIOD OF RECORD.--July 1904 to September 1924, June 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Published as "near (Hot) Sulphur Springs" 1904-12 and as Williams River near Parshall June 1933 to September 1958.
Water-quality data available, April 1986 to September 1987. REVISED RECORDS.--WSP 1243: 1918. WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7,808.95 ft, (Denver Board of Water Commissioners Datum). See WSP 1733 for history of changes prior to Aug. 9, 1938. Aug. 10, 1938 to Aug. 19, 1983 gage located on right bank at present datum. REMARKS.--Estimated daily discharges: Nov. 9 to Apr. 21, and Apr. 24-27. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Diversions upstream from station for irrigation of about 1,300 acres upstream from station, and about 2,500 acres downstream from station. About 150 acres upstream from station irrigated by diversions into the drainage area. Water-quality data available April 1986 to Sept. 1987. AVERAGE DISCHARGE. -- 75 years, 137 ft3/s; 99,260 acre-ft/yr, including diversion to August P. Gumlick Tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 2,620 ft³/s, June 14, 1918, gage height, 6.05 ft, site and datum then in use, from rating curve extended above 1,400 ft³/s; minimum daily, 4.8 ft³/s, May 6, 8-10, 1972. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 968 $\rm ft^3/s$ at 0430 June 11, gage height, 3.47 ft; minimum daily, 10 $\rm ft^3/s$, Aug. 25-27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | , | | MI | EAN VALUES | 3 | | | .,, | | | |--------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|--|-------------------------------------|-----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 36
35
35
34
34 | 45
47
47
44
40 | 27
27
27
27
27 | 30
30
30
30
30 | 30
30
30
30
30 | 28
28
28
28
28 | 54
54
54
54
54 | 123
103
89
91
91 | 386
329
344
454
622 | 302
260
215
191
171 | 18
17
17
16
14 | 24
40
52
50
49 | | 6
7
8
9
10 | 34
35
35
36
35 | 41
45
44
34
34 | 30
30
30
30
30 | 30
30
30
30
30 | 30
30
30
30
30 | 28
28
28
28
28 | 60
60
60
60 | 107
93
89
81
79 | 534
711
658
731
840 | 147
101
72
51
31 | 13
13
15
13
12 | 47
45
43
41 | | 11
12
13
14
15 | 35
35
37
44
48 | 34
33
33
33
33 | 35
35
35
35
35 | 30
30
30
30
30 | 30
30
30
30
30 | 33
33
33
33
33 | 76
76
76
76
76 | 76
97
139
218
276 | 816
753
690
496
456 | 30
53
41
48
33 | 11
11
11
11
11 | 47
60
53
55
54 | | 16
17
18
19
20 | 45
43
43
41
37 | 30
29
28
26
26 | 35
35
35
35
35 | 30
30
30
30
30 | 30
30
30
30
30 | 37
37
37
37
37 | 80
90
98
110
115 | 357
385
414
548
458 | 465
504
539
589
603 | 26
23
22
20
19 | 12
13
13
11
11 | 49
43
43
42
42 | | 21
22
23
24
25 | 36
39
40
41
47 | 26
26
26
26
26 | 35
35
35
35
35 | 30
30
30
30
30 | 28
28
28
28
28 | 43
43
43
43 | 130
121
105
100
96 | 365
314
285
299
321 | 582
632
555
507
459 | 18
18
17
17
16 | 11
12
11
11
10 | 41
43
41
39
37 | | 26
27
28
29
30
31 | 44
41
40
40
43
47 | 26
26
26
26 | 35
35
35
35
35
35 | 30
30
30
30
30
30 | 28
28
28
28 | 48
48
48
48
48 | 84
70
65
77
97 | 360
397
427
463
529
473 | 459
432
413
498
375 | 16
17
17
17
18
17 | 10
10
15
24
26
25 | 36
35
35
37
37 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1215
39.2
48
34
2410 | 986
32.9
47
26
1960 | 1020
32.9
35
27
2020 | 930
30.0
30
30
1840 | 852
29•4
30
28
1690 | 1133
36.5
48
28
2250 | 2388
79.6
130
54
4740 | 8147
263
548
76
16160 | 16432
548
840
329
32590 | 2044
65.9
302
16
4050 | 428
13.8
26
10
849 | 1301
43.4
60
24
2580 | CAL YR 1987 TOTAL 22588 MEAN 61.9 MAX 362 MIN 13 AC-FT 44800 WTR YR 1988 TOTAL 36876 MEAN 101 MAX 840 MIN 10 AC-FT 73140 #### 09038000 WILLIAMS FORK RESERVOIR NEAR PARSHALL, CO LOCATION.--Lat 40°02'06", long 106°12'17", in SE4 sec.23, T.1 N., R.79 W., Grand County, Hydrologic Unit 14010001, at dam on Williams Fork, 2.1 mi upstream from mouth, and 2.2 mi southwest of Parshall. DRAINAGE AREA. -- 230 mi2. PERIOD OF RECORD. -- April 1939 to current year. Prior to October 1948, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Non recording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city engineer of Denver); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by concrete-arch dam completed in October 1939; storage began April 1939; dam was enlarged Dec. 5, 1956, to Apr. 22, 1959. Enlarged capacity, 96,820 acre-ft, between elevations 7.634 ft, invert of outlet, and 7,811 ft, top of radial gates on spillway. No dead storage. Figures given represent usable contents. Reservoir is used for power development and to store water to compensate for water diverted through August P. Gumlick Tunnel. Water is released during periods of low flow in Colorado River to supply decreed prior water rights. Records provided by Denver Board of Water Commissioners. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 97,130 acre-ft, July 9, 1962, elevation, 7,811.19 ft; no contents at times in 1958 (construction) and 1966 (drained for repairs). EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 95,820 acre-ft, July 3, elevation, 7,810.38 ft; minimum, 56,360 acre-ft, Apr. 6, elevation, 7,780.55 ft. # MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Contents Change in contents Elevation (acre-feet) (acre-feet) | |--|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 7,797.94 77,490 -
7,799.19 79,200 +1,710
7,794.98 73,550 -5,650
7,791.80 69,460 -4,090 | | CAL YR 1987 | -860 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 7,788.48 65,380 -4,080 7,784.94 61,230 -4,150 7,781.10 56,950 -4,280 7,781.36 57,240 +290 7,790.40 67,720 +10,480 7,810.19 95,510 +27,790 7,806.76 90,150 -5,360 7,800.15 80,520 -9,630 7,794.28 72,640 -7,880 | | WTR YR 1988 | -4,850 | # 09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO LOCATION.--Lat 40°02'07", long 106°12'17", in SE4 sec.23, T.1 N., R.79 W., Grand County, Hydrologic Unit 14010001, on left bank 400 ft downstream from Williams Fork Reservoir, 2.1 mi upstream from mouth, and 2.1 mi southwest of Parshall. DRAINAGE AREA . -- 230 mi 2. PERIOD OF RECORD.--October 1948 to September 1954, August 1958 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1958, published as Williams River below Williams Fork Reservoir. Water-quality data available, April 1986 to September 1987. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 7,615.0 ft, (Denver Board of Water Commissioners Datum). See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1959. REMARKS.--Estimated daily discharges: Sept. 23-30. Records good. Flow completely regulated by Williams Fork Reservoir (station 09038000). Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09036000). Diversions upstream from station for irrigation of about 3,200 acres upstream from station and about 100 acres downstream from station. About 450 acres upstream from station irrigated by diversion into the drainage area. AVERAGE DISCHARGE.--36 years, 129 ft3/s; 93,460 acre-ft/yr, adjusted for storage in Williams Fork Reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,640 ft³/s, June 20, 1953, gage height, 8.50 ft, site and datum then in use, from rating curve extended above 1,500 ft³/s; no flow for part of Apr. 29, 1975. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $607 \text{ ft}^3/\text{s}$ at 1900 June 22, gage height, 3.29 ft; minimum daily, 18 ft $^3/\text{s}$, Oct. 6-28. | | | DISCHARGE, | CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEP TE MB E R | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|----------------------------------|--|------------------------------------|------------------------------------| | DAY | OCT | ΝΟ۷ | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG
 SEP | | 1
2
3
4
5 | 21
21
21
21
19 | 109
109
109
109
145 | 114
113
113
113
113 | 115
115
115
115
115 | 116
116
116
117
118 | 121
120
120
120
120 | 116
116
116
116
116 | 117
116
117
118
118 | 28
28
28
29
29 | 286
227
226
230
229 | 108
188
242
242
242 | 177
176
175
177
176 | | 6
7
8
9
10 | 18
18
18
18
18 | 170
172
168
167
168 | 113
114
112
112
114 | 115
103
115
115
115 | 118
118
118
118
118 | 120
120
120
120
120 | 116
118
118
117
116 | 118
118
118
118
116 | 29
29
29
30
31 | 228
228
228
228
228
231 | 244
241
197
171
177 | 175
175
175
175
175 | | 11
12
13
14
15 | 18
18
18
18 | 169
169
169
169 | 115
116
116
113
113 | 116
116
113
114
116 | 118
119
120
119
118 | 120
120
119
118
118 | 116
117
118
118
118 | 108
115
116
115
115 | 31
31
31
31
31 | 233
233
149
107
108 | 175
173
172
175
175 | 176
177
177
177
177 | | 16
17
18
19
20 | 18
18
18
18 | 169
169
165
131
110 | 113
114
115
115
115 | 116
116
114
113
113 | 118
118
119
120
121 | 118
118
120
119
118 | 119
120
119
117
116 | 113
113
114
112
111 | 32
32
27
24
132 | 109
107
106
164
234 | 173
174
175
174
171 | 176
175
175
177
177 | | 21
22
23
24
25 | 18
18
18
18 | 113
112
111
111
113 | 115
115
115
115
115 | 114
115
116
116
114 | 122
122
120
121
122 | 118
117
116
115
117 | 117
118
118
117
116 | 112
113
113
111
110 | 200
352
557
541
381 | 237
238
239
240
240 | 173
173
173
173
173 | 177
175
175
175
175 | | 26
27
28
29
30
31 | 18
18
18
21
78
111 | 113
112
111
113
115 | 115
116
116
116
115 | 115
115
116
118
118
116 | 122
122
119
120 | 116
117
118
118
117 | 117
118
118
118
118 | 111
111
109
109
109
56 | 240
228
272
458
487 | 240
148
109
111
111 | 172
177
176
173
173 | 177
177
175
174
106 | | TOTAL
MEAN
MAX
MIN
AC-FT | 727
23.5
111
18
1440 | 4139
138
172
109
8210 | 3543
114
116
112
7030 | 3558
115
118
103
7060 | 3453
119
122
116
6850 | 3674
119
121
115
7290 | 3518
117
120
116
6980 | 3470
112
118
56
6880 | 4408
147
557
24
8740 | 5914
191
286
106
11730 | 5702
184
244
108
11310 | 5206
174
177
106
10330 | CAL YR 1987 TOTAL 32375 MEAN 88.7 MAX 187 MIN 15 AC-FT 64220 WTR YR 1988 TOTAL 47312 MEAN 129 MAX 557 MIN 18 AC-FT 93840 #### 09039000 TROUBLESOME CREEK NEAR PEARMONT, CO LOCATION.--Lat 40°13'03", long 106°18'45", in SE4 sec.14, T.3 N., R.80 W., Grand County, Hydrologic Unit 14010001, on left bank 45 ft downstream from small tributary, 3 mi north of Pearmont, 4 mi downstream from Rabbit Ear Creek, 5.2 mi upstream from East Fork, and 12 mi northeast of Kremmling. DRAINAGE AREA . -- 44.6 mi2. PERIOD OF RECORD. -- October 1953 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,049 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18, 19, 24, 25, Dec. 9, 10, and Dec. 20 to Apr. 8. Records good except for estimated daily discharges, which are poor. One diversion upstream from station for irrigation of about 250 acres downstream from station. Flow partly regulated during irrigation season by one reservoir, capacity, 1,070 acre-ft, upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 35 years, 30.8 ft 3/s; 22,310 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 630 ft³/s, June 25, 1983, gage height, 2.81 ft; maximum gage height, 3.93 ft, Mar. 31, 1965 (backwater from ice); minimum daily discharge, 4.5 ft³/s, Dec. 20-24, 1976. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 245 ft³/s at 2200 May 18, gage height, 2.05 ft; minimum daily, 5.3 ft³/s, Dec. 2. | | | DISCHARO | GE, CUBIC | FEET PER | SECOND, W | ATER YEAF
AN VALUES | | 1987 TO S | SEP TE MB E R | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--|-----------------------------------|--|--------------------------------|---------------------------------| | DAY | OCT | vои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.5
7.5
7.5
7.6 | 13
14
13
13 | 5.4
5.3
5.6
6.7
8.8 | 12
13
13
13 | 13
13
13
13
13 | 14
14
14
14
14 | 13
13
13
13
13 | 35
31
29
29
30 | 143
126
127
149
172 | 47
43
41
43
47 | 16
15
15
15
14 | 15
15
15
14
15 | | 6
7
8
9
10 | 7.5
7.5
7.2
7.2
8.8 | 13
13
12
11
12 | 11
12
11
12
12 | 13
13
13
13 | 13
13
13
13
13 | 13
13
13
13
13 | 13
13
13
13
15 | 35
36
35
33
34 | 177
171
161
152
143 | 47
45
42
44
49 | 15
15
15
14
14 | 15
20
30
31
32 | | 11
12
13
14
15 | 11
11
12
15
14 | 12
13
12
12
12 | 12
12
13
14
13 | 13
13
13
13 | 14
14
14
14
14 | 13
13
13
13
13 | 18
20
23
25
27 | 34
42
62
101
127 | 133
123
113
100
87 | 49
49
47
4 7 | 14
13
14
13 | 35
36
32
29
27 | | 16
17
18
19
20 | 13
12
12
12
12 | 13
13
14
15
13 | 12
12
12
12
12 | 13
13
13
13
13 | 14
14
14
14
14 | 13
13
13
13
13 | 27
28
28
30
29 | 146
174
210
225
173 | 76
70
68
65
61 | 4 0
22
19
16
1 4 | 14
14
14
13 | 27
26
24
23
22 | | 21
22
23
24
25 | 12
12
12
12
14 | 13
13
12
12
12 | 12
12
12
12
12 | 13
13
13
13 | 14
14
14
14
14 | 13
13
13
13
13 | 29
28
24
23
23 | 135
107
87
83
98 | 58
59
62
62
62 | 13
14
14
14
14 | 14
13
14
15 | 20
22
19
15
13 | | 26
27
28
29
30
31 | 13
12
12
12
13
13 | 12
11
8.2
5.8
5.5 | 12
12
12
12
12
12 | 13
13
13
13
13 | 1 4
1 4
1 4
1 4
 | 13
13
13
13
13 | 22
24
25
28
33 | 109
125
151
174
195
164 | 59
53
48
51
51 | 14
14
14
15 | 15
16
17
17
14 | 13
13
13
13
 | | TOTAL
MEAN
MAX
MIN
AC-FT | 336.8
10.9
15
7.2
668 | 359.5
12.0
15
5.5
713 | 345.8
11.2
14
5.3
686 | 402
13.0
13
12
797 | 396
13.7
14
13
785 | 408
13.2
14
13
809 | 646
21.5
33
13
1280 | 3049
98.4
225
29
6050 | 2982
99.4
177
48
5910 | 953
30•7
49
13
1890 | 448
14.5
17
13
889 | 637
21.2
36
13
1260 | CAL YR 1987 TOTAL 9044.0 MEAN 24.8 MAX 142 MIN 5.3 AC-FT 17940 WTR YR 1988 TOTAL 10963.1 MEAN 30.0 MAX 225 MIN 5.3 AC-FT 21750 #### 09041500 MUDDY CREEK AT KREMMLING, CO LOCATION.--Lat 40°03'37", long 106°23'48", in SW4SE4 sec.7, T.1 N., R.80 W., Grand County, Hydrologic Unit 14010001, on left bank 450 ft upstream from U.S. Highway 40 bridge at Kremmling and 2.8 mi upstream from mouth DRAINAGE AREA. -- 290 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August to October 1904, April to October 1905. Monthly discharge only in WSP 1313. April 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 7,340 ft above National Geodetic Vertical Datum of 1929, from topographic map. Supplementary recorder on diversion ditch about 2,000 ft downstream from point of diversion. REMARKS.--Estimated daily discharges: Oct. 1 to Mar. 10, Apr. 18-20, July 31 to Sept. 13, and Sept. 16-30. Records good except for estimated daily discharges, which are poor. Records include flow of diversion ditch. AVERAGE DISCHARGE. -- 6 years, 124 ft3/s; 89,840 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum combined discharge, 1,670 ft³/s, May 16, 1984, gage height, 12.67 ft; minimum daily, 1.0 ft³/s, Sept. 24, 25, 1905. EXTREMES FOR CURRENT YEAR.--Maximum combined discharge, 879 ft³/s at 2300 May 19, gage height, 8.62 ft; minimum daily, 6.1 ft³/s, Sept. 15. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEA
EAN VALUE | R OCTOBER
S | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|-----------------------------------|----------------------------------|--------------------------------|-----------------------------------|-----------------------------------|--|-----------------------------------|----------------------------------|--
-----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.4
8.8
8.4
8.0
7.6 | 7.6
7.6
7.6
7.6
7.6 | 9.0
9.2
9.2
9.2
9.2 | 10.5
10.5
10.5
10.5 | 13
13
13
13
13 | 12
12.5
13
13
14 | 50
57
100
185
246 | 492
410
290
289
374 | 481
449
457
460
470 | 72
69
69
89
92 | 11
11
12
11
11 | 8.8
8.4
8.0
7.8
7.6 | | 6
7
8
9
10 | 7.4
7.2
7.2
7.2
7.2
7.2 | 7.8
7.8
7.8
7.8
7.8 | 9.2
9.2
9.4
9.4
9.4 | 10.5
10.5
11
11 | 13
13
13
13
13 | 14.5
15
16
17
18 | 203
287
337
194
122 | 470
400
343
314
311 | 446
388
344
288
242 | 87
83
80
67
66 | 11
10
10
10
10 | 7.4
7.0
6.8
6.6
6.5 | | 11
12
13
14
15 | 7.2
7.2
7.2
7.6
7.8 | 8.2
8.2
8.4
8.4
8.2 | 9.4
9.4
9.6
9.6 | 11
11
11
11
12 | 12
12
12
12
12 | 20
20
22
28
29 | 129
183
206
191
220 | 300
398
519
640
714 | 213
204
194
166
165 | 83
60
56
57
56 | 12
24
26
26
10 | 6.2
6.2
10
7.7
6.1 | | 16
17
18
19
20 | 7.5
7.4
7.4
7.4
7.6 | 8.6
8.6
8.6
8.6 | 9.6
9.6
9.6
9.8 | 12
12
12
12
12 | 12
12
12
12
12 | 30
32
34
34
34 | 262
275
290
285
315 | 780
812
781
808
810 | 158
139
142
146
138 | 55
49
45
47
46 | 10
10
9.9
9.8
9.8 | 6.2
6.2
6.2
6.2 | | 21
22
23
24
25 | 7.6
7.6
7.6
7.4
7.6 | 8.8
8.8
8.8
8.8 | 9.8
9.8
9.8
9.8 | 12
13
13
13 | 12
12
12
12
12 | 32
25
23
20
19 | 371
279
220
208
222 | 603
482
446
442
473 | 129
113
116
120
103 | 42
39
43
29
26 | 9.6
9.6
9.4
9.4 | 6.2
6.2
6.4
6.4 | | 26
27
28
29
30
31 | 8.0
7.8
7.6
7.4
7.4
7.4 | 9.0
9.0
9.0
9.0 | 10
10
10
10
10 | 13
13
13
13
13 | 12
12
12
12 | 26
62
94
69
78
73 | 195
180
183
225
354 | 558
573
593
606
619
580 | 79
74
76
76
75 | 24
15
11
13
11 | 9.4
9.2
9.2
9.0
8.8
8.8 | 6.6
6.8
6.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 236.1
7.62
9.4
7.2
468 | 250.4
8.35
9.0
7.6
497 | 297.0
9.58
10
9.0
589 | 364.5
11.8
13
10
723 | 358
12.3
13
12
710 | 949.0
30.6
94
12
1880 | 6574
219
371
50
13040 | 16230
524
812
289
32190 | 6651
222
481
74
13190 | 1592
51.4
92
11
3160 | 356.5
11.5
26
8.8
707 | 207.1
6.90
10
6.1
411 | CAL YR 1987 TOTAL 23362.5 MEAN 64.0 MAX 567 MIN 7.2 AC-FT 46340 WTR YR 1988 TOTAL 34065.6 MEAN 93.1 MAX 812 MIN 6.1 AC-FT 67570 # 09041500 MUDDY CREEK AT KREMMLING, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1985 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1986 to September 1987 (discontinued). WATER TEMPERATURE: April 1986 to September 1987 (discontinued). INSTRUMENTATION. -- Water-quality monitor from April 1986 to September 1987. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum mean, 1,610 microsiemens, July 29, 1987; minimum mean, 212 microsiemens, May 22, 1986. WATER TEMPERATURE: Maximum, 24.8°C, July 26, 1987; minimum, 0.0°C, on many days during winter. WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER -
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------------------------|--|---|--|---|---|---|--|---|--|---| | OCT
08 | 1415 | 7.2 | 1320 | 8.2 | 10.0 | 21 | 9.0 | 620 | 140 | 65 | | JAN
28 | 0900 | 13 | 620 | 7.4 | 0.0 | 15 | 9.2 | 270 | 71 | 23 | | MAR
31 | 1645 | 42 | 1310 | 7.5 | 0.0 | 5.1 | 9.0 | 470 | 79 | 67 | | APR
20
28 | 1350
0930 | 309
191 | 510
55 7 | 7.3
7.1 | 4.0
4.5 | 310
77 | 10.8
9.6 | 200
240 | 49
59 | 18
22 | | MAY
10
16
27 | 1400
1230
1050 | 329
774
488 | 334
225
263 | 7.8
7.1 | 8.0
9.0
9.0 | 120
350
120 | 9.0
8.2
8.9 | 150
96
110 | 41
27
31 | 11
6.9
8.2 | | JUN | | | _ | | - | | • | | _ | | | 30
AUG | 1250 | 73 | 1060 | 7.8 | 18.5 | 34 | 6.9 | 530 | 140 | 43 | | 05
SEP | 1325 | 12 | 1410 | 8.5 | 20.0 | 33 | 7.2 | 700 | 160 | 73 | | 01
23 | 1130
1230 | 8.8
6.2 | 1170
895 | 8.4
8.5 | 16.0
12.0 | 23
22 | 7.6
7.4 | 510
410 | 110
92 | 56
44 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT
08 | 76 | 1 | 6.1 | 172 | 580 | 8.8 | 0.40 | 5.1 | 1030 | 985 | | JAN
28 | 32 | 0.9 | 2.2 | 174 | 160 | 3.8 | 0.30 | 12 | 420 | 409 | | MAR
31 | 99 | 2 | 9.2 | 141 | 600 | 12 | 0.20 | 8.4 | 1030 | 959 | | APR
20
28
MAY | 24
28 | 0.8 | 3.3
2.4 | 115
130 | 140
170 | 3.5
3.9 | 0.20
0.20 | 7.3
9.5 | 331
394 | 314
373 | | 10
16
27
JUN | 13
8.0
8.7 | 0.5
0.4
0.4 | 1.8
1.7
1.3 | 103
75
67 | 75
44
57 | 3.5
1.3
1.9 | 0.20
0.30
0.30 | 9.1
8.8
8.7 | 223
139
171 | 216
144
157 | | 30 | 33 | 0.6 | 2.8 | 207 | 380 | 2.6 | 0.40 | 11 | 745 | 737 | | AUG
05
SEP | 60 | 1 | 3.5 | 196 | 560 | 3.9 | 0.40 | 6.9 | 782 | 9 8 5 | | 01
23 | 45
42 | 0.9
0.9 | 3.0
2.6 | 164
139 | 450
3 50 | 4.1
3.7 | 0.20
0.20 | 5.1
5.8 | 801
638 | 772
625 | DATE 0CT 08... JAN 28... 20... MAR 31... APR 20... 28... MAY 10... 27... JUN 30... AUG 05... SEP 01... 23... # MUDDY CREEK BASIN # 09041500 MUDDY CREEK AT KREMMLING, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | DIS-
D SOLVEI
(TONS
PER | AT 105 | GEN, NITRITE DIS- SOLVED (MG/L | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO
GEN,
ORGANI
TOTAL
(MG/L
AS N) | c | | |--|---
---|-------------------------------|--|--|---|--|---|--|---|---| | ост
08 | 1.4 | 20.0 | | | <0.10 | | 0.03 | | 0.9 | 7 | | | JAN
28 | 0.5 | 7 14.7 | | | 0.20 | | 0.05 | | 0.3 | 5 | | | MAR
31 | 1.40 | 117 | | | 0.50 | | 0.38 | | 1.4 | | | | APR
20
28
MAY | 0.49
0.5 | |
 | | 0.20
0.20 | == | 0.16
0.06 | == | 0.6 | | | | 10
16
27 | 0.30
0.19
0.2 | 290 | 1310 | <0.01 | 0.10
0.10
<0.10 | 0.13 | 0.07
0.07
0.03 | 0.05 | 0.5
0.2
0.1 | :3 | | | JUN
30 | 1.0 | 1 147 | 85 | | | | | | - | - | | | AUG
05 | 1.00 | 5 25.3 | | | <0.10 | | 0.06 | | 0.5 | .4 | | | SEP
01
23 | 1.09 | |
36 | == | <0.10
<0.10 | | 0.02
<0.01 | | 0.3 | | | | DATE | NITRO-
GEN,
ORGANIO
DIS-
SOLVEI
(MG/L
AS N) | GEN,AM-
C MONIA -
ORGANIO | GEN,AM-
MONIA +
ORGANIC | | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | PHOS-PHOROUSORTHO, DIS-SOLVED (MG/LAS P) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CARBON
ORGANI
DIS-
SOLVED
(MG/L
AS C) | Ċ | | | ост
08 | | - 1.0 | | 0.04 | | 0.01 | | | | | | | JAN
28 | | | | 0.03 | | <0.01 | | | | | | | MAR
31 | | | | 0.15 | | 0.05 | | 19 | 16 | | | | APR 20 | | _ | | 0.48 | | 0.03 | | | | | | | 28
MA Y | | | | 0.06 | | 0.03 | | | | | | | 10
16
27 | 0.15 | 0.3 | 0.2 | 0.04
0.06
0.03 | 0.02 | 0.04
0.04
0.02 | <0.01 | 17 | 7.4 | | | | JUN 30 | | | | 0.04 | | ~- | | 9.1 | 8.3 | | | | AUG
05 | | | | 0.05 | | <0.01 | | | | | | | SEP
01 | | | | 0.04 | | <0.01 | | | | | | | 23 | | | 0.4 | 0.02 | 0.02 | <0.01 | | 7.3 | 6.0 | | | | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL S
(UG/L | RSENIC TO THE SOLVED FOR | RECOV- DERABLE SO
UG/L (| RIUM, TO
IS- RE
LVED EF
UG/L (U | COV- I
RABLE SO
IG/L (I | ORON, TO
DIS- RE
DLVED EF
UG/L (U | COV- I
RABLE SO
JG/L (U | MIUM TO
DIS- RE
DLVED EF | DTAĽ
ECOV-
RABLE
JG/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | 15000 |
4 | 1 | 200 | 31 | 10 | 20 | <1
 | 1 | 22 | <1
 |
5
 | ~- | | | | | 1600 | 1 | 1 | <100 |
58 < | 10 |
90 |
<1 | <1 |
5 | <1 | 1 | # 09041500 MUDDY CREEK AT KREMMLING, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | |--|--|---|---|--|---|--|---|---|---|---|--| | OCT
08
JAN | | | | 11 | | | | | | | | | 28
MAR | | | | 16 | | | | | | | | | 31
APR | | | | | | | | | | | | | 20
28
MAY | | | | 34
62 | | | == | | | | | | 10 | | | | 72 | | | | | | | | | 16
27 | 30
 | | 26000
 | 64
 | 30
 | 20
 | < 5 | 590
 | 22
 | <0.1
 | <0.1
 | | JUN
30 | | | | 18 | | | | | | | | | AUG
05 | | | | 4 | | | | | | | | | SEP
01
23 | | | 1400 | 15
15 |
50 |
<5 |
<5 | 90 |
50 |
<0.1 |
<0.1 | | 23 | , | , | 1100 | ,,, | 50 | , | | ,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | MOL YB- | | | | | | | | | | | | DATE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE -
NIUM,
DIS -
SOL VED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON -
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L | DENUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
TOTAL
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV -
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | | OCT
08
JAN | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L | DENUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
TOTAL
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV -
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | | OCT
08 | DENUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV -
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV -
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | | OCT
08
JAN
28 | DENUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV -
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV -
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | | OCT
08
JAN
28
MAR
31 | DENUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL RECOV- ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV -
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | TIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV -
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L | | OCT
08
JAN
28
MAR
31
APR
20
28
MAY | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS
NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | TOTAL RECOV - ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 JAN 28 MAR 31 APR 20 28 MAY 10 16 27 | DENUM, TOTAL RECOV - ERABLE (UG/L AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL RECOV - ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | TOTAL RECOV - ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 JAN 28 MAR 31 APR 20 28 MAY 10 16 27 JUN 30 | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL RECOV- ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | TOTAL RECOV - ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
JAN
28
MAR
31
APR
20
28
MAY
10
16
27
JUN | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL RECOV- ERABLE (UG/L AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | TOTAL RECOV - ERABLE (UG/L AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED. SUSP. SIEVE DIAM. FINER THAN .062 MM | |-----------|------|---|--|--|---| | OCT | | | | | | | 08 | 1415 | 7.2 | 126 | 2.4 | 86 | | JAN
28 | 0900 | 13 | 65 | 2.2 | 93 | | MAR | 0900 | 13 | 05 | 2.3 | 93 | | 31 | 1645 | 42 | 62 | 7.0 | 81 | | APR | | | | • | | | 20 | 1350 | 309 | 1390 | 1160 | 92 | | 28 | 0930 | 191 | 298 | 154 | 89 | | MAY
10 | 1400 | 329 | 470 | 418 | 82 | | 16 | 1230 | 774 | 1540 | 3220 | 78 | | 27 | 1050 | 488 | 453 | 597 | 80 | | JUN | | | | _ | | | 30 | 1250 | 73 | 140 | 28 | 86 | | AUG
05 | 1325 | 12 | 94 | 3.0 | 89 | | SEP | 1325 | 12 | 94 | 3.0 | 09 | | 01 | 1130 | 8.8 | 75 | 1.8 | 90 | | 23 | 1230 | 6.2 | 50 | 0.84 | 84 | | | | | | | | # 09041900 MONTE CRISTO DIVERSION NEAR HOOSIER PASS, CO LOCATION.--Lat 39°22'51", long 106°04'15", in NE4SE4 sec.2, T.8 S., R.78W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 1,800 ft downstream from diversion point, 1.4 mi northwest of Hoosier Pass, and 7 mi southwest of Breckenridge. PERIOD OF RECORD. -- October 1957 to current year. GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. This is a transmountain diversion from Monte Cristo Creek in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion point is in SWHNE4 sec.2, T.8 S., R.78 W. The entire flow is regulated by diversion gates. COOPERATION .-- Gage-height record collected in cooperation with city of Colorado Springs. EXTREMES FOR PERIOD OF RECORD. --Maximum daily discharge, 56 ${\rm ft}^3/{\rm s}$, Aug. 25, 1988; no flow for most of each year. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
CAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---------------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------------|--|-----------------------------------|------------------------------------|------------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 2.9
2.1
1.8
2.3
3.2 | 3.4
3.5
5.7
8.1
9.3 | 23
22
20
22
21 | .00
.00
.00
.00 | 31
31
30
30
30 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 3.2
2.4
1.8
1.9
2.1 | 9.5
9.1
8.9
9.3
9.7 | 20
20
17
14
13 | 16
.00
.00
.00 | 36
35
34
33
33 | | 11
12
13
14
15 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 2.4
4.1
6.1
7.1 | 7.7
6.1
5.4
4.2
4.0 | 12
11
11
13
11 | .00
.00
.00
.00 | 32
32
30
29
28 | | 16
17
18
19
20 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 7.5
7.9
7.7
7.1
5.1 | 4.0
3.9
4.0
4.9
5.7 | 9.3
8.7
8.5
7.9
6.9 | .00
1.8
.35
.00 | 22
15
11
3.7
3.4 | | 21
22
23
24
25 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 3.4
3.4
2.7
3.8
6.1 | 7.4
10
6.9
5.7
5.2 | 6.5
5.7
5.5
5.2
5.1 | .00
.00
.00
18
56 | 3.4
3.4
3.3
3.1
3.1 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 1.7
1.6
1.6
1.9
2.9 | 6.9
7.9
8.1
7.7
7.3
4.8 | 5.5
5.4
5.1
5.3
18 | 4.0
.00
.00
.00 | 52
52
50
17
16
17 | 3.1
3.1
12
29
27 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | .00 | 0.00
.00
.00
.00 | 0.00
.00
.00 | 0.00
.00
.00
.00 | 9.70
.32
2.9
.00 | 147.9
4.77
8.1
1.8
293 | 200.9
6.70
18
3.4
398 | 323.30
10.4
23
.00
641 | 297.75
9.60
56
.00
591 | 619.6
20.7
36
3.1
1230 | CAL YR 1987 TOTAL 1355.85 MEAN 3.71 MAX 43 MIN .00 AC-FT 2690 WTR YR 1988 TOTAL 1599.15 MEAN 4.37 MAX 56 MIN .00 AC-FT 3170 09044300 BEMROSE-HOOSIER DIVERSION NEAR HOOSIER PASS, CO 67 LOCATION.--Lat 39°22'50", long 106°04'13", in NE4SE4 sec.2, T.8 S., R.78W., Summit County, Hydrologic Unit 14010002, on right bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on Bemrose Creek, and 7 mi southwest of Breckenridge. PERIOD OF RECORD. -- October 1957 to current year. GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: May 7-9. Records good. This is a transmountain diversion from Bemrose and Hoosier Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in SW4SW4 sec.6, T.8 S., R.77 W., and in sec.12, T.8 S., R.78 W. The entire flow is regulated by diversion gates. COOPERATION .-- Gage-height record collected in cooperation with city of Colorado Springs. EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 44 ft3/s, June 21, 1965; no flow for most of each year. | | | DISCHAI | RGE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------|------|---------|------------|----------|------|--------------------------|---------|---------|-----------|-------------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.1 | 6.1 | 12 | 3.0 | .00 | | 2 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 1.5 | 6.7 | 11 | 2.5 | .00 | | 3
4 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 1.5 | 9.9 | 9.3 | 2.3 | .00 | | 4 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 1.6 | 13 | 8.6 | 2.2 | .00 | | 5 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.3 | 15 | 7.8 | 2.5 | .00 | | 6 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.2 | 17 | 7.4 | 3.2 | .00 | | 7
8 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.2 | 18 | 6.7 | 2.6 | .00 | | 8 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.3 | 19 | 5.9 | 2.3 | .00 | | 9 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.5 | 20 | 5.4 | 2.3 | .00 | | 10 | .00 | .00 | .00 | •00 | .00 | .00 | .00 | 2.3 | 23 | 5.0 | 2.2 | .00 | | 11 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 2.5 | 21 | 5 .9 | 2.2 | .00 | | 12 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 3.6 | 19 | 7.2 | 2.3 | .00 | | 13 | .00 | .00 |
.00 | .00 | .00 | .00 | .00 | 5.3 | 17 | 7.2 | 2.1 | .00 | | 14 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 5.9 | 14 | 6.9 | 2.1 | .00 | | 15 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 6.3 | 14 | 6.3 | 2.1 | .00 | | 16 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 7.0 | 15 | 5.9 | 2.7 | .00 | | 17 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 6.5 | 14 | 5.6 | 2.7 | .00 | | 18 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 6.7 | 14 | 5.4 | 2.2 | .00 | | 19 💂 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 5.4 | 18 | 5.4 | 2.1 | .00 | | 20 | .00 | •00 | .00 | .00 | .00 | .00 | .00 | 4.2 | 21 | 5.0 | 2.2 | .00 | | 21 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 3.7 | 18 | 4.7 | 2.3 | .00 | | 22 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 3.3 | 16 | 4.5 | 2.1 | .00 | | 23 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 3.5 | 21 | 4.1 | 2.1 | .00 | | 24 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 4.5 | 20 | 3.8 | 2.1 | .00 | | 25 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 5.2 | 19 | 3.7 | 2.0 | .00 | | 26 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 5.9 | 21 | 3.9 | 2.0 | .00 | | 27 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 6.7 | 18 | 2.7 | 2.0 | .00 | | 28 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 6.9 | 16 | 3.0 | 1.9 | .00 | | 29 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 8.2 | 17 | 2.7 | 1.9 | .00 | | 30 | .00 | .00 | .00 | .00 | | .00 | .91 | 8.2 | 14 | 2.9 | 1.9 | .00 | | 31 | .00 | | .00 | .00 | | .00 | | 6.7 | | 3.1 | •77 | | | TOTAL | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.91 | 136.7 | 494.7 | 179.0 | 68.87 | 0.00 | | MEAN | .00 | .00 | •00 | .00 | .00 | .00 | .030 | 4.41 | 16.5 | 5.77 | 2.22 | .00 | | MAX | .00 | .00 | .00 | .00 | .00 | .00 | .91 | 8.2 | 23 | 12 | 3.2 | .00 | | MIN | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 1.5 | 6.1 | 2.7 | •77 | .00 | | AC-FT | .0 | .0 | .0 | .0 | .0 | .0 | 1.8 | 271 | 981 | 355 | 137 | .0 | CAL YR 1987 TOTAL 856.64 MEAN 2.35 MAX 28 MIN .00 AC-FT 1700 WTR YR 1988 TOTAL 880.18 MEAN 2.40 MAX 23 MIN .00 AC-FT 1750 # 09044800 MCCULLOUGH-SPRUCE-CRYSTAL DIVERSION NEAR HOOSIER PASS, CO LOCATION.--Lat 39°22'51", long 106°04'14", in NE4SE4 sec.2, T.8 S., R.78 W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on McCullough Gulch, and 7 mi southwest of Breckenridge. PERIOD OF RECORD.--October 1957 to current year. Prior to October 1961, Published as McCullough diversion near Hoosier Pass. GAGE.--Water-stage recorder and Parshall flume. Elevation of gage is 10,986 ft, above National Geodetic Vertical datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. This is a transmountain diversion from McCullough Gulch and Spruce and Crystal Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in secs.14, 23, and 26, T.7 S., R.78 W. The entire flow is regulated by diversion gates. COOPERATION. -- Gage-height record collected in cooperation with city of Colorado Springs. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 123 ft³/s, June 20, 1968, June 19, 1983; no flow for most of each year. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------------------|-----------------------------------|------------------------------------|---------------------------|--------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 24
23
42
68
79 | 23
21
20
15
.45 | .20
.05
.04
.00 | .00
.00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 79
80
84
90
98 | 3.8
4.6
1.7
4.6 | 8.0
.00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .15
6.2
14
19
21 | 76
64
56
36
43 | 10
11
14
19 | .00 | .00
.00
.00 | | 16
17
18
19
20 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 23
25
31
30
20 | 47
49
54
81
95 | 15
14
15
15
14 | .00
.00
.00
.00 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 15
12
10
10
14 | 95
105
85
83
80 | 13
12
12
11
11 | .00
.00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00 | 16
21
40
51
44
37 | 95
83
66
60
42 | 9.3
.50
.15
.15
.15 | .00
.00
.00
.00 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.00
.00 | 0.00
.00
.00
.00 | 00.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 459.35
14.8
51
.00
911 | 2062
68.7
105
23
4090 | 318.55
10.3
23
.15
632 | 9.03
.29
8.0
.00 | 0.00
.00
.00 | CAL YR 1987 TOTAL 1696.19 MEAN 4.65 MAX 76 MIN .00 AC-FT 3360 WTR YR 1988 TOTAL 2848.93 MEAN 7.78 MAX 105 MIN .00 AC-FT 5650 O9046490 BLUE RIVER AT BLUE RIVER, CO LOCATION.--Lat 39°27'21", long 106°01'52", in NE4SE4 sec.7, T.7 S, R.77 W., Summit County, Hydrologic Unit 14010002 on left bank, 350 ft downstream from spillway of Goose Pasture Tarn Dam, 2.0 mi southeast of Breckenridge. DRAINAGE AREA .-- 22.6 mi². PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,385 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 5 years, 39.2 ft3/s; 28,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 506 ft³/s July 1, 1984, gage height, 2.84 ft, minimum daily, 4.5 ft³/s, Mar. 23, 1986. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 121 ft³/s, June 9, at 2300, gage height, 1.81 ft, minimum daily, 5.7 ft³/s, Mar. 14. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
IEAN VALUE | | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|--------------------------------|-------------------------------------|--|------------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15
15
14
14
14 | 14
14
14
13
13 | 11
12
12
12
12 | 9.3
9.5
9.9
9.8
9.9 | 7.5
7.3
7.6
6.9
7.0 | 6.6
6.7
6.4
6.5
6.0 | 7.4
7.4
7.4
7.8
8.3 | 26
21
18
20
23 | 69
70
78
91
100 | 101
96
91
90
100 | 57
57
47
43
42 | 29
31
30
28
27 | | 6
7
8
9
10 | 14
14
13
13 | 13
14
13
12
12 | 12
12
12
12
12 | 9.9
9.5
9.7
9.9 | 6.9
6.9
6.6
7.9 | 5.8
6.4
5.9
5.8
6.3 | 8.1
9.2
10
10
9.8 | 27
23
23
21
23 | 107
108
105
109
117 | 96
90
87
79
67 | 113
91
68
56
48 | 26
25
24
23
23 | | 11
12
13
14
15 | 13
13
13
16
15 | 12
12
12
12
13 | 12
12
12
12
11 | 9.7
10
9.2
9.5
9.1 | 7.0
6.6
6.4
6.8
6.4 | 6.2
5.9
6.1
5.7
6.2 | 10
12
14
16
17 | 22
27
36
45
45 | 115
106
98
89
82 | 62
54
50
44
39 | 44
44
42
37
34 | 26
30
30
29
27 | | 16
17
18
19
20 | 15
14
14
14
13 | 13
13
12
12
12 | 12
12
11
11 | 9.1
8.7
9.1
9.3
9.0 | 6.8
6.5
6.7
6.5 | 6.4
6.5
5.8
6.1
6.2 | 18
19
17
18 | 55
62
63
72
59 | 77
75
73
77
81 | 37
35
34
32
30 | 35
61
58
47
43 | 26
24
23
23
23 | | 21
22
23
24
25 | 13
12
13
13
14 | 12
12
12
12
12 | 11
11
11
11 | 8.2
7.7
7.7
7.7
7.3 | 6.4
6.5
6.3
6.2
6.3 | 6.3
6.5
6.6
8.0
7.6 | 21
19
17
15 | 48
43
41
43
47 | 78
101
81
76
72 | 28
26
25
24
23 | 46
52
47
41
39 | 22
22
21
21
20 | |
26
27
28
29
30
31 | 14
13
13
13
14
14 | 12
12
11
12
11 | 10
11
10
9.8
9.8
9.7 | 7.7
7.6
7.9
7.7
8.1
7.6 | 6.3
6.4
6.6
6.5 | 7.5
7.4
8.1
7.4
7.6
7.6 | 15
14
15
17
21 | 51
59
68
87
89
77 | 74
74
79
95
91 | 23
31
39
47
43
45 | 35
36
34
32
30
29 | 20
19
19
19
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 425
13.7
16
12
843 | 373
12.4
14
11
740 | 350.3
11.3
12
9.7
695 | 275.2
8.88
10
7.3
546 | 195.2
6.73
7.9
6.2
387 | 204.1
6.58
8.1
5.7
405 | 414.4
13.8
21
7.4
822 | 1364
44.0
89
18
2710 | 2648
88.3
117
69
5250 | 1668
53.8
101
23
3310 | 1488
48.0
113
29
2950 | 729
24.3
31
19
1450 | CAL YR 1987 TOTAL 10744.8 MEAN 29.4 MAX 165 MIN 4.8 AC-FT 21310 WTR YR 1988 TOTAL 10134.2 MEAN 27.7 MAX 117 MIN 5.7 AC-FT 20100 #### 09046600 BLUE RIVER NEAR DILLON, CO LOCATION.--Lat 39°32'55", long 106°02'19", in NW&NE& sec.7, T.6 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank 0.2 mi downstream from Swan River and 5.5 mi south of Dillon. DRAINAGE AREA . -- 119 mi2. PERIOD OF RECORD. -- October 1957 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,120 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Mar. 6-8. Records good. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel (see elsewhere in this report). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--31 years, 105 ft3/s; 76,070 acre-ft/yr, adjusted for diversions to Hoosier Pass tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,250 ft³/s, June 17, 1965, gage height, 5.38 ft, from rating curve extended above 800 ft³/s; minimum daily, 17 ft³/s, Mar. 21, 1961, Feb. 24-26, 1978. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 413 $\rm ft^3/s$ at 0930 June 11, gage height, 4.00 ft; minimum daily, 25 $\rm ft^3/s$, Dec. 15, 16, Mar. 26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | NATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|--|------------------------------------|------------------------------------|-----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 39
39
38
38
38 | 37
37
37
37
36 | 30
29
28
28
26 | 27
29
29
28
28 | 29
30
30
29
29 | 29
29
28
28
28 | 27
27
27
27
28 | 72
75
72
67
68 | 255
238
247
287
336 | 319
305
288
284
274 | 109
117
114
103
94 | 66
65
66
65
63 | | 6
7
8
9
10 | 37
37
37
36
36 | 36
35
36
35
35 | 26
27
27
27
27 | 29
29
29
30
31 | 29
29
29
28
28 | 29
29
28
28
28 | 28
30
32
34
35 | 75
80
82
78
76 | 355
364
353
355
393 | 264
251
239
225
209 | 100
165
148
123
109 | 62
59
60
59
58 | | 11
12
13
14
15 | 36
36
36
38 | 34
34
34
34
34 | 27
27
26
26
25 | 30
30
30
31
31 | 29
30
29
28
28 | 28
27
27
26
26 | 36
36
42
47
51 | 76
79
90
116
149 | 405
387
359
333
315 | 198
183
167
154
144 | 98
93
92
89
84 | 57
57
61
66
66 | | 16
17
18
19
20 | 39
39
38
38
37 | 34
34
34
34
32 | 25
26
26
26
28 | 30
29
29
30
30 | 29
29
29
29
29 | 26
26
26
26
26 | 56
60
59
60
63 | 169
195
213
250
244 | 308
306
301
309
322 | 133
128
121
117
112 | 79
80
95
101
91 | 65
64
61
60
58 | | 21
22
23
24
25 | 36
35
35
35
36 | 29
30
30
30
29 | 26
26
26
26
27 | 29
29
29
30
29 | 30
30
29
28
29 | 26
26
27
27 | 67
67
65
61
57 | 197
173
155
148
151 | 317
327
328
313
298 | 106
100
94
89
86 | 86
88
91
87
82 | 57
56
55
55
54 | | 26
27
28
29
30
31 | 36
37
36
35
35 | 29
29
29
29
30 | 27
27
27
28
28
28 | 28
29
29
29
29 | 29
29
29
29
 | 25
26
28
28
28
27 | 55
54
55
58
66 | 159
174
196
231
277
283 | 296
312
314
356
342 | 83
82
83
95
107
105 | 78
76
74
73
70
67 | 54
54
54
53
52 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1140
36.8
39
35
2260 | 37
29 | 833
26.9
30
25
1650 | 907
29.3
31
27
1800 | 841
29.0
30
28
1670 | 842
27.2
29
25
1670 | 1410
47.0
67
27
2800 | 4470
144
283
67
8870 | 9731
324
405
238
19300 | 5145
166
319
82
10210 | 2956
95.4
165
67
5860 | 1782
59.4
66
52
3530 | CAL YR 1987 TOTAL 29054 MEAN 79.6 MAX 369 MIN 20 AC-FT 57630 WTR YR 1988 TOTAL 31050 MEAN 84.8 MAX 405 MIN 25 AC-FT 61590 #### 09047500 SNAKE RIVER NEAR MONTEZUMA, CO LOCATION.--Lat 39°36'20", long 105°56'33", in NW4 sec.19, T.5 S., R.76 W. (projected), Summit County, Hydrologic Unit 14010002, on right bank 200 ft downstream from North Fork and 4.5 mi northwest of Montezuma. DRAINAGE AREA. -- 57.7 mi². PERIOD OF RECORD. -- July 1942 to September 1946, October 1951 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 14, 1943, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Oct. 13 to Apr. 27. Records good except for estimated daily discharges, which are poor. Small diversions upstream from station for irrigation and domestic use. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 41 years, 61.6 ft3/s; 44,630 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,250 ft³/s, June 10, 1952, gage height, 3.51 ft; maximum gage height, 3.88 ft, June 6, 1972; minimum discharge not determined. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|-------|-------------|-----------------------------------|---------------------| | June 9 | 1900 | * 555 | *3.36 | No ot | her peak gr | eater than base d | ischarge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 9.0 ft³/s, Jan. 29 to Feb. 15. | | | D 2 D OIM NO | .L, 00B10 | 1001 10. | | EAN VALUES | | ,,0, 10 | | 1,00 | | | |--------------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|--|------------------------------------|----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 24
23
23
23
23 | 17
17
17
17
17 | 19
19
19
19 | 12
11
11
11 | 9.0
9.0
9.0
9.0 | 12
12
12
12
12 | 17
17
17
17
17 | 37
31
30
31
36 | 166
194
265
334
335 | 226
210
195
195
183 | 69
60
63
57
58 | 35
35
33
32
31 | | 6
7
8
9
10 | 22
22
22
22
21 | 17
17
17
17
17 | 19
19
19
19 | 11
11
11
11 | 9.0
9.0
9.0
9.0 | 12
12
12
12
12 | 18
19
21
22
23 | 38
35
33
33
34 | 367
389
387
434
449 | 171
162
154
144
138 | 94
70
64
59
55 | 31
30
29
28
29 | | 11
12
13
14
15 | 21
20
21
20
20 | 17
17
17
17
17 | 19
19
19
19 | 11
11
11
11 | 9.0
9.0
9.0
9.0 | 12
12
12
12
12 | 23
23
23
23
23 | 37
52
76
99
121 | 402
361
329
304
317 | 129
120
113
110
104 | 53
54
50
47
45 | 32
37
35
36
33 | | 16
17
18
19
20 | 19
18
17
17 | 17
17
17
17
17 | 19
19
19
19 | 11
11
11
11 | 10
11
12
12
12 | 12
12
12
12
12 | 23
23
23
23
23 | 137
148
157
151
121 | 332
329
315
324
313 | 100
95
91
89
84 | 48
55
52
47
46 | 31
30
29
28
28 | | 21
22
23
24
25 | 17
17
17
17
17 | 17
17
17
17
17 | 19
19
19
19 | 11
11
11
11 | 12
12
12
12
12 | 12
12
12
12
12 |
23
23
23
23
23 | 104
91
88
106
129 | 312
320
295
289
279 | 79
74
71
68
66 | 49
51
44
42
41 | 28
28
29
30
30 | | 26
27
28
29
30
31 | 17
17
17
17
17 | 17
18
19
19
19 | 19
19
18
17
14 | 11
10
9.5
9.0
9.0 | 12
12
12
12 | 13
14
15
16
17
17 | 23
23
23
25
34 | 148
171
199
234
238
189 | 305
302
299
307
249 | 66
64
67
67
65
68 | 40
41
41
39
37
35 | 30
30
31
30
31 | | TOTAL
MEAN
MAX
MIN
AC-FT | 602
19.4
24
17
1190 | 517
17.2
19
17
1030 | 575
18.5
19
13
1140 | 333.5
10.8
12
9.0
661 | 300.0
10.3
12
9.0
595 | 392
12.6
17
12
778 | 661
22.0
34
17
1310 | 3134
101
238
30
6220 | 9603
320
449
166
19050 | 3568
115
226
64
7080 | 1606
51.8
94
35
3190 | 929
31.0
37
28
1840 | CAL YR 1987 TOTAL 19930 MEAN 54.6 MAX 346 MIN 13 AC-FT 39530 WTR YR 1988 TOTAL 22220.5 MEAN 60.7 MAX 449 MIN 9.0 AC-FT 44070 # 09047700 KEYSTONE GULCH NEAR DILLON, CO LOCATION.--Lat 39°35'40", long 105°58'19", in NE4NE4 sec.26, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank 0.7 mi upstream from mouth and 4.7 mi southeast of Dillon. DRAINAGE AREA .-- 9.10 mi2. PERIOD OF RECORD. -- October 1957 to current year. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,350 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 9 to Apr. 27. Records good except for estimated daily discharges, which are poor. No known diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--31 years, 6.01 ft3/s; 4,350 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD,--Maximum discharge, 118 ft^3/s , June 27, 1983, gage height, 3.01 ft, from rating curve extended above 65 ft^3/s ; minimum not determined. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 35 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|--------------|----------------------|------------------|--------|--------------|-----------------------------------|---------------------| | June 9 | 220 0 | * 50 | *2.52 | No oth | ner peak gre | eater than base d | ischarge. | Minimum daily, 1.9 ft³/s, Feb. 20-25. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | ATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|-----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|---------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.6
2.5
2.6
2.6
2.5 | 2.9
2.8
2.7
2.7 | 2.1
2.1
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.1
2.1 | 2.4
2.4
2.4
2.4
2.4 | 5·3
4·5
4·4
4·4 | 20
23
28
31
31 | 17
16
17
17
15 | 8.9
7.8
7.5
7.0
6.8 | 4.0
4.0
3.8
3.6
3.5 | | 6
7
8
9
10 | 2.6
2.5
2.5
2.5
2.5 | 2.7
2.7
2.6
2.6
2.6 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0 | 2.2
2.2
2.2
2.2
2.2 | 2.4
2.4
2.4
2.4
2.4 | 5.5
5.0
4.8
4.8
4.7 | 36
37
41
41
42 | 14
14
14
14
13 | 8.6
7.5
6.8
6.4
6.2 | 3.5
3.5
3.4
3.4
3.4 | | 11
12
13
14
15 | 2.5
2.5
2.6
3.0
2.9 | 2.5
2.5
2.5
2.5
2.4 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.2
2.2
2.3
2.4
2.4 | 2.4
2.4
2.5
2.8
3.0 | 5.1
6.9
9.1
9.8
12 | 41
38
33
32
32 | 13
13
12
11
11 | 5.7
5.8
5.7
5.5
5.0 | 3.5
3.9
3.8
3.8 | | 16
17
18
19
20 | 2.8
2.7
2.7
2.7
2.7 | 2.4
2.4
2.4
2.3
2.3 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0 | 2.4
2.4
2.4
2.4
2.4 | 3.4
4.0
4.5
4.7
5.0 | 12
13
14
15
12 | 30
28
26
27
27 | 11
11
11
11
10 | 5.1
5.8
5.6
4.7
4.7 | 3.6
3.4
3.4
3.3
3.2 | | 21
22
23
24
25 | 3.1
2.8
2.7
2.6
2.8 | 2.3
2.3
2.3
2.2
2.2 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 1.9
1.9
1.9
1.9 | 2.4
2.4
2.4
2.4
2.4 | 5.2
4.6
4.2
4.0
3.9 | 11
11
10
12
13 | 25
23
22
21
20 | 9.5
9.3
9.1
8.6
8.6 | 5.1
5.2
4.7
4.5
4.2 | 3.2
3.2
3.3
3.4
3.4 | | 26
27
28
29
30
31 | 2.7
2.6
2.8
2.7
2.8
2.8 | 2.2
2.2
2.1
2.1
2.1 | 2.0
2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0 | 2.4
2.4
2.4
2.4
2.4
2.4 | 3.8
3.7
3.7
3.8
4.9 | 16
18
19
23
23 | 22
22
21
22
19 | 8.8
8.9
8.7
8.9
9.0
9.2 | 4.3
4.2
4.1
4.1
4.0
4.0 | 3.4
3.4
3.3
3.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 82.9
2.67
3.1
2.5
164 | | 62.2
2.01
2.1
2.0
123 | 62.0
2.00
2.0
2.0
123 | 57.4
1.98
2.0
1.9
114 | 71.1
2.29
2.4
2.0
141 | 100.5
3.35
5.2
2.4
199 | 333.0
10.7
23
4.4
661 | 861
28.7
42
19
1710 | 363.6
11.7
17
8.6
721 | 175.5
5.66
8.9
4.0
348 | 105.3
3.51
4.0
3.2
209 | CAL YR 1987 TOTAL 1650.7 MEAN 4.52 MAX 20 MIN 2.0 AC-FT 3270 WTR YR 1988 TOTAL 2347.7 MEAN 6.41 MAX 42 MIN 1.9 AC-FT 4660 09050100 TENMILE CREEK BELOW NORTH TENMILE CREEK, AT FRISCO, CO LOCATION.--Lat 39°34'31", long 106°06'36", in SE4NW4 sec.34, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 220 ft upstream from bridge on U.S. Highway 6, 160 ft downstream from North Tenmile Creek, and 0.6 mi west of Frisco. DRAINAGE AREA . -- 93.3 mi2. PERIOD OF RECORD. -- October 1957 to current year. Prior to October 1971, published as "below North Fork, at Frisco." GAGE.--Water-stage recorder. Elevation of gage is 9,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 21, 1981 at site 720 ft downstream at different datum. REMARKS.--Estimated daily discharges: Nov. 9, 10, 12, 13, Nov. 16 to Feb. 29, Mar. 5, 8, 10-29, 31, Apr. 1, and Apr. 6-25. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by a few small diversions upstream from station for irrigation and municipal use and transbasin diversion from Robinson Reservoir, capacity, 2,520 acre-ft, in Eagle River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 31 years, 99.6 ft 3/s; 72,160 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,910 ft³/s, June 16, 1965, gage height, 6.15 ft, from rating curve extended above 750 ft³/s; minimum daily, 7 ft³/s, Mar. 8, 14, 1960. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 700 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|------------------|----------|-------------|----------------------|---------------------| | June 9 | 2130 | *867 | *4.26 | No other | peak greate | r than base di | scharge. | Minimum daily, 13 ft³/s, Mar. 3. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | Nov | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|--|---------------------------------|----------------------------------|----------------------------------|----------------------------| | 1
2
3
4
5 | 26
27
27
28
27 | 30
32
30
30
25 | 20
20
20
20
20 | 22
22
22
22
22 | 25
25
25
25
25 | 26
15
13
15 | 18
19
18
17
18 | 85
75
66
71
87 | 333
370
494
613
643 | 243
222
225
222
202 | 73
61
54
47
43 | 31
31
31
29
27 | | 6 | 27 | 30 | 20 | 23 | 25 | 20 | 19 | 102 | 693 | 188 | 49 | 26 | | 7 | 27 | 31 | 20 | 23 | 25 | 19 | 20 | 87 | 717 | 170 | 52 | 26 | | 8 | 25 | 31 | 20 | 23 | 26 | 20 | 21 | 83 | 709 | 157 | 51 | 25 | | 9 | 26 | 31 | 20 | 23 | 26 | 20 | 22 | 80 | 740 | 147 | 45 | 24 | | 10 | 27 | 30 | 20 | 23 | 26 | 20 | 25 | 82 | 751 | 140 | 39 | 24 | | 11 | 27 | 28 | 20 | 23 | 26 | 20 | 27 | 82 | 679 | 133 | 36 | 31 | | 12 | 27 | 28 | 20 | 23 | 26 | 20 | 30 | 114 | 596 | 124 | 39 | 37 | | 13 | 28 | 27 | 20 | 23 | 26 | 20 | 32 | 170 | 531 | 119 | 39 | 36 | | 14 |
39 | 25 | 21 | 23 | 26 | 20 | 35 | 230 | 441 | 124 | 33 | 36 | | 15 | 39 | 25 | 21 | 23 | 26 | 20 | 38 | 281 | 432 | 111 | 30 | 33 | | 16 | 34 | 25 | 21 | 24 | 26 | 20 | 42 | 320 | 442 | 111 | 33 | 33 | | 17 | 28 | 25 | 21 | 24 | 27 | 20 | 46 | 371 | 424 | 103 | 63 | 30 | | 18 | 27 | 24 | 21 | 24 | 27 | 20 | 50 | 411 | 424 | 95 | 52 | 30 | | 19 | 25 | 23 | 21 | 24 | 27 | 20 | 48 | 373 | 464 | 95 | 43 | 30 | | 20 | 20 | 23 | 21 | 24 | 27 | 20 | 52 | 299 | 521 | 91 | 37 | 27 | | 21 | 20 | 22 | 21 | 24 | 28 | 20 | 56 | 240 | 462 | 82 | 39 | 27 | | 22 | 23 | 22 | 21 | 24 | 28 | 20 | 60 | 205 | 436 | 75 | 49 | 27 | | 23 | 24 | 22 | 21 | 24 | 28 | 20 | 54 | 185 | 366 | 68 | 42 | 27 | | 24 | 26 | 21 | 21 | 24 | 28 | 20 | 50 | 210 | 333 | 66 | 39 | 26 | | 25 | 28 | 21 | 21 | 24 | 28 | 20 | 47 | 271 | 332 | 60 | 35 | 25 | | 26
27
28
29
30
31 | 29
30
30
29
29
29 | 21
20
20
20 | 22
22
22
22
22
22 | 25
25
25
25
25
25 | 28
28
28
28 | 20
20
20
20
15
16 | 44
36
39
44
63 | 325
384
448
514
491
389 | 336
315
301
322
278 | 61
61
58
66
64
61 | 35
35
35
34
34
33 | 25
25
25
24
25 | | TOTAL | 858 | 763 | 644 | 730 | 769 | 598 | 1090 | 7131 | 14498 | 3744 | 1329 | 853 | | MEAN | 27.7 | 25.4 | 20.8 | 23.5 | 26.5 | 19•3 | 36.3 | 230 | 483 | 121 | 42.9 | 28.4 | | MAX | 39 | 32 | 22 | 25 | 28 | 26 | 63 | 514 | 751 | 243 | 73 | 37 | | MIN | 20 | 20 | 20 | 22 | 25 | 13 | 17 | 66 | 278 | 58 | 30 | 24 | | AC-FT | 1700 | 1510 | 1280 | 1450 | 1530 | 1190 | 2160 | 14140 | 28760 | 7430 | 2640 | 1690 | CAL YR 1987 TOTAL 30411 MEAN 83.3 MAX 551 MIN 18 AC-FT 60320 WTR YR 1988 TOTAL 33007 MEAN 90.2 MAX 751 MIN 13 AC-FT 65470 # 09050700 BLUE RIVER BELOW DILLON, CO LOCATION.--Lat 39°37'32", long 106°03'57", in SELSEL sec.12, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 0.3 mi downstream from Dillon Dam, 0.1 mi upstream from Straight Creek, and 1.1 mi west of Dillon. DRAINAGE AREA. -- 335 mi2. PERIOD OF RECORD. -- January 1960 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,760 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Flow regulated since Sept. 3, 1963, by Dillon Reservoir, 0.3 mi upstream (station 09050600). Natural flow of stream affected by transmountain diversions, transbasin diversions, and diversions upstream from station for irrigation of about 400 acres of hay meadows. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--25 years (water years 1964-88), 215 ft³/s; 155,800 acre-ft/yr, since completion of Dillon Reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,010 ft³/s, May 25, 1984, gage height, 3.88 ft; maximum gage reight, 3.95 ft, June 22, 1983; no flow, Sept. 4 to Nov. 19, 1963. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,510 ft^3/s at 0300 June 11, gage height, 3.38 ft; minimum daily, 49 ft^3/s , Dec. 20, 21. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | ATER YEAR
AN VALUES | OCTOBER | 1987 To | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|----------------------------|----------------------------------|----------------------------------|-----------------------------------|--------------------------------------|----------------------------------|--|--------------------------------------|--|--|----------------------------------| | DAY | OCT | иои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 159
140
126
126
126 | 53
53
55
55
55 | 55
54
53
53
53 | 55
55
56
56
56 | 53
53
53
53
53 | 101
101
101
101
101 | 98
98
98
98
98 | 103
103
103
103
103 | 326
233
193
458
777 | 706
642
- 582
558
518 | 101
103
103
103
103 | 101
101
98
98
98 | | 6
7
8
9
10 | 119
123
123
123
143 | 58
55
55
55
53 | 53
53
55
56
56 | 58
58
58
58
56 | 53
53
53
53
53 | 101
101
98
101
101 | 98
98
98
98
98 | 103
103
106
106
109 | 1020
1220
1320
1390
1460 | 480
450
390
304
239 | 103
101
101
101
98 | 98
95
95
96
98 | | 11
12
13
14
15 | 161
161
157
161
93 | 55
55
55
55
55 | 56
55
55
55
55 | 56
56
55
55
55 | 63
89
101
101 | 101
101
98
95
98 | 101
101
101
103
103 | 98
109
109
112
109 | 1490
1420
1360
1260
1130 | 183
154
126
112
106 | 98
98
98
98
98 | 101
101
101
101
102 | | 16
17
18
19
20 | 124
247
247
213
247 | 55
55
55
55
55 | 53
53
51
50
49 | 53
53
53
58
68 | 101
101
101
101
101 | 98
95
98
98
101 | 103
103
103
103
103 | 109
109
200
277
271 | 1100
1080
1050
1030
1060 | 103
103
103
103
103 | 95
83
53
55
55 | 103
103
101
101
102 | | 21
22
23
24
25 | 247
186
150
150
89 | 55
55
55
55
55 | 49
51
51
51 | 53
53
53
53
53 | 101
101
101
101
98 | 101
101
98
103
103 | 103
103
103
103
103 | 326
326
329
331
331 | 1070
1070
1030
972
867 | 103
103
103
103
103 | 56
56
56
56
92 | 103
103
103
101
101 | | 26
27
28
29
30
31 | 55
86
154
126
74
55 | 55
55
55
55
55 | 51
53
53
53
53
53 | 59
74
51
53
53 | 98
98
95
101
 | 101
103
101
100
98
98 | 103
103
103
103
103 | 331
331
327
326
326
326 | 811
790
777
804
777 | 103
103
103
103
101
103 | 103
103
103
103
101
101 | 99
101
101
101
101 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4491
145
247
55
8910 | 54 • 9
58
53 | 1642
53.0
56
49
3260 | 1736
56.0
74
51
3440 | 2384
82.2
101
53
4730 | 3097
99.9
103
95
6140 | 3034
101
103
98
6020 | 6155
199
331
98
12210 | 29345
978
1490
193
58210 | 7196
232
706
101
14270 | 2778
89.6
103
53
5510 | 3008
100
103
95
5970 | CAL YR 1987 TOTAL 74819 MEAN 205 MAX 1060 MIN 46 AC-FT 148400 WTR YR 1988 TOTAL 66513 MEAN 182 MAX 1490 MIN 49 AC-FT 131900 BLUE RIVER BASIN 75 09051050 STRAIGHT CREEK BELOW LASKEY GULCH NR DILLON, CO. LOCATION.--Lat 39°38'23", long 106°02'23", in SW\u00e4SW\u00e4 sec.5, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on left bank, 120 ft upstream from culverts on Deer Trail Drive, in the community of Dillon Valley, 0.9 mi north of Dillon, 1.1 mi downstream of Laskey Gulch and 1.8 mi upstream from mouth. DRAINAGE AREA. -- 18.3 mi2. PERIOD OF RECORD. -- October 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,070 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18-21, Dec. 9, 10, 13-18, May 23 to June 21, and Aug. 11 to Sept. 6. Records fair except for estimated daily discharges, which are poor. Diversion upstream from station for municipal purposes downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 104 ft³/s, June 10, 1988, gage height, 5.28 ft from floodmark; minimum daily, 2.4 ft³/s, Dec. 22, 1987, Feb. 20, 22, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 104 ft³/s June 10, gage height, 5.28 ft from floodmark; minimum daily, 2.4 ft³/s, Dec. 22, Feb. 20, 22. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YEA
EAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|------------------------------------|--|--|-----------------------------------|--|------------------------------------|------------------------------------|----------------------------------|----------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.3
6.2
6.2
6.0
5.9 | 6.2
6.2
5.5
5.2
5.3 | 3.2
3.8
4.4
4.4
4.3 | 3.2
3.0
3.0
3.4
3.7 | 2.8
2.9
2.8
2.8
2.8 | 2.8
2.9
2.8
2.8
2.8 | 4.8
4.2
4.7
4.5
4.1 | 8.7
9.1
7.8
6.5
7.2 | 46
56
62
66
72 | 61
56
51
50
45 | 18
14
11
10
11 | 7.0
7.0
6.6
6.6 | | 6
7
8
9
10 | 5.8
5.5
5.4
5.8 | 5.5
5.2
4.6
6.2 | 4.3
4.2
4.3
4.3 | 3.3
3.3
3.4
3.4 | 2.8
2.8
2.7
2.7
2.7 | 2.8
2.9
2.9
3.1
3.1 | 5.6
7.5
6.8
6.0
7.7 | 7.4
6.7
6.4
6.5
6.1 | 76
84
94
98
94 | 43
41
40
37
34 | 12
11
11
11
9.2 | 6.6
5.7
5.5
4.9
6.2 | | 11
12
13
14
15 | 5.5
5.4
5.9
7.8
7.1 | 5.2
5.6
5.0
4.0 | 4.1
3.9
4.0
4.0 | 3.6
3.3
3.4
3.6 | 2.6
2.8
2.6
2.6
2.6 | 2.9
2.9
2.7
2.9 |
9.9
8.5
8.3
6.6
6.4 | 7.3
10
15
17
20 | 88
84
82
80
84 | 32
31
30
28
26 | 9.0
9.0
9.0
9.0 | 8.1
11
10
11
9.5 | | 16
17
18
19
20 | 7.8
6.6
6.4
6.4 | 4.1
4.0
4.0
4.0
4.0 | 4.0
4.0
4.0
3.7
2.9 | 3.3
3.4
3.1
3.0 | 2.5
2.5
2.6
2.4 | 3.0
3.1
3.1
3.2
3.6 | 6.7
6.8
6.0
6.2
6.7 | 22
23
30
33
24 | 86
84
82
84
82 | 24
24
22
22
21 | 9.0
9.0
9.0
9.0 | 7.7
7.1
7.0
8.2
6.4 | | 21
22
23
24
25 | 5.9
6.1
5.6
5.6
6.0 | 4.0
4.1
3.7
4.0
3.5 | 2.6
2.4
3.7
3.8
3.9 | 3.2
3.3
3.3
3.0
3.0 | 2.5
2.4
2.5
2.6
2.8 | 4.0
4.0
4.0
4.0
3.8 | 7.1
5.1
5.5
5.8
5.4 | 18
16
18
24
34 | 78
78
75
75
77 | 19
17
17
16
16 | 9.0
9.0
9.0
8.0
7.4 | 5.4
6.5
6.5
5.7 | | 26
27
28
29
30
31 | 5.6
6.1
5.6
6.1
6.3 | 3.3
3.4
2.6
2.8
3.0 | 3.6
3.8
3.5
3.6
3.5
3.3 | 3.0
3.1
3.0
3.0
2.8
2.7 | 2.9
3.2
3.3
2.9 | 4.1
4.8
5.0
4.7
4.3
3.4 | 7.0
5.9
5.5
6.3
8.5 | 38
40
45
50
45
44 | 76
72
71
75
68 | 15
16
16
16
18
19 | 7.4
7.4
7.4
7.4
7.2
7.0 | 5.6
5.8
6.7
7.9
8.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 188.4
6.08
7.8
5.4
374 | 133.9
4.46
6.2
2.6
266 | 117.8
3.80
4.4
2.4
234 | 99.7
3.22
3.7
2.7
198 | 78.6
2.71
3.3
2.4
156 | 105.3
3.40
5.0
2.7
209 | 190.1
6.34
9.9
4.1
377 | 645.7
20.8
50
6.1
1280 | 2329
77.6
98
46
4620 | 903
29.1
61
15
1790 | 294.4
9.50
18
7.0
584 | 212.6
7.09
11
4.9
422 | CAL YR 1987 TOTAL 3753.2 MEAN 10.3 MAX 52 MIN 2.4 AC-FT 7440 WTR YR 1988 TOTAL 5298.5 MEAN 14.5 MAX 98 MIN 2.4 AC-FT 10510 #### 09052000 ROCK CREEK NEAR DILLON, CO LOCATION.--Lat 39°43'23", long 106°07'41", in NE4 sec.9, T.4 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 500 ft upstream from bridge on State Highway 9, 1,100 ft upstream from mouth, 1,200 ft downstream from confluence of North and South Rock Creeks, and 8 mi northwest of Dillon. DRAINAGE AREA.--15.8 mi² 76 PERIOD OF RECORD. -- July 1942 to September 1956, October 1966 to current year. GAGE.--Water-stage recorder. Datum of gage is 8,502.52 ft, (Colorado Highway Department datum). Prior to Apr. 21, 1943, nonrecording gage, and Apr. 21, 1943, to Sept. 13, 1950, water-stage recorder, at site 500 ft downstream at datum 28.76 ft, lower. REMARKS.--Estimated discharges: Oct. 1-12, Nov. 10, 12, 13, and Nov. 17 to Apr. 26. Records good except for estimated daily discharges, which are poor. A few small diversions for irrigation of hay meadows upstream and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--36 years, (water years 1943-56, 1967-88), 23.1 ft3/s; 16,740 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 289 ft³/s, June 10, 1973, gage height, 4.35 ft, from rating curve extended above 154 ft³/s; maximum gage height, 4.36 ft, June 24, 1971; minimum daily discharge, 2.2 ft³/s, Apr. 13, 17, 1945. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|-------------|----------------------|---------------------| | June 6 | 0100 | *232 | *4.12 | No oth | ner peak gr | eater than base o | lischarge. | DISCHARGE CURIC FEET PER SECOND. WATER VEAR OCTORER 1087 TO SEPTEMBER 1088 Minimum daily, 2.3 ft³/s, Jan. 20-22. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEA
EAN VALUE | R OCTOBER | 1987 TO S | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|-----------------------------------|------------------------------------|--|-----------------------------------|------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|----------------------------------|-------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.0
6.0
6.0
6.0 | 5.7
6.2
5.7
5.1
4.9 | 5.6
5.6
5.6
5.6 | 2.8
2.8
2.8
2.8
2.8 | 2.5
2.5
2.5
2.5
2.5 | 3.8
3.8
3.8
3.8 | 5.0
4.7
4.7
4.7
4.7 | 17
15
12
12
14 | 62
66
93
132
157 | 63
58
52
52
56 | 20
19
18
17
17 | 8.8
8.6
8.0
7.7
7.5 | | 6
7
8
9
10 | 6.0
6.0
5.8
5.8 | 5.2
5.3
5.2
5.2 | 5.6
5.6
5.4
5.4 | 2.8
2.8
2.8
2.6
2.6 | 2.5
2.5
2.5
2.5
2.8 | 4.0
4.0
4.0
4.3 | 4.7
4.7
4.7
4.7
4.7 | 15
13
12
11 | 163
148
140
139
134 | 53
49
47
42
34 | 16
16
16
15
13 | 7.3
6.9
6.6
6.4
7.4 | | 11
12
13
14
15 | 5.8
5.5
6.3
6.4 | 5.2
5.0
5.0
4.9 | 5.4
5.4
4.8
4.8 | 2.6
2.5
2.5
2.6
2.6 | 2.9
2.9
2.9
2.9
2.9 | 4.3
4.3
4.3
4.3 | 4.7
4.7
4.7
4.7
5.0 | 11
20
32
48
63 | 131
110
107
82
88 | 33
33
34
38
36 | 13
13
13
12
12 | 10
12
12
11
9.6 | | 16
17
18
19
20 | 6.4
5.8
5.5
5.2
4.6 | 10
8.0
6.0
6.0 | 4.8
4.8
4.8
4.8 | 2.6
2.6
2.6
2.5
2.3 | 2.9
2.9
2.9
2.9
2.9 | 4.7
4.7
4.7
4.7
4.7 | 6.0
6.8
7.4
8.2
9.4 | 70
85
91
79
46 | 90
93
93
106
104 | 31
28
27
27
24 | 13
15
14
13
12 | 8.6
8.2
7.9
7.8
7.5 | | 21
22
23
24
25 | 5.3
5.0
4.9
4.9
6.4 | 6.0
6.0
6.0
6.0 | 4.8
4.8
4.2
3.5
3.0 | 2.3
2.3
2.5
2.5
2.5 | 3.0
3.0
3.0
3.0 | 5.0
5.0
5.0
5.0 | 11
12
13
15
16 | 31
24
25
44
72 | 106
105
94
94
91 | 22
21
21
20
20 | 12
13
11
11 | 7.5
7.6
7.7
7.2
7.2 | | 26
27
28
29
30
31 | 5.7
5.3
5.1
5.7
5.8 | 6.0
6.0
6.0
6.0 | 3.0
3.0
3.0
3.0
3.0 | 2.5
2.5
2.5
2.5
2.5
2.5 | 3.0
3.0
3.0
3.0 | 5.0
5.0
5.0
5.0
5.0 | 15
8.4
8.5
11
15 | 85
96
103
113
112
72 | 93
86
75
109
78 | 19
20
20
20
19
19 | 10
10
10
9.6
9.5
9.1 | 7.0
7.0
7.0
7.5
7.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 175.9
5.67
6.4
4.6
349 | 174.8
5.83
10
4.9
347 | 143.1
4.62
5.6
3.0
284 | 80.1
2.58
2.8
2.3
159 | 81.3
2.80
3.0
2.5
161 | 139.6
4.50
5.0
3.8
277 | 233.8
7.79
16
4.7
464 | 1454
46.9
113
11
2880 | 3169
106
163
62
6290 | 1038
33.5
63
19
2060 | 412.2
13.3
20
9.1
818 | 243.0
8.10
12
6.4
482 | CAL YR 1987 TOTAL 6331.9 MEAN 17.3 MAX 108 MIN 3.0 AC-FT 12560 WTR YR 1988 TOTAL 7344.8 MEAN 20.1 MAX 163 MIN 2.3 AC-FT 14570 BLOE KIVER BASIN 09052400 BOULDER CREEK AT UPPER STATION, NEAR DILLON, CO LOCATION.--Lat 39°43'41", long 106°10'22", in SW4SW4 sec.6, T.4 S., R.78 W., Summit County, Hydrologic Unit 14010002, on left bank 1.2 mi downstream from Boulder Lake, 3.2 mi upstream from mouth, and 9.4 mi northwest of Dillon. DRAINAGE AREA. -- 8.56 mi². PERIOD OF RECORD. -- October 1966 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,460 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 31 to May 15, and Aug. 18-23. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--22 years, 17.3 ft3/s; 12,530 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 316 ft³/s, July 1, 1984, gage height, 3.42 ft; minimum daily, 0.80 ft³/s, Jan. 6, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 120 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------------|----------------------|---------------------| | June 5 | 2300 | *125 183 | *2.90 | No oth | er peak gr | eater than base | discharge. | | | 1.11 | 0.3. | | | | | | Minimum daily, 2.0 ft³/s, Feb. 2-6. | | | DISCHARGE, | CUBIC | FEET PER | | VATER YEAR
EAN VALUES | | 1987 TO S | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|--|-----------------------------------|------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.3
4.2
3.8
3.7
3.7 | 3.2
3.2
3.2
2.9
2.8 |
2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 2.3
2.0
2.0
2.0
2.0 | 5.0
5.0
5.0
5.0 | 5.0
5.2
5.2
5.2 | 10
10
10
10 | 40
45
70
101
132 | 52
46
43
43
46 | 16
13
12
12
11 | 5.3
4.8
4.6
4.3
4.0 | | 6
7
8
9
10 | 3.5
3.4
3.0
2.8
2.7 | 2.8
2.8
2.6
2.6
2.6 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 2.0
2.2
2.4
2.6
2.9 | 5.0
5.0
5.0
5.0 | 5.2
5.2
5.2
5.2 | 10
12
14
16
18 | 130
109
106
104
103 | 45
42
40
34
26 | 10
11
11
10
9.2 | 3.8
3.7
3.5
3.4
3.7 | | 11
12
13
14
15 | 2.7
2.6
2.7
3.7
4.2 | 2.6
2.6
2.6
2.6
2.6 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 3.2
3.5
3.5
3.5
3.5 | 5.0
5.0
5.0
5.0 | 5.2
5.2
5.2
5.2
5.2 | 21
25
29
33
40 | 98
86
76
55
58 | 25
27
28
31
28 | 8.3
8.6
8.0
7.6
7.7 | 5.5
7.1
7.4
7.1
6.3 | | 16
17
18
19
20 | 4.3
4.1
3.8
3.7
2.9 | 2.6
2.6
2.6
2.6
2.6 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 3.5
3.5
3.5
3.5
3.5 | 5.0
5.0
5.0
5.0 | 5.2
5.2
6.0
6.6
7.2 | 42
46
56
53
32 | 67
74
76
97
95 | 23
22
22
21
18 | 9.1
9.7
9.0
8.0
7.8 | 5.3
4.6
4.4
4.2
4.1 | | 21
22
23
24
25 | 2.7
2.6
2.6
3.0
3.7 | 2.6
2.6
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4 | 3.5
3.5
3.5
3.5 | 5.0
5.0
5.0
5.0 | 8.2
9.0
9.8
10 | 21
17
15
22
39 | 94
91
81
84
85 | 17
17
17
15
14 | 7.4
7.2
6.8
6.6
6.7 | 4.0
4.1
4.1
4.0
3.9 | | 26
27
28
29
30
31 | 3.8
3.4
3.1
3.4
3.5
3.4 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.4
2.4
2.4
2.4 | 2.4
2.4
2.4
2.4
2.4
2.4 | 3.7
4.0
4.3
4.5 | 5.0
5.0
5.0
5.0
5.0 | 10
10
10
10
10 | 50
56
69
64
45 | 85
73
63
81
59 | 14
13
14
14
13 | 6.5
6.0
5.8
5.8
5.6 | 3.5
3.4
3.4
3.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 105.0
3.39
4.3
2.6
208 | 80.0
2.67
3.2
2.5
159 | 77.0
2.48
2.5
2.4
153 | 74.4
2.40
2.4
2.4
148 | 91.1
3.14
4.5
2.0
181 | 155.0
5.00
5.0
5.0
307 | 204.8
6.83
10
5.0
406 | 955
30.8
69
10
1890 | 2518
83.9
132
40
4990 | 824
26.6
52
13
1630 | 269.9
8.71
16
5.6
535 | 134.4
4.48
7.4
3.4
267 | CAL YR 1987 TOTAL 4629.7 MEAN 12.7 MAX 81 MIN 2.4 AC-FT 9180 WTR YR 1988 TOTAL 5488.6 MEAN 15.0 MAX 132 MIN 2.0 AC-FT 10890 #### 09052800 SLATE CREEK AT UPPER STATION, NEAR DILLON, CO LOCATION.--Lat 39°45'47", long 106°11'31", in SW4NW4 sec.25, T.3 S., R.79 W., Summit County, Hydrologic Unit 14010002, on left bank 0.2 mi upstream from unnamed tributary, 2.7 mi upstream from mouth, and 12 mi northwest of Dillon. DRAINAGE AREA. -- 14.2 mi2. PERIOD OF RECORD. -- October 1966 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,040 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 13-16, and Oct. 24 to Apr. 26. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 22 years, 23.1 ft3/s; 19,130 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 485 ft³/s, Aug. 5, 1983, gage height, 6.14 ft, from rating curve extended above 170 ft³/s; maximum gage height, 6.56 ft, May 2, 1975 (backwater from beaver dam and ice); minimum daily discharge, 1.0 ft³/s, Mar. 14, 1974, Jan. 12, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 ft³/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|---------|------|----------------------|---------------------| | June 5 | 2400 | *244 | *4.97 | June 29 | 0500 | 216 | 4.84 | Minimum daily discharge, 2.5 ft³/s, Nov. 15-25. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, M | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO : | SEPTEMBER | 1988 | | | |--------------------------------------|--|-------------------------------------|-----------------------------------|------------------------------------|------------------------------------|--|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.9
4.7
4.6
4.4
4.3 | 3.3
3.2
3.2
3.1
3.0 | 2.9
3.0
3.1
3.2
3.3 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.0 | 21
18
16
16
18 | 62
62
91
135
176 | 88
78
71
69
74 | 31
28
25
25
22 | 9.3
9.0
8.4
7.9
7.6 | | 6
7
8
9
10 | 4.3
4.2
4.1
4.1
4.0 | 3.0
2.9
2.9
2.8
2.8 | 3.3
3.4
3.5
3.6
3.7 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.0 | 22
19
17
15
14 | 184
159
142
147
138 | 72
70
65
59
48 | 21
22
24
21
18 | 7.0
6.5
6.0
5.8
5.6 | | 11
12
13
14
15 | 3.9
3.9
4.4
4.5
5.0 | 2.7
2.7
2.6
2.6
2.5 | 3.8
3.9
4.0
4.0 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.0 | 14
21
37
52
61 | 138
120
110
82
90 | 45
50
50
52
49 | 16
16
16
15
14 | 7.2
12
15
16
14 | | 16
17
18
19
20 | 5.4
5.4
5.0
4.7
4.3 | 2.5
2.5
2.5
2.5
2.5 | 4.0
4.0
4.0
4.0
4.0 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.9
4.0 | 4.7
5.4
6.4
7.6
9.0 | 74
88
95
99
70 | 97
107
112
159
157 | 42
42
40
38
35 | 15
18
16
14
13 | 11
9.7
8.9
8.2
7.5 | | 21
22
23
24
25 | 4.1
4.0
3.9
3.8
3.7 | 2.5
2.5
2.5
2.5
2.5 | 4.0
4.0
4.0
4.0 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.0 | 10
12
14
16
19 | 50
38
32
40
62 | 147
147
124
134
128 | 33
31
30
29
28 | 13
14
13
12
12 | 6.9
7.1
7.1
6.7
6.3 | | 26
27
28
29
30
31 | 3.7
3.6
3.5
3.5
3.4
3.4 | 2.6
2.6
2.7
2.8
2.9 | 4.0
3.9
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
 | 4.0
4.0
4.0
4.0
4.0
4.0 | 13
8.7
8.8
11
16 | 83
95
95
103
104
73 | 130
117
116
162
103 | 27
27
27
29
27
26 | 11
11
11
10
10 | 6.1
5.8
5.6
5.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 130.7
4.22
5.4
3.4
259 | 81.9 1
2.73
3.3
2.5
162 | 15.8
3.74
4.0
2.9
230 | 117.8
3.80
3.8
3.8
234 | 110.2
3.80
3.8
3.8
219 | 120.3
3.88
4.0
3.8
239 | 221.6
7.39
19
4.0
440 | 1562
50.4
104
14
3100 | 3776
126
184
62
7490 | 1451
46.8
88
26
2880 | 517
16.7
31
10 | 245.3
8.18
16
5.5
487 | CAL YR 1987 TOTAL 6694.8 MEAN 18.3 MAX 122 MIN 2.5 AC-FT 13280 WTR YR 1988 TOTAL 8449.6 MEAN 23.1 MAX 184 MIN 2.5 AC-FT 16760 # WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1986 to September 1987. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1986 to September 1987. WATER TEMPERATURES: May 1986 to September 1987. INSTRUMENTATION. -- Water-quality monitor from May 1986 to September 1987 (discontinued). EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 239 microsiemens May 10, 1986; minimum daily, 98 microsiemens May 22, 1986. WATER TEMPERATURE: Maximum daily, 18.5°C July 25, 1987; minimum daily, 0.0°C Nov. 10-11, 1986, Apr. 20-21, 1987. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 227 microsiemens Sept. 30; minimum, 99 microsiemens May 15. WATER TEMPERATURES: Maximum, 18.5°C July 25; minimum, 0.0°C Nov. 10-11, Apr. 20-21. # WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | OXYGEN DEMAND, BIOCHEM 20 DAY, 20 DEG (MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
WHOLE
WATER
TOTAL
FIELD
MG/L AS
CACO3 | |-----------------|---|--|---|---|---|--|--
---|--|--| | APR
14 | 0 7 50 | 129 | 250 | 8.5 | 1.0 | 11.0 | | | 110 | 48 | | 28
MAY | 1030 | 238 | 152 | 7.7 | 5.5 | 9.7 | | | | | | 13
JUN | 1500 | 340 | 110 | 8.2 | 8.0 | 9.8 | 0.6 | 2.0 | 56 | 23 | | 02
23
JUL | 1540
1540 | 892
885 | 180
180 | 7.9
7.8 | 12.0
15.5 | 9.4
7.4 | 0.6 | 1.5 | 81
87 | 4 1
4 4 | | 20
SEP | 1040 | 334 | 205 | 8.3 | 12.5 | 8.6 | | | 86 | 42 | | 16 | 0830 | 176 | 215 | 7.8 | 6.5 | 8.9 | 1.7 | 2.8 | 89 | 36 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | | APR
14
28 | 35
 | 4.7 | 6.7 | 3.0 | 59
 | 48
 | 4.3 | 0.6 | 6.6 | 138 | | MA Y
13 | 18 | 2.6 | 4.8 | 1.4 | 33 | 19 | 1.9 | 0.3 | 5.7 | 7 6 | | JUN
02
23 | 27
29 | 3.3
3.6 | 3.9
3.6 | 1.8
1.8 | 40
43 | 40
38 | 1.9
1.9 | 0.4 | 4.9
4.6 | 104
99 | | JUL
20 | 28 | 3.9 | 4.5 | 2.1 | 44 | 34 | 2.1 | 0.4 | 4.8 | 98 | | SEP
16 | 29 | 4.0 | 5.0 | 2.2 | 53 | 42 | 2.5 | 0.5 | 6.0 | 116 | | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | RESIDUE
VOLA-
TILE,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | APR
14 | 144 | 0.19 | 48.1 | | | <0.01 | 0.40 | | <0.01 | | | 28
MAY | | | | | | | 0.20 | | <0.01 | | | 13
JUN | 73 | 0.10 | 69.8 | | | <0.01 | 0.10 | | 0.01 | | | 02
23
JUL | 10 7
109 | 0.14
0.13 | 250
23 7 | 3 | <1 | <0.01 | 0.20
<0.10 | 0.17 | 0.01
<0.01 | 0.04 | | 20
SEP | 106 | 0.13 | 88.4 | | | | <0.10 | <0.10 | <0.01 | 0.02 | | 16 | 123 | 0.16 | 55.1 | | | <0.01 | 0.20 | | <0.01 | | 09053500 BLUE RIVER ABOVE GREEN MOUNTAIN RESERVOIR, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 | DATE | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------|--|---|--|---|---|---|--|---|--| | APR | | | | | | | | | | | 14 | | | 0.30 | | 0.70 | 0.01 | | <0.01 | | | 28 | | | 1.1 | | 1.3 | 0.02 | | <0.01 | | | MA Y | | | | | - | | | | | | 13 | 0.29 | | 0.30 | | 0.40 | 0.03 | | <0.01 | | | JUN | | | | | | | | | | | 02 | 0.89 | 0.76 | 0.90 | 0.80 | 1.1 | 0.01 | 0.02 | <0.01 | <0.01 | | 23 | | | 0.40 | | | 0.02 | | 0.03 | | | JUL | | | | | | | | | | | 20 | | 0.58 | 0.40 | 0.60 | | 0.01 | <0.01 | <0.01 | <0.01 | | SEP | | | | | | | | | | | 16 | | | 0.30 | | 0.50 | 0.02 | | <0.01 | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | | | | | | | TOWN VALUE | ,5 | | | | | | |--------|-----|-----|------|-----|-----|------------|-----|------|-----|-----|-----|-----| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 196 | 202 | | | | | | 145 | 177 | 169 | 187 | 222 | | | 193 | 203 | | | | | | 144 | 172 | 171 | 195 | 223 | | 2
3 | 195 | 203 | | | | | | 157 | 176 | 173 | 198 | 222 | | 4 | 192 | 200 | | | | | | 175 | 173 | 176 | 201 | 217 | | 5 | 197 | 206 | | | | | | 183 | 168 | 176 | 204 | 216 | | | _ | | | | | | | | | | | | | 6 | 198 | 199 | | | | | | 183 | 170 | 178 | 207 | 217 | | 7 | 198 | 199 | | | | | | 173 | 166 | 180 | 206 | 218 | | 8 | 199 | 203 | | | | | | 159 | 162 | 179 | 203 | 219 | | 9 | 198 | 179 | | | | | | 141 | 161 | 179 | 206 | 210 | | 10 | 197 | 193 | | | | | | 133 | 165 | 179 | 209 | 204 | | 11 | 196 | 170 | | | | | | 124 | 167 | 180 | 210 | 204 | | 12 | 198 | 201 | | | | | | 115 | 169 | 180 | 212 | 207 | | 13 | 201 | | | | | | | 109 | 167 | 182 | 213 | 208 | | 14 | 200 | | | | | | | 108 | 164 | 187 | 213 | 205 | | 15 | 200 | | | | | | | 99 | 163 | 187 | 215 | 197 | | _ | | | | | | | | | _ | | _ | | | 16 | 201 | | | | | | | 107 | 165 | 184 | 216 | 192 | | 17 | 202 | | | | | | 205 | 133 | 166 | 179 | 219 | 183 | | 18 | 202 | | | | | | 199 | 154 | 170 | 177 | 223 | 183 | | 19 | 202 | | | | | | 191 | 166 | 170 | 180 | 221 | 203 | | 20 | 199 | | | | | | 183 | 168 | 169 | 181 | 221 | 207 | | 21 | 198 | | | | | | 204 | 174 | 170 | 183 | 219 | 210 | | 22 | 199 | | | | | | 207 | 175 | 170 | 190 | 215 | 211 | | 23 | 202 | | | | | | 193 | 176 | 167 | 191 | 209 | 213 | | 24 | 204 | | | | | | 177 | 174 | 167 | 188 | 192 | 215 | | 25 | 210 | | | | | | 168 | 176 | 170 | 188 | 194 | 223 | | | | | | | | | | · | • | | | | | 26 | 127 | | | | | | 162 | 175 | 169 | 195 | 195 | 224 | | 27 | 128 | | | | | | 158 | 180 | 170 | 192 | 201 | 224 | | 28 | 211 | | | | | | 154 | 184 | 170 | 175 | 209 | 225 | | 29 | 212 | | | | | | 147 | 185 | 167 | 187 | 216 | 225 | | 30 | 212 | | | | | | 146 | 188 | 165 | 191 | 219 | 227 | | 31 | 211 | | | | | | | 187 | | 179 | 222 | | | MEAN | 196 | | | | | | | 156 | 168 | 182 | 209 | 212 | 81 TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 09053500 BLUE RIVER ABOVE GREEN MOUNTAIN RESERVOIR, CO -- Continued | DAY | MA X | MIN | MAX | MIN | MA X | MIN | |---|--|--|---|--|--|--|---|--|--
--|---|--| | | ОСТОВ | ER | NOVEMB | ER | DE CE ME | BER | JANUA | ARY | FEBRUA | RY | MA R | Н | | 1
2 | 7.4
7.8 | 2.8
3.7 | 3.1
4.3 | .8
1.1 | | | | | | | | | | 3 | 6.6 | 3.7 | 3.3 | .1 | | | | | | | | | | 4
5 | 6.4
7.0 | 2.5
1.3 | 3.7
4.1 | .1 | | | | | | | | | | 6 | 8.0 | 2.1 | 3.1 | . 1 | | | | | | | | | | 7 | 8.9 | 3.3 | 1.1 | .1 | | | | | | | | | | 8
9 | 8.5
7.7 | 3.2
3.5 | .1
.6 | .1 | | | | | | | | | | 10 | 7.4 | 2.5 | 1.3 | .0 | | | | | | | | | | 11 | 6.4 | 2.9 | 1.6 | .0 | | | | | | | | | | 12 | 3.6 | . 4 | 2.3 | . 4 | | | | | | | | | | 13 | 5.3 | . 4 | | | | | | | | | | | | 14
15 | 5.7
6.2 | •4
•5 | | | | | | | | | | | | 16 | 6.1 | -4 | | | | | | | | | | | | 17 | 6.3 | •5 | | | | | | | | | | | | 18
19 | 6.2
5.9 | 1.8 | | | | | | | | | | | | 20 | 6.2 | 3.1
3.1 | | | | | | | | | | | | 21 | 4.4 | 1.2 | | | | | | | | | | | | 22 | 4.7 | 1.9 | | | | | | | | | | | | 23 | 4.7 | 1.4 | | | | | | | | | | | | 24
25 | 6.6
4.7 | 2.5
2.7 | 26
27 | 6.0
5.7 | .6
1.3 | | | | | | | | | | | | 28 | 5.6 | 1.3 | | | | | | | | | | | | 29
30 | 6.3
5.8 | 1.6
2.0 | | | | | | | | | | | | 31 | 4.4 | 2.2 | | | | | | | | | | | | MONTH | 8.9 | . 4 | DAY | MA X | MIN | | DAY | MAX
APRII | | MA X
MA Y | | MA X
June | | MAX
JUL: | | MAX
Augus | | MAX
SEPTEM | | | DAY
1 | | | MA Y | | | | | | | | | | | 1 *
2 | APRII | L
 | MAY
7.3
5.4 | 3.8
2.6 | JUNE
12.6
11.7 | 5.3
4.3 | JULY
14.4
16.7 | 9.6
9.6 | AUGUS
16.4
15.3 | 8.7
8.7 | SEPTEM
11.9
9.9 | BER
4.4
5.1 | | 1 *
2
3 | APRII |
 | MAY
7.3
5.4
3.2 | 3.8
2.6
1.4 | JUNE
12.6
11.7
12.3 | 5.3
4.3
5.1 | JULY
14.4
16.7
17.0 | 9.6
9.6
9.7 | AUGUS
16.4
15.3
13.5 | 8.7
8.7
8.8 | SEPTEM
11.9
9.9
9.9 | BER
4.4
5.1
4.7 | | 1 *
2 | APRII | L
 | MAY
7.3
5.4 | 3.8
2.6 | JUNE
12.6
11.7 | 5.3
4.3 | JULY
14.4
16.7 | 9.6
9.6 | AUGUS
16.4
15.3 | 8.7
8.7 | SEPTEM
11.9
9.9 | BER
4.4
5.1 | | 1 | APRII | | MAY
7.3
5.4
3.2
6.7 | 3.8
2.6
1.4
1.7 | JUNE
12.6
11.7
12.3
12.9 | 5.3
4.3
5.1
5.5 | JULY
14.4
16.7
17.0
16.7 | 9.6
9.6
9.7
9.5 | AUGUS
16.4
15.3
13.5
14.6 | 8.7
8.7
8.8
7.3 | SEPTEM
11.9
9.9
9.9
8.9
10.4 | BER
4.4
5.1
4.7 | | 1 2
3
4
5 | APRII | | 7.3
5.4
3.2
6.7
8.0 | 3.8
2.6
1.4
1.7
2.6
2.8
3.7 | JUNE 12.6 11.7 12.3 12.9 11.7 | 5.3
4.3
5.1
5.5
6.7
7.4
7.4 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 | 9.6
9.6
9.7
9.5
9.2
9.7 | AUGUS
16.4
15.3
13.5
14.6
13.5 | 8.7
8.7
8.8
7.3
7.0
7.5
8.1 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2 | # 4.4
5.1
4.7
5.9
4.6
4.1
3.6 | | 1 | APRII | | 7.3 5.4 3.2 6.7 8.0 12.1 11.6 | 3.8
2.6
1.4
1.7
2.6
2.8
3.7 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 | 5.3
4.3
5.1
5.5
6.7 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 | 9.6
9.6
9.7
9.5
9.2 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.3 12.9 | 8.7
8.7
8.8
7.3
7.0 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2
10.3 | 4.4
5.1
4.7
5.9
4.6
4.1
3.6
3.8 | | 1
2
3
4
5
6
7
8 | APRII | | 7.3
5.4
3.2
6.7
8.0 | 3.8
2.6
1.4
1.7
2.6
2.8
3.7 | JUNE 12.6 11.7 12.3 12.9 11.7 | 5.3
4.3
5.1
5.5
6.7
7.4
8.0 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 | 9.6
9.6
9.7
9.5
9.2
9.7 | AUGUS
16.4
15.3
13.5
14.6
13.5 | 8.7
8.7
8.8
7.3
7.0 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2 | # 4.4
5.1
4.7
5.9
4.6
4.1 | | 1
2
3
4
5
6
7
8
9 | APRII | | 7.3 5.4 3.2 6.7 8.0 12.1 11.6 10.6 12.2 | 3.8
2.6
1.4
2.6
2.8
3.7
4.2
3.7
3.8 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 | 5.3
4.3
5.1
5.7
7.4
8.0
8.4
7.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 15.4 17.3 14.3 | 9.6
9.6
9.7
9.5
9.2
9.7
10.1
9.9
9.7 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 | 8.7
8.7
8.8
7.3
7.0
7.5
8.1
7.4
6.4
7.1 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2
10.3
13.2 | BER
4.4
5.7
5.9
4.6
3.8
5.5 | | 1 2 3 4 5 6 7 8 9 10 11 12 | APRII | | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
10.6
12.2 | 3.8
2.6
1.7
2.6
2.8
3.7
2.7
3.8
3.5 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 | 5.3
4.3
5.1
5.5
6.7
7.4
8.0
8.4
7.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 | 9.66
9.7
9.7
9.2
9.7
10.1
9.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 | 8.7
8.7
8.8
7.3
7.0
7.5
8.1
7.4
7.1
6.1 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2
10.3
13.2
10.7 | BER
4.4
5.1
5.9
4.6
3.68
5.9
4.7 | | 1 2 3 4 5 6 7 8 9 10 11 12 | APRII | | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
10.6
12.2
7.3
7.2
9.7 | 3.8
2.6
1.7
2.6
2.8
3.7
2.7
3.8
3.6
5.8 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 | 5.3
4.3
5.1
5.5
6.7
7.4
8.0
8.4
7.1
7.7 | JULY 14.4 16.7 17.0 15.9 16.6 15.5 15.4 17.3 14.3 12.8 13.8 | 9.6
9.6
9.7
9.5
9.2
9.7
10.1
9.9
9.7 | AUGUS 16.4 15.3 13.5 13.5 12.3 12.9
13.4 14.2 13.2 12.6 12.1 10.5 | 8.7
8.7
8.8
7.3
7.0
7.5
8.1
7.4
6.4
7.1
6.6 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
10.3
13.2
10.7
11.2 | # 4 4 4 5 - 1 7 5 - 1 4 - 6 6 4 - 1 6 6 - 2 4 - 7 5 - 5 5 5 6 - 4 4 - 1 6 6 - 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 1 2 3 4 5 6 7 8 9 10 11 | APRII | | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
10.6
12.2 | 3.8
2.6
1.7
2.6
2.8
3.7
2.7
3.8
3.5 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 | 5.3
4.3
5.1
5.5
6.7
7.4
8.0
8.4
7.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 | 9.66
9.7
9.7
9.2
9.7
10.1
9.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 | 8.7
8.7
8.8
7.3
7.0
7.5
8.1
7.4
7.1
6.1 | SEPTEM
11.9
9.9
9.9
8.9
10.4
8.2
8.2
10.3
13.2
10.7 | BER
4.4
5.1
5.9
4.6
3.68
5.9
4.7 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | APRII | | 7.3 5.4 3.2 6.7 8.0 12.1 11.6 10.6 12.2 7.3 7.2 9.7 9.3 9.7 | 3.8
2.6
1.7
2.6
2.7
2.7
3.7
2.8
3.7
2.8
3.5
4.5
4.5
3.5 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 | 5.3
4.3
5.1
5.5
6.7
7.4
8.0
8.4
7.7
8.3
8.8 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 15.4 17.3 14.3 12.8 13.8 15.7 17.2 | 9.66
9.7
9.7
9.2
9.7
10.1
9.9
9.7
9.7
9.7 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 | 8.778.837.0 7.58.1 447.1 66.4 65.6 2 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 | # 4.4
5.1
4.7
5.6
4.1
3.8
5.9
5.5
4.7
5.8
6.4
5.8 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | APRII | | MAY 7.3 5.4 3.2 6.7 8.0 12.1 11.6 10.6 12.2 7.3 7.2 9.7 9.3 9.7 | 3.6
3.6
11.7
2.8
3.7
2.7
3.8
3.5
3.5
4.1
3.5
4.1
4.1 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 10.7 12.3 12.4 13.9 14.6 13.2 | 5.3
4.3
5.5
6.7
7.4
8.0
4.3
7.5
7.7
8.8
9.1
8.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 13.8 15.7 17.2 17.8 | 9.66
9.7
9.59
9.2
9.7
10.1
9.7
9.7
9.7
9.7
9.7 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 | 8.7788.30
7.08.14441
7.166.66.655.2
9.99 | SEPTEM 11.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 | BER
4.417.754.6
4.168.55.5
4.168.55.5
4.168.55.5
5.34 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 | APRII | | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
10.6
12.2
7.3
7.2
9.7
9.7
10.6
8.5
8.4 | 3.64
1.76
2.87
2.78
4.78
3.65
4.5
4.18
4.18 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 14.6 13.2 14.4 | 5.3
4.3
5.5
5.7
7.4
8.0
4.3
7.7
8.8
8.9
1.3
9.1
8.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.2 17.8 | 9.66
9.75
9.2
9.71
9.77
10.1
9.97
9.7
9.4
9.4
9.4 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 12.7 11.8 | 8.77830 511441 16462 995 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 11.7 9.2 10.4 11.2 10.7 | ### ################################## | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | APRII | | MAY 7.3 5.4 3.2 6.7 8.0 12.1 11.6 10.6 12.2 7.3 7.2 9.7 9.3 9.7 | 3.6
3.6
11.7
2.8
3.7
2.7
3.8
3.5
3.5
4.1
3.5
4.1
4.1 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 10.7 12.3 12.4 13.9 14.6 13.2 | 5.3
4.3
5.5
6.7
7.4
8.0
4.3
7.5
7.7
8.8
9.1
8.3 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 13.8 15.7 17.2 17.8 | 9.66
9.7
9.59
9.2
9.7
10.1
9.7
9.7
9.7
9.7
9.7 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 | 8.7788.30
7.08.14441
7.166.66.655.2
9.99 | SEPTEM 11.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 | ### ################################## | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 18 19 0 19 0 19 0 19 0 19 0 19 0 19 0 1 | APRII | 1.9
2.2
1.6 | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
10.6
12.2
7.3
9.7
9.7
10.6
8.3
8.3 | 3.64
1.76
2.87
2.78
4.78
3.80
4.18
4.33
4.43
4.43
4.43
5.5 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 14.6 13.2 14.4 15.3 14.4 | 5.3
4.3
5.5
6.7
7.4
8.4
7.7
8.8
7.7
8.8
9.1
9.0
9.1 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.2 17.8 15.0 13.6 16.5 | 9.66
9.75
9.2
9.71
9.77
10.1
9.77
10.1
9.3
9.4
9.4
9.6 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 12.7 11.8 13.0 10.9 | 8.78.83.0 51.44.1 16.46.2 995.29 55.9 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 8.2 10.3 13.2 10.7 11.2 11.7 9.2 10.4 11.2 10.7 9.0 10.6 | # 4.4
5.17
5.6
4.16
4.16
3.88
5.5
4.16
5.4
5.6
5.4
4.15
6.4
4.5
6.4
4.5
6.4
4.5
6.4
4.5
6.4
6.5
6.4
6.4
6.5
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 | APRII | 1.9 | MAY 7.3 5.4 6.7 8.0 12.1 11.6 12.2 7.3 7.2 9.7 9.7 10.6 8.5 8.4 8.0 7.8 8.9 | 3.86
1.476
2.67
2.78
3.65
4.05
4.18
4.18
4.18
4.18 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 14.6 13.2 14.4 15.3 | 5.33
5.55
6.7
7.44
8.04
7.77
8.8
8.8
9.13
9.10
9.1 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 13.8 15.7 17.2 17.8 15.0 13.6 16.5 17.6 16.3 | 9.66
9.7
9.2
9.7
10.1
9.9
9.7
10.1
9.9
9.4
9.4
9.9
10.4
9.5 | AUGUS 16.4 15.3 13.5 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 12.7 11.8 13.0 | 8.77.83.0 5.14.41 1.64.62 9.95.29 7.05.0 5.0 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 | BER 4.417.96 1.68.89 5.7.44.85 5.6.8.85 5.6.8.85 5.6.8.41.52 8.5.85 5.6.83 4.8.85 5.8.85 5.6.83 4.8.85 5.6.85 5.6.83 4.8.85 5.6.85
5.6.85 5.6. | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 18 19 0 1 12 23 | APRII | 1.9
2.2
1.0
2.2 | 7.3
5.4
36.7
8.0
12.1
11.6
10.6
12.2
7.2
9.7
9.7
10.6
8.4
8.3
8.0
7.8
8.3
9.8 | 32.1.76 872.78 65805 01843 949
32.1.73 3.3 32.2.43 4.1835 3.4.9 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.4 15.3 14.4 15.4 15.4 | 54.315.7
77.4043
77.738.8
98.310
99.10
99.1 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.8 15.0 16.5 17.63 15.7 17.8 | 9.66
9.77
9.2
9.71
9.77
10.1
9.77
10.1
9.79
9.4
9.6
10.1
10.3 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.4 10.3 | 8.78.83.0 51.44.1 164.62 995.29 7.41 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 11.7 9.0 10.6 10.0 10.0 10.0 | BER 4.417.96 1.68.89 5.7.44.85 5.6.8.85 5.6.8.85 5.6.8.41.52 8.5.85 5.6.83 4.8.85 5.8.85 5.6.83 4.8.85 5.6.85 5.6.83 4.8.85 5.6. | | 1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 5 16 7 18 19 20 21 22 3 2 4 | APRII | 1.9
2.2
2.7 | 7.3
5.4
3.2
6.7
8.0
12.1
11.6
12.2
7.2
9.7
9.7
10.6
8.3
8.0
7.8
8.3
8.0
7.8
8.3 | 86476 87278 65805 01843 9498
32112 23433 32243 44.85 34.98 | JUNE 12.6 11.7 12.3 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 14.6 13.2 14.4 15.4 15.4 15.4 15.4 | 5.3315.7
4.4043
7.77.8.8
98.3110
99.10
99.17 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 13.8 15.7 17.8 15.0 13.6 16.3 15.7 17.8 | 9.66
9.75
9.7
9.77
9.77
10.19
9.77
10.19
9.41
9.6
10.13
10.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 12.5 11.9 12.9 11.7 10.4 10.3 9.6 | 8.77.830 514441 16462 99529 7413 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 10.4 11.2 10.7 9.0 10.6 | BER 4.417.96 1.68.89 5.7.44.85 5.6.8.85 5.6.8.85 5.6.8.41.52 8.5.85 5.6.83 4.8.85 5.8.85 5.6.83 4.8.85 5.6.85 5.6.83 4.8.85 5.6. | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 6 7 8 9 1 1 1 2 3 4 5 1 6 7 8 9 2 1 2 2 3 4 5 2 2 2 2 2 5 | APRII | 1.9
2.2
1.6
0
1.0
2.2
2.7
2.3 | MAY 7.3 5.4 6.7 8.0 12.1 11.6 12.2 7.2 9.7 10.65 8.4 8.3 7.8 8.9 9.7 10.65 9.4 | 32.1.6 87278 65805 01843 94986
32.243 4.843 94986 | JUNE 12.6 11.7 12.3 12.9 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.8 14.6 13.2 14.4 15.3 14.4 | 33157 44043 15738 13310 15179
9999999999999999999999999999999999 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.8 15.0 16.5 17.6 16.3 15.7 17.8 15.0 16.5 17.8 18.1 18.6 | 9.66
9.77
9.2
9.7
10.1
9.77
10.1
9.97
9.7
10.1
9.98.3
9.4
9.94
10.1
10.3
10.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.4 10.3 9.6 10.9 | 8.78.830 51.441 16462 99529 74130 66.462 99529 77.30 | SEPTEM 11.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.2 10.7 9.0 10.6 10.0 10.6 10.0 10.4 10.6 8.3 | # 4.4
5.79
4.16
3.88
5.5
4.16
3.88
5.5
4.16
5.4
3.8
5.5
6.4
3.8
4.16
5.7
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
5.3
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4 | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 7 8 9 1 1 1 2 3 4 5 1 6 7 8 9 1 1 2 2 2 2 2 4 5 2 6 | APRII 10.1 9.2 8.9 4.5 9.0 10.1 10.9 9.5 8.9 8.1 | 1.9
2.2
1.6
0
1.0
2.2
2.7
2.3 | 7.3
5.4
6.7
8.0
12.1
11.6
10.6
12.2
7.2
9.7
9.7
10.6
8.3
8.0
7.8
8.3
8.0
7.8
8.3
9.3
8.0
9.3
9.7 | 86476 87278 65805 01843 94986 2
32112 23433 322243 44435 34454 5 | JUNE 12.6 11.7 12.3 11.7 12.5 11.8 11.67 12.3 12.4 13.9 14.5 12.4 15.4 15.4 15.4 15.4 15.4 15.4 16.1 16.8 | 54.315.7 44.04.3 15.7.7.8.8 9.33.10 15.1.7.9 5.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.2 17.8 15.6 16.3 15.7 17.6 16.3 15.7 17.7 | 9.66
9.75
9.2
9.71
9.77
10.1
9.97
9.7
10.1
9.3
9.4
9.5
9.6
10.1
10.9
11.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.9 12.5 11.9 12.9 11.7 10.4 10.3 9.6 10.9 11.1 | 8.77830 514441 16462 99529 74130 2 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 10.4 11.2 10.7 9.0 10.6 10.0 10.6 8.3 8.7 | # 4.4
5.79
4.16
3.88
5.5
4.16
3.88
5.5
4.16
5.4
3.8
5.5
6.4
3.8
4.16
5.7
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
4.16
5.3
5.3
6.4
6.4
6.4
6.4
6.4
6.4
6.4
6.4 | | 12345 67890 112345 678910 12345 678 | APRII | 1.9
2.2
1.6
0
1.0
2.2
2.7
2.3
2.8
2.4
2.5 | MAY 7.3 5.4 6.7 8.0 12.1 11.6 12.2 7.2 9.7 10.65 8.4 8.0 7.8 8.4 9.7 9.7 9.7 10.0 | 86476 87278 65805 01843 94986 236
32112 23433 32243 44435 34454 546 | JUNE 12.6 11.7 12.9 11.7 12.5 11.8 11.6 11.7 12.3 14.4 15.4 15.4 15.4 15.4 15.4 15.4 15.7 15.3 | 33157 44043 15738 13310 15179 579
77.88.8 98.310 15179 579 | JULY 14.4 16.7 17.0 16.6 15.5 17.3 14.3 12.8 15.7 17.8 15.6 16.5 17.7 17.8 15.7 17.8 15.0 16.5 17.7 17.8 15.1 18.6 17.7 17.7 18.1 |
9.66
9.77
9.2
9.7
10.1
9.77
10.1
9.97
9.7
10.1
9.9
9.4
10.1
10.3
10.9
11.9
11.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.3 9.6 10.9 11.1 10.2 8.8 | 8.78.30 51.44.1 164.62 995.29 74.130 284.4 | SEPTEM 11.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 10.4 10.6 10.0 10.4 10.6 8.3 8.7 8.8 8.2 | BER 4.117.96 1.68.89.5 7.4.48.5 5.6.4.1.5.2 8.5.9.7.2 5.3.2 4. 3.3.3.4.4 3.3.3.4.4 3.4.2 3 | | 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 1 1 1 2 3 4 5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | APRII | 1.9
2.2
1.6
0
1.0
2.2
2.7
2.3
2.8
2.4
2.5
2.4 | 7.3
5.4
6.7
8.0
12.1
11.6
10.6
12.2
7.2
9.7
9.7
10.6
8.4
8.3
9.7
8.3
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7 | 86476 87278 65805 01843 94986 2362
32112 23433 32243 44435 34454 5445 | JUNE 12.6 11.7 12.3 11.7 12.5 11.8 11.67 12.3 12.4 13.9 14.5 12.4 15.3 14.4 15.4 15.4 15.4 15.4 15.7 16.1 16.8 15.7 11.7 | 54.315.7
77.44043
77.77.88.8
98.3310
99.17
99.17
99.17
90.19
90.19
90.19
90.19 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.54 17.3 12.8 15.7 17.2 17.8 15.66 17.63 15.7 17.8 18.3 18.6 17.7 15.2 14.5 | 9.66
9.75
9.7
9.7
9.7
10.1
9.77
10.1
9.79
9.4
9.4
10.1
10.9
11.9
11.9
11.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.4 10.3 9.6 10.9 11.1 10.2 8.8 11.5 | 77830 514441 16462 99529 74130 2843
66655 54455 67777 6443 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 11.7 9.2 10.4 10.6 10.0 10.6 10.0 10.6 8.3 8.7 8.8 8.2 8.0 | BER 4.417.96 1.68.89 4.5.4.52 8.59.7.2 5.32.6 5.64.34 33.59.7.2 5.32.6 5.64.34 33.34.4 34.22.6 | | 12345 67890 112345 678910 12345 678 | APRII | 1.9
2.2
1.6
0
1.0
2.2
2.7
2.3
2.8
2.4
2.5 | MAY 7.3 5.4 6.7 8.0 12.1 11.6 12.2 7.2 9.7 10.65 8.4 8.0 7.8 8.4 9.7 9.7 9.7 10.0 | 86476 87278 65805 01843 94986 236
32112 23433 32243 44435 34454 546 | JUNE 12.6 11.7 12.9 11.7 12.5 11.8 11.6 11.7 12.3 14.4 15.4 15.4 15.4 15.4 15.4 15.4 15.7 15.3 | 33157 44043 15738 13310 15179 579
77.88.8 98.310 15179 579 | JULY 14.4 16.7 17.0 16.6 15.5 17.3 14.3 12.8 15.7 17.8 15.6 16.5 17.7 17.8 15.7 17.8 15.0 16.5 17.7 17.8 15.1 18.6 17.7 17.7 18.1 | 9.66
9.77
9.2
9.7
10.1
9.77
10.1
9.97
9.7
10.1
9.9
9.4
10.1
10.3
10.9
11.9
11.9 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.3 9.6 10.9 11.1 10.2 8.8 | 8.78.30 51.44.1 164.62 995.29 74.130 284.4 | SEPTEM 11.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 12.3 11.7 9.2 10.4 10.6 10.0 10.4 10.6 8.3 8.7 8.8 8.2 | BER 4.117.96 1.68.89.5 7.4.48.5 5.6.4.1.5.2 8.5.9.7.2 5.3.2 4. 3.3.3.4.4 3.3.3.4.4 3.4.2 3 | | 12345
67890
10 112345
10 12345
10 12345
222345
222890 | APRII | 1.9
2.2
2.7
2.3
2.8
2.4
2.5
2.4
2.2 | MAY 7.3 5.4 6.7 8.0 12.1 11.6 11.6 11.2 7.3 9.7 10.6 8.5 8.4 9.7 8.9 9.7 10.0 9.7 | 86476 87278 65805 01843 94986 23623
32112 23433 32243 44435 34454 54455 | JUNE 12.6 11.7 12.3 11.7 12.5 11.8 11.6 10.7 12.3 12.4 13.9 14.5 12.4 15.4 15.4 15.4 15.4 15.4 15.7 12.8 | 331157 44043 157388 13310 15179 57949
54556 77.8.8.8 98.310 15179 57949 | JULY 14.4 16.7 17.0 16.7 15.9 16.6 15.5 17.3 14.3 12.8 15.7 17.8 15.6 16.6 17.7 18.1 18.6 17.7 18.1 18.6 17.7 14.2 14.9 | 9.66
9.7
9.52
9.7
10.1
9.7
10.1
9.7
9.7
10.1
9.3
9.4
9.9
10.1
9.5
10.3
9.5
10.1
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5 | AUGUS 16.4 15.3 13.5 14.6 13.5 12.3 12.9 13.4 14.2 13.2 12.6 12.1 10.5 11.9 12.7 11.8 13.0 10.9 11.7 10.4 10.3 9.6 10.9 11.1 10.2 8.8 11.5 10.0 | 8.78.30 51.441 1.64.62 995.29 74.130 2.84.31 | SEPTEM 11.9 9.9 9.9 8.9 10.4 8.2 10.3 13.2 10.7 11.2 11.7 9.2 10.4 11.2 10.7 9.0 10.6 10.0 10.0 10.6 8.3 8.7 8.8 8.2 8.6 | BER 4.17.96 1.68.95 7.44.85 3.41.52 8.59.72 5.32.62 4.56.56 5.64.34 3.33.44 3.42.62 1.2 | NOTE: Daily water temperatures are reported to the nearest 0.1°C but are accurate only to the nearest 0.5°C. #### 09054000 BLACK CREEK BELOW BLACK LAKE, NEAR DILLON, CO LOCATION.--Lat 39°47'59", long 106°16'04", in SW4SW4 sec.8, T.3 S., R.79 W., Summit County, Hydrologic Unit 14010002, on right bank 600 ft upstream from bridge, 0.3 mi downstream from Black Lake, 4.5 mi upstream from highwater line of Green Mountain Reservoir at elevation 7,950 ft, and 17 mi northwest of Dillon. DRAINAGE AREA. -- 15.0 mi2 PERIOD OF RECORD. -- July 1942 to September 1949, October 1966 to current year. REVISED RECORDS.--WSP 2124: Drainage area, WDR CO-77-2: 1976. GAGE.--Water-stage recorder. Elevation of gage is 8,750 ft above National Geodetic Vertical Datum of 1929, from topographic map. July 17, 1942, to May 27, 1943, nonrecording gage, and May 28, 1943, to Sept. 30, 1949, water-stage recorder at site 600 ft downstream at different datums. REMARKS.--Estimated daily discharges: Nov. 8 to May 8. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--29 years, 32.5 ft³/s; 23,550 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.-2Maximum discharge, 555 ft³/s, June 25, 1983, gage height, 4.74 ft, from rating curve extended above 240 ft³/s, maximum gage height, 5.64 ft, June 30, 1984; minimum daily discharge, 1.3 ft³/s, Feb. 22, 1976, Jan. 10, 1977. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|---------|------|----------------------|---------------------| | June 5 | 0200 | *253 | *4.71 | June 20 | 0100 | 253 | 4.71 | Minimum
daily discharge, 3.0 ft3/s, Oct. 12. | | | DISCHARGE, | CUBIC | FEET PER | | VATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|-----------------------------------|---|------------------------------------|--|------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.3
4.2
3.9
3.9 | 3.7
4.3
4.2
4.2
4.1 | 5.2
5.4
5.6
5.8
6.0 | 4.6
4.6
4.6
4.6
4.6 | 3.5
3.5
3.5
3.5
3.5 | 4.2
4.2
4.2
4.2
4.2 | 6.3
6.3
6.3
6.3 | 10
10
10
9.9 | 61
52
98
169
218 | 107
93
85
84
88 | 41
38
36
35
32 | 17
16
15
14
14 | | 6
7
8
9
10 | 3.8
3.6
3.6
3.4 | 4.4
4.5
5.0
5.0 | 6.0
6.0
6.0
6.0 | 4.6
4.6
4.6
4.6
4.6 | 4.2
4.2
4.2
4.2
4.2 | 4.2
4.2
4.2
4.2
4.2 | 6.3
6.3
6.3
6.3 | 11
11
11
11
10 | 194
188
172
177
167 | 95
91
81
73
56 | 31
32
35
31
27 | 13
12
11
9.8
9.0 | | 11
12
13
14
15 | 3.2
3.0
3.2
3.1
3.3 | 5.0
5.0
5.0
5.0 | 6.0
6.0
6.0
6.0 | 4.6
4.6
4.6
4.7 | 4.2
4.2
4.2
4.2
4.2 | 4.2
4.2
4.2
4.2
4.2 | 6.3
6.3
6.3
6.3 | 11
15
27
44
47 | 169
136
120
79
93 | 57
73
66
67
62 | 25
25
25
23
23 | 8.8
12
17
20
18 | | 16
17
18
19
20 | 3.6
3.5
3.5
3.3 | 5.0
5.0
5.0
5.0 | 6.0
6.0
6.0
6.0 | 4.7
4.7
4.7
4.7
4.7 | 4.2
4.2
4.2
4.2
4.2 | 4.2
4.2
4.2
4.2
4.2 | 6.3
6.3
6.8
7.2 | 47
47
46
46
45 | 116
138
135
178,
204 | 53
53
50
50
46 | 25
25
23
23
22 | 16
14
13
12
12 | | 21
22
23
24
25 | 3.3
3.7
3.6
3.5
3.6 | 5.0
5.0
5.0
5.0 | 6.0
6.0
6.0
6.0 | 4 · 7
4 · 7
4 · 7
4 · 7
4 · 7 | 4.2
4.2
4.2
4.2
4.2 | 4.2
4.2
4.2
4.2
4.2 | 8.0
8.4
8.6
8.6
8.6 | 37
25
20
30
52 | 186
192
165
173
173 | 44
42
42
41
40 | 22
23
23
21
21 | 11
11
9.0
8.7
8.3 | | 26
27
28
29
30
31 | 3.4
3.3
3.1
3.2
3.5
3.6 | 5.0
5.0
5.0
5.0 | 6.0
6.0
5.6
5.2
4.9 | 4.7
4.7
4.3
3.8
3.5 | 4.2
4.2
4.2
4.2 | 4.2
4.2
4.2
5.0
5.6
6.0 | 8.6
8.6
8.6
8.6 | 83
107
110
128
134
79 | 172
150
172
197
129 | 40
39
37
38
38
37 | 20
20
20
19
18
17 | 8.0
7.7
7.7
7.6
7.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 109.0
3.52
4.3
3.0
216 | | 80.6
5.83
6.0
4.9
358 | 141.8
4.57
4.7
3.5
281 | 118.3
4.08
4.2
3.5
235 | 134.2
4.33
6.0
4.2
266 | 212.6
7.09
8.6
6.3
422 | 1283.9
41.4
134
9.9
2550 | 4573
152
218
52
9070 | 1868
60.3
107
37
3710 | 801
25.8
41
17
1590 | 359.8
12.0
20
7.2
714 | CAL YR 1987 TOTAL 8740.2 MEAN 23.9 MAX 179 MIN 1.7 AC-FT 17340 WTR YR 1988 TOTAL 9926.6 MEAN 27.1 MAX 218 MIN 3.0 AC-FT 19690 83 09055300 CATARACT CREEK NEAR KREMMLING, CO LOCATION.--Lat 39°50'07", long 106°18'57", in SW4NE4 sec.35, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, on right bank 70 ft downstream from lower Cataract Lake, 2.8 mi upstream from highwater line of Green Mountain Reservoir at elevation 7,950 ft, and 17 mi south of Kremmling. DRAINAGE AREA .-- 12.0 mi2. PERIOD OF RECORD. -- October 1966 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,605 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Record good. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 22 years, 20.6 ft 3/s; 14,920 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 353 ft³/s, June 25, 1983, gage height, 5.20 ft, maximum gage height, 5.43 ft, June 21, 1967; minimum daily discharge, 0.28 ft³/s, Oct. 7, 1971. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft , and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|-----------------------------------|---------------------|------------------------------|----------------------|----------------------|-----------------------| | May 18
May 30 | 0100
0600 | 174
160 | 3.99
3.91 | June 7
June 20
June 29 | 0400
0400
0800 | *290
217
187 | *4.50
4.20
4.06 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 0.56 ft³/s, Sept. 11. | | | DISCHARC | is, cobic | rest ien | M | EAN VALUE | S | 1907 10 1 | JEI TEMBER | 1300 | | | |--------------------------------------|-----------------------------------|-----------------------------------|--|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|--|------------------------------------| | DAY | OCT | иол | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.6
2.5
2.4
2.3
2.2 | 1.6
1.8
2.0
2.2
2.3 | 2.6
2.5
2.5
2.4
2.4 | 1.9
1.9
1.7
1.7 | 1.3
1.3
1.3
1.3 | .86
.86
.87
.92 | 1.4
1.4
1.4
1.4 | 20
19
16
13
14 | 59
56
101
184
238 | 70
55
47
44
44 | 11
11
10
9.1
8.6 | 3.5
3.3
3.2
3.1
2.9 | | 6
7
8
9
10 | 2.1
2.1
1.9
1.7 | 2.4
2.6
2.6
2.7
2.6 | 2.4
2.4
2.3
2.3 | 1.8
1.8
1.7
1.7 | 1.3
1.3
1.2
1.2 | .98
1.1
1.2
1.2 | 1.7
2.0
2.7
3.2
3.4 | 20
18
17
14
14 | 224
231
208
209
199 | 56
47
43
39
34 | 8.0
8.0
8.1
7.7
6.9 | 2.8
2.4
2.3
1.7
.88 | | 11
12
13
14
15 | 1.3
1.2
1.1
1.0
.88 | 2.6
2.4
1.9
2.0
2.1 | 2.3
2.3
2.3
2.3
2.3 | 1.6
1.6
1.6
1.6 | 1.2
1.2
1.2
1.2 | 1.3
1.4
1.4
1.4 | 3.6
4.5
6.6
8.3
8.9 | 13
19
33
47
56 | 205
157
135
81
94 | 30
34
33
31
30 | 6.2
5.7
5.3
5.0
4.6 | .56
.70
1.2
2.2
2.9 | | 16
17
18
19
20 | .79
.87
.73
.71 | 2.3
2.5
2.5
2.5
2.6 | 2.3
2.2
2.2
2.2
2.1 | 1.5
1.5
1.6
1.5 | 1.1
1.1
1.1
1.1 | 1.4
1.4
1.4
1.4 | 11
15
15
17
17 | 63
108
150
146
77 | 107
134
120
161
181 | 26
24
22
21
20 | 4.6
5.4
5.8
5.6
5.1 | 3.4
3.0
2.6
2.4
2.3 | | 21
22
23
24
25 | .66
.59
.65
.68 | 2.6
2.7
2.7
2.6
2.6 | 2.0
1.9
1.9
2.0
2.0 | 1.5
1.5
1.4
1.4 | 1.1
.96
.92
.89 | 1.3
1.3
1.2
1.3 | 18
16
14
11
9.6 | 44
37
31
33
42 | 171
169
142
136
133 | 17
15
14
13
12 | 4.9
5.1
4.9
4.8
4.4 | 2.1
1.9
1.9
1.8
1.8 | | 26
27
28
29
30
31 | .98
1.1
1.3
1.4
1.4 | 2.6
2.6
2.6
2.6 | 2.0
2.0
2.1
2.1
2.1
2.0 | 1.4
1.3
1.3
1.3
1.2 | .86
.83
.80
.84 | 1.1
1.2
1.3
1.3
1.4 | 8.8
8.2
8.0
8.9 | 55
83
98
113
141
83 | 121
89
108
156
100 | 11
11
11
11
12
11 | 4.3
4.6
4.4
4.1
3.9
3.6 | 1.6
1.5
1.4
1.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 41.62
1.34
2.6
.59
83 | 72.4
2.41
2.7
1.6
144 | 68.7
2.22
2.6
1.9
136 | 48.3
1.56
1.9
1.2
96 | 32.36
1.12
1.3
.80
64 | 37.82
1.22
1.4
.86
75 | 242.6
8.09
18
1.4
481 | 1637
52.8
150
13
3250 | 4409
147
238
56
8750 | 888
28.6
70
11
1760 | 190.7
6.15
11
3.6
378 | 64.04
2.13
3.5
.56
127 | CAL YR 1987 TOTAL 5638.52 MEAN 15.4 MAX 176 MIN .59 AC-FT 11180 WTR YR 1988 TOTAL 7732.54 MEAN 21.1 MAX 238 MIN .56 AC-FT 15340 #### RESERVOIRS IN BLUE RIVER BASIN 09050600 DILLON RESERVOIR.--Lat 39°37'14", long 106°03'53", in NEt sec.13, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, in gatehouse at dam, 0.8 mi upstream from Straight Creek, about 1.3 mi southwest of Dillon, and 3.5 mi northeast of Frisco. DRAINAGE AREA, 335 mi². PERIOD OF RECORD, September 1963 to current year. GAGE, nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Denver Board of Water Commissioners); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Reservoir is earth and rockfill dam. Dam completed and storage began Sept. 3, 1963; dead storage pool filled Sept. 12, 1963. Capacity, 254,000 acre-ft between elevations 8,829.00 ft, invert of outlet valve, and 9,017.00 ft, crest of spillway. Dead storage, 3,270
acre-ft. Figures given represent usable contents. Reservoir stores water for transmountain diversion to South Platte River basin through Harold D. Roberts tunnel for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 262,200 acre-ft, June 30, 1983, elevation, 9,019.46 ft; minimum since appreciable storage was attained in July 1964, 45,310 acre-ft, Apr. 20, 1965, elevation, 8,904.16 ft. 8,904.16 ft. EXTREMES FOR CURRENT YEAR: Maximum contents, 260,500 acre-ft, June 10, elevation, 9,018.96 ft; minimum, 231,100 acre-ft, Apr. 10, 11, elevation, 9,009.61. 09057000 GREEN MOUNTAIN RESERVOIR.--Lat 39°52'42", long 106°19'45", in NE¹/₄ sec.15, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, in hoist house at right end of dam, 0.6 mi upstream from Elliott Creek, and 13 mi southeast of Kremmling. DRAINAGE AREA, 598 mi², includes 15.3 mi² of Elliott Creek above diversion for Elliott Creek feeder canal. PERIOD OF RECORD, November 1942 to current year. REVISED RECORDS, WSP 2124: Drainage area. GAGE, Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. National Geodetic Vertical Datum of 1929. Reservoir is formed by an earth and rockfill dam. Dam completed and storage began November 1942. Capacity, 146,900 acre-ft between elevations 7,800 ft, sill of outlet gate, and 7,950 ft, top of radial spillway gates. Dead storage, 6,860 (revised) acre-ft. Figures given represent usable contents. Reservoir is used for power development and storage for replacement of water diverted to South Platte River basin. Water released to fill decrees during late irrigation season when flow of Colorado River is deficient. Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD: Maximum contents, 148,900 acre-ft, July 10, 1947, elevation, 7,950.95 ft; minimum since appreciable storage was attained, 388 acre-ft, Jan. 12, 1963, elevation, 7,801.70 ft. EXTREMES FOR CURRENT YEAR: Maximum contents, 142,600 acre-ft, July 20, elevation, 7,948.03 ft; minimum, 52,770 acre-ft, May 12, elevation, 7,890.22 ft. #### MONTHEND ELEVATION AND CONTENTS. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Elevation | Contents | Change in contents | Elevation | Contents | Change in contents | |---|--|---|---|--|---|--| | Date | (feet) | (acre-feet) | (acre-feet) | (feet) | (acre-feet) | (acre-feet) | | | 09050600 | DILLON RESERVOIR | | 09057000 | GREEN MOUNTAI | N RESERVOIR | | Sept. 30
Oct. 31
Nov. 30
Dec. 31 | 9,015.76
9,014.58
9,014.18
9,012.89 | 250,000
246,300
245,000
241,000 | -3,700
-1,300
-4,000 | 7,934.47
7,924.52
7,919.31
7,914.27 | 116,000
98,700
90,430
82,940 | -17,300
-8,270
-7,490 | | CAL YR 1987 | - | - | +2,400 | - | - | -20,400 | | Jan. 31 | 9,012.06
9,010.56
9,009.70
9,010.56
9,016.52
9,016.05
9,016.05
9,014.01
9,014.16 | 238,500
234,000
231,400
231,000
252,500
257,700
251,000
244,500
245,000 | -2,500
-4,500
-2,600
+2,600
+18,500
+5,200
-6,700
-6,500
+500 | 7,908.55
7,902.53
7,894.59
7,894.59
7,905.50
7,946.71
7,945.71
7,931.45
7,918.16 | 74,940
67,070
57,950
54,240
70,890
139,900
137,800
110,600
88,680 | -8,000
-7,870
-9,120
-3,710
+16,650
+69,010
-2,100
-27,200
-21,920 | | WTR YR 1988 | _ | - | -5,000 | - | _ | -27,320 | 09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO LOCATION.--Lat 39°52'49", long 106°20'00", in SW4NE4 sec.15, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, on left bank 0.3 mi upstream from Elliott Creek, 0.3 mi downstream from Green Mountain Dam, and 13 mi southeast of Kremmling. DRAINAGE AREA. -- 599 mi², includes 15.3 mi² of Elliott Creek above diversion for Elliott Creek feeder canal. PERIOD OF RECORD.--October 1937 to current year. Prior to October 1943, published as Blue River below Green Mountain Reservoir, near Kremmling. Water-quality data available, January 1986 to September 1987. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7,682.66 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Oct. 1, 1951, water-stage recorder at site 3.7 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records excellent. Flow regulated by Green Mountain Reservoir since November 1942 (station 09057000). Diversions for irrigation of about 5,000 acres upstream from station. Transmountain diversions upstream from station (see elsewhere in this report). EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,000 ft³/s, June 4, 1938, gage height, 5.93 ft, site and datum then in use, from rating curve extended above 3,000 ft³/s; maximum gage height, 9.52 ft, July 11, 1983; minimum daily discharge (prior to construction of Green Mountain Reservoir), 80 ft³/s, Feb. 18-24, 1938, Feb. 18-19, 1940; no flow at times in 1943. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,190 ft³/s at 1100 July 1, gage height, 6.40 ft; minimum daily, 201 ft³/s, Dec. 24. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISCHANG | z, CODIC | rgai rga | M | EAN VALUE | S OCTOBER | 1907 10 | DEL TEMBER | 1 1 900 | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|--------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | Æ U G | SEP | | 1 | 704 | 258 | 207 | 205 | 216 | 301 | 287 | 363 | 420 | 1160 | 547 | 648 | | 2 | 701 | 256 | 220 | 203 | 215 | 301 | 280 | 358 | 422 | 1180 | 453 | 639 | | 3 | 698 | 259 | 215 | 205 | 214 | 299 | 280 | 357 | 472 | 1090 | 399 | 638 | | 4 | 703 | 258 | 212 | 230 | 216 | 296 | 282 | 358 | 517 | 986 | 444 | 638 | | 5 | 702 | 256 | 208 | 230 | 219 | 297 | 281 | 361 | 513 | 818 | 513 | 638 | | 6 | 704 | 259 | 207 | 207 | 215 | 294 | 284 | 359 | 513 | 674 | 578 | 638 | | 7 | 700 | 256 | 207 | 207 | 215 | 294 | 286 | 356 | 513 | 675 | 561 | 633 | | 8 | 702 | 256 | 212 | 217 | 214 | 298 | 315 | 359 | 516 | 674 | 585 | 631 | | 9 | 700 | 257 | 209 | 211 | 216 | 298 | 334 | 360 | 516 | 675 | 663 | 631 | | 10 | 699 | 257 | 202 | 213 | 214 | 297 | 332 | 360 | 562 | 674 | 744 | 631 | | 11 | 705 | 256 | 204 | 217 | 214 | 297 | 330 | 363 | 620 | 543 | 779 | 631 | | 12 | 706 | 251 | 202 | 224 | 214 | 297 | 330 | 345 | 619 | 393 | 780 | 626 | | 13 | 670 | 261 | 205 | 226 | 217 | 301 | 330 | 294 | 621 | 339 | 805 | 577 | | 14 | 560 | 262 | 204 | 226 | 217 | 298 | 333 | 280 | 686 | 334 | 813 | 532 | | 15 | 486 | 257 | 207 | 225 | 216 | 297 | 318 | 273 | 772 | 305 | 809 | 534 | | 16 | 488 | 255 | 204 | 220 | 214 | 297 | 270 | 273 | 773 | 288 | 805 | 504 | | 17 | 492 | 237 | 208 | 220 | 224 | 290 | 267 | 277 | 731 | 286 | 782 | 480 | | 18 | 493 | 212 | 206 | 221 | 282 | 285 | 266 | 272 | 669 | 294 | 742 | 482 | | 19 | 443 | 215 | 209 | 222 | 295 | 282 | 269 | 231 | 670 | 313 | 733 | 484 | | 20 | 407 | 214 | 204 | 223 | 292 | 280 | 317 | 270 | 672 | 362 | 733 | 484 | | 21 | 387 | 208 | 205 | 223 | 292 | 284 | 361 | 271 | 678 | 399 | 730 | 482 | | 22 | 361 | 206 | 205 | 219 | 293 | 284 | 364 | 269 | 675 | 424 | 729 | 460 | | 23 | 321 | 212 | 206 | 212 | 296 | 288 | 359 | 273 | 656 | 461 | 712 | 421 | | 24 | 257 | 211 | 201 | 215 | 296 | 287 | 362 | 273 | 695 | 458 | 687 | 420 | | 25 | 256 | 210 | 206 | 217 | 293 | 284 | 360 | 270 | 751 | 468 | 686 | 417 | | 26
27
28
29
30
31 | 256
256
256
262
264
259 | 210
211
212
212
210 | 204
209
211
207
209
211 | 217
213
217
218
215
215 | 300
295
294
293 | 282
288
285
290
284
286 | 361
361
360
358 | 270
338
421
423
422
419 | 744
740
734
727
892 | 476
493
592
608
616
594 | 688
688
688
688
684
656 | 418
408
388
388
394 | | TOTAL | 15598 | 7094 | 6426 | 6733 | 7191 | 9041 | 9598 | 10118 | 19089 | 17652 | 20904 | 15895 | | MEAN | 503 | 236 | 207 | 217 | 248 | 292 | 320 | 326 | 636 | 569 | 674 | 530 | | MAX | 706 | 262 | 220 | 230 | 300 | 301 | 364 | 423 | 892 | 1180 | 813 | 648 | | MIN | 256 | 206 | 201 | 203 | 214 | 280 | 266 | 231 | 420 | 286 | 399 | 388 | | AC-FT | 30940 | 14070 | 12750 | 13350 | 14260 | 17930 | 19040 | 20070 | 37860 | 35010 | 41460 | 31530 | CAL YR 1987 TOTAL 138141.0 MEAN 378 MAX 722 MIN 1.0 AC-FT 274000 WTR YR 1988 TOTAL 145339 MEAN 397 MAX 1180 MIN 201 AC-FT 288300 #### 09058000 COLORADO RIVER NEAR KREMMLING, CO LOCATION.--Lat 40°02'12", long 106°26'22", in NE4SW4 sec.23, T.1 N., R.81 W., Grand County, Hydrologic Unit 14010001, on right bank at upstream end of Gore Canyon, 3.0 mi southwest of Kremmling, and 3.8 mi downstream from Blue River. DRAINAGE AREA . -- 2,382
mi2. PERIOD OF RECORD.--July 1904 to September 1918 (published as Grand River near Kremmling), October 1961 to September 1970, October 1971 to current year. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1313 for history of changes prior to Oct. 1, 1961. REMARKS.--Estimated daily discharges: Dec. 16 to Jan. 1, Jan. 4-19, Jan. 21 to Feb. 3, and Feb. 8-16. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 40,000 acres upstream from station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--26 years (water years 1962-70, 1972-88), 1,054 ft3/s; 763,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 21,500 ft³/s, June 7, 1912, gage height, 21.8 ft, datum then in use, from rating curve extended above 14,000 ft³/s; minimum observed, 166 ft³/s, Dec. 19, 1907. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,280 ft³/s at 1400 May 20, gage height, 9.47 ft; minimum daily, 403 ft³/s, Dec. 14. | | Q | DISCHARGE, | CUBIC | FEET PER | SECOND, M | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|-------------------------------------|--|---------------------------------------|--|--|--|---|-------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 826 | 582 | 495 | 520 | 500 | 586 | 652 | 1680 | 1710 | 2200 | 991 | 887 | | 2 | 825 | 598 | 533 | 504 | 500 | 596 | 678 | 1600 | 1390 | 2190 | 906 | 882 | | 3 | 823 | 616 | 540 | 521 | 500 | 596 | 782 | 1400 | 1210 | 2070 | 871 | 840 | | 4 | 831 | 610 | 531 | 510 | 495 | 598 | 999 | 1360 | 1310 | 1980 | 878 | 832 | | 5 | 828 | 595 | 533 | 510 | 493 | 594 | 1100 | 1400 | 1370 | 1720 | 934 | 831 | | 6 | 824 | 639 | 533 | 510 | 500 | 593 | 999 | 1510 | 1460 | 1410 | 984 | 833 | | 7 | 820 | 654 | 522 | 510 | 512 | 597 | 1170 | 1500 | 1390 | 1340 | 1000 | 829 | | 8 | 822 | 657 | 529 | 510 | 520 | 589 | 1360 | 1400 | 1380 | 1260 | 982 | 882 | | 9 | 821 | 645 | 517 | 510 | 520 | 591 | 1140 | 1360 | 1230 | 1230 | 979 | 880 | | 10 | 825 | 632 | 519 | 510 | 520 | 590 | 997 | 1350 | 1260 | 1240 | 1030 | 931 | | 11 | 828 | 634 | 517 | 510 | 520 | 588 | 979 | 1310 | 1240 | 1240 | 1060 | 927 | | 12 | 830 | 630 | 496 | 510 | 520 | 577 | 1090 | 1380 | 1220 | 1150 | 1050 | 907 | | 13 | 834 | 631 | 504 | 510 | 520 | 587 | 1260 | 1530 | 1190 | 978 | 1070 | 875 | | 14 | 784 | 635 | 403 | 510 | 520 | 587 | 1290 | 1780 | 1130 | 835 | 1080 | 804 | | 15 | 714 | 643 | 516 | 510 | 520 | 590 | 1360 | 2040 | 1120 | 800 | 1070 | 802 | | 16 | 711 | 634 | 520 | 510 | 520 | 597 | 1440 | 2220 | 1080 | 817 | 1070 | 793 | | 17 | 705 | 639 | 520 | 510 | 510 | 598 | 1510 | 2360 | 1040 | 786 | 1060 | 762 | | 18 | 704 | 593 | 520 | 510 | 510 | 572 | 1430 | 2420 | 1000 | 760 | 1030 | 746 | | 19 | 673 | 564 | 520 | 510 | 618 | 572 | 1470 | 2680 | 1110 | 777 | 1020 | 746 | | 20 | 601 | 507 | 520 | 481 | 639 | 575 | 1480 | 3160 | 1160 | 879 | 1000 | 734 | | 21 | 592 | 509 | 540 | 500 | 595 | 586 | 1590 | 2700 | 1310 | 923 | 1000 | 708 | | 22 | 551 | 516 | 540 | 500 | 589 | 594 | 1530 | 2120 | 1440 | 943 | 1030 | 706 | | 23 | 542 | 532 | 540 | 500 | 591 | 603 | 1350 | 1920 | 2110 | 988 | 995 | 662 | | 24 | 468 | 531 | 540 | 500 | 574 | 625 | 1230 | 1670 | 1890 | 973 | 946 | 661 | | 25 | 484 | 513 | 540 | 500 | 572 | 611 | 1190 | 1620 | 1630 | 974 | 944 | 657 | | 26
27
28
29
30
31 | 497
485
470
471
490
577 | 520
519
508
514
517 | 540
550
560
560
560
540 | 500
500
500
500
500
500 | 577
576
584
581 | 619
693
811
723
698
659 | 1150
1110
1100
1160
1420 | 1640
1700
1930
2070
2120
2100 | 1310
1300
1360
1740
2190 | 979
924
909
947
986
985 | 989
1000
996
960
940
896 | 656
658
641
644
637 | | TOTAL
MEAN
MAX
MIN
AC-FT | 21256
686
834
468
42160 | 584
657
507 | 6298
526
560
403
2330 | 15686
506
521
481
31110 | 15696
541
639
493
31130 | 18995
613
811
572
37680 | 36016
1201
1590
652
71440 | 57030
1840
3160
1310
113100 | 41280
1376
2190
1000
81880 | 36193
1168
2200
760
71790 | 30761
992
1080
871
61010 | 23353
778
931
637
46320 | CAL YR 1987 TOTAL 294862 MEAN 808 MAX 1840 MIN 403 AC-FT 584900 WTR YR 1988 TOTAL 330081 MEAN 902 MAX 3160 MIN 403 AC-FT 654700 #### 09058030 COLORADO RIVER NEAR RADIUM, COLORADO LOCATION.--Lat 39°58'01", long 106°31'22", in NW4NW4 sec.24, T.1 S., R.82 W., Grand County, Hydrologic Unit 14010001, on left bank, 1.0 mi upstream from Blacktail Creek, 2.0 mi northeast of Radium, and 3.0 mi downstream from Canyon Creek. DRAINAGE AREA .-- 2,412 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1981 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,910 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 15 to May 13. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 40,000 acres upstream from station, and return flow from irrigated areas. AVERAGE DISCHARGE.--7 years, 1,407 ft3/s; 1,019,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,800 ft³/s, probably occurred on May 26, 1984, gage height, 12.91 ft, from highwater mark in well; minimum daily, 370 ft³/s, Dec. 23-25, 1981. EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 3,350 ft³/s at 1800 May 20, gage height, 6.06 ft; minimum daily, 422 ft³/s, Dec. 14. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEA
IEAN VALUE | R OCTOBE | R 1987 TO | SEPTEMBE | 1988 | | | |--------------------------------------|---|-------------------------------------|--|--|---|--|---------------------------------------|--|--|---------------------------------------|---|-------------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 854
850
8 47
853
853 | 594
604
620
623
604 | 504
540
565
563
560 | 520
485
500
530
540 | 525
525
520
515
510 | 620
620
620
620
620 | 700
800
925
1060
1090 | 1680
1590
1420
1390
1460 | 1820
1480
1250
1360
1440 | 2190
2190
2090
2010
1790 | 1070
987
948
946
1000 | 953
950
909
904
902 | | 6
7
8
9
10 | 847
841
843
840
843 | 647
662
665
656
644 | 560
560
560
528
540 | 539
530
530
530
530 | 510
520
52 8
530
535 | 620
620
620
620
620 | 1120
1280
1400
1180
1010 | 1510
1510
1400
1380
1350 | 1550
1470
1460
1280
1290 | 1490
1420
1320
1300
1310 | 1050
1060
1040
1030
1080 | 902
896
943
936
986 | | 11
12
13
14
15 | 846
850
853
812
738 | 644
644
641
644
653 | 542
506
482
422
500 | 525
521
520
520
522 | 540
540
540
540
540 | 610
600
605
610
610 | 1050
1200
1290
1340
1400 | 1360
1500
1700
1990
2050 | 1290
1250
1210
1160
1140 | 1320
1230
1050
902
869 | 1120
1110
1130
1140
1130 | 993
974
946
879
879 | | 16
17
18
19
20 | 724
714
713
692
615 | 650
650
607
584
528 | 535
540
540
540
540 | 530
530
520
- 500 | 540
540
610
650
660 | 618
610
600
600 | 1490
1520
1470
1490
1520 | 2240
2400
2480
2670
3220 | 1110
1080
1030
1140
1180 | 886
855
832
839
933 | 1130
1130
1090
1090
1070 | 869
845
830
828
818 | | 21
22
23
24
25 | 612
568
563
496
494 | 530
537
552
555
530 | 520
540
560
550
540 | 510
520
520
520
510 | 630
620
610
600 | 600
618
640
640 | 1600
1520
1350
1250
1180 | 2830
2220
2000
1770
1690 | 1370
1510
2130
1980
1740 | 982
1000
1040
1030
1030 | 1070
1100
1060
1020
1020 | 794
788
742
738
737 | | 26
27
28
29
30
31 | 506
508
494
487
499
581 | 540
542
518
516
520 | 540
560
580
580
570
560 | 518
520
522
525
525
525 | 600
600
600
 | 720
820
840
765
720
685 | 1150
1120
1150
1320
1580 | 1710
1770
1980
2120
2170
2170 | 1410
1380
1420
1740
2170 | 1040
999
966
1010
1050 | 1050
1070
1060
1040
1010
966 | 735
735
712
715
712 | | TOTAL
MEAN
MAX
MIN
AC-FT |
21836
704
854
487
43310 | 17904
597
665
516
35510 | 16727
540
580
422
33180 | 16137
521
540
4 8 5
32010 | 16378
565
660
510
32490 | 19951
644
840
600
39570 | 37555
1252
1600
700
74490 | 58730
1895
3220
1350
116500 | 42840
1428
2170
1030
84970 | 38023
1227
2190
832
75420 | 32817
1059
1140
946
65090 | 25550
852
993
712
50680 | CAL YR 1987 TOTAL 305080 MEAN 836 MAX 1870 MIN 422 AC-FT 605100 WTR YR 1988 TOTAL 344448 MEAN 941 MAX 3220 MIN 422 AC-FT 683200 # COLORADO RIVER MAIN STEM # 09058030 COLORADO RIVER NEAR RADIUM, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- August 1981 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | 1 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER
ATURE
WATER
(DEG C | F
1 | CUR-
BID-
CTY | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./ | CALCIUM
TOTAL
RECOV-
ERABLE
(MG/L
AS CA) | MAGNE -
SIUM,
TOTAL
RECOV -
ERABLE
(MG/L
AS MG) | |-------------|-----------|---|--|--|------------------------------------|---|----------------------------------|---|--|---|---|---| | OCT
O7 | | . 1000 | 831 | 224 | 7.8 | 8. | 0 | 1.4 | 9.4 | К4 | 26 | 4.3 | | MAR
30. | | 1345 | | 282 | 7.4 | 2. | 5 | 4.9 | 11.7 | к6 | 29 | 6.8 | | APR
29 | | 0900 | 1200 | 276 | 7.5 | 6. | | 3.3 | 9.7 | 31 | 35 | 7.9 | | MAY 25. | | 1100 | 1670 | 208 | 7.6 | | | 3.3 | 8.7 | K56 | 26 | 5.7 | | JUN 28. | | 1100 | | | | 10. | | | | 56 | 34 | | | AUG | | | 1400 | | 7.6 | 14. | | 3.2 | 7.6 | _ | _ | 7.8 | | | • • • | 0945
1100 | 953
980 | 221
209 | 8.5
8.5 | 14.
12. | | 5.3
3.0 | 8.5
9.1 | 42
23 | 24
26 | 4.8
4.5 | | SEP
21 | • • • | 1115 | 785 | 210 | 8.6 | 12. | 5 | 2.5 | 9.2 | K10 | 25 | 4.1 | | I | DATE | SODIUM,
TOTAL
RECOV-
ERABLE
(MG/L
AS NA) | POTAS -
SIUM,
TOTAL
RECOV -
ERABLE
(MG/L
AS K) | ALKA -
LINITY
LAB
(MG/L
AS
CACO3) | SULFIDE
TOTAL
(MG/L
AS S) | SULFATI
DIS-
SOLVE
(MG/L
AS SO4 | E RI
DI
D S(| ILO- | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | 0 CT
07 | | 6.2 | 1.5 | 62 | <0.5 | 45 | | 2.2 | 139 | 8 | <0.01 | <0.10 | | MA R
30. | | 11 | 3.3 | 77 | | 58 | | 4.5 | 175 | 14 | | | | APR
29 | | 9.9 | 2.1 | 78 | <0.5 | 52 | | 3.1 | 182 | 49 | <0.01 | <0.10 | | MAY 25. | | 7.0 | 1.5 | 67 | <0.5 | 36 | | 2.0 | 124 | 96 | <0.01 | <0.10 | | JUN 28. | | 9.2 | 1.4 | 84 | <0.5 | 50 | | 2.7 | 167 | 30 | <0.01 | <0.10 | | AUG 03. | | | 1.4 | 73 | 10.5 | | | | 124 | 20 | <0.01 | <0.10 | | | • • • | 7.6
5.1 | 1.9 | 62 | <0.5 | 33
37 | | 2.1
2.5 | 125 | 13 | <0.01 | <0.10 | | 21. | ••• | 4.5 | 1.3 | 62 | <0.5 | 36 | | 2.5 | 137 | 2 | <0.01 | <0.10 | | | DA TE | NIT
GEN,
MONI
ORGA
TOT
(MG
AS | AM-
A + PHO
NIC PHOR
AL TOT
/L (MG | OUS ORT | US,
HO, ARSE
AL TOT | ENIC RICAL E. | ORON, OTAL ECOV- RABLE UG/L S B) | CADMI
TOTA
RECO
ERAB
(UG/
AS C | L TOT
V- REC
LE ERA
L (UG | M, COPP
AL TOT
OV- REC
BLE ERA
/L (UG | AL
OV - CYAN
BLE TOT
/L (MC | 'AL | | | 07 | <0 | .2 0. | 01 0. | 01 | <1 | 110 | | <1 | <1 | 3 | | | | MAR
30 | | | | | 2 | 30 | | <1 | <1 | 3 | | | | APR
29 | 0 | .4 0. | 05 0. | 02 | 1 | 10 | | 1 | 2 | 5 <0. | 01 | | | MAY
25 | 0 | .2 0. | 04 0. | 03 | <1 | 50 | | 2 | 8 | 13 <0. | 01 | | | JUN
28 | 0 | .3 0. | 03 0. | 02 | 1 | 30 | | <1 | 2 | 4 <0. | 01 | | I | 03 | | | | 02 | < 1 | 30 | | <1 | 1 | - | | | 5 | 31
SEP | 0 | .3 0. | 03 <0. | 01 | 2 | <10 | | <1 | <1 | 9 <0. | | | | 21 | 0 | .3 0. | 02 0. | 01 | 1 | 50 | | <1 | 2 | 4 <0. | 01 | K BASED ON NON-IDEAL COLONY COUNT. 09058030 COLORADO RIVER NEAR RADIUM, CO--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | MANGA - NESE, TOTAL RECOV - ERABLE (UG/L AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | |-----------|---|--|---|---|--|--|---|--|---| | ост | | | | | | | | | | | 07 | 240 | 40 | < 5 | 30 | <10 | <0.1 | 2 | <1 | <1 | | MAR
30 | 690 | 50 | < 5 | 50 | 30 | <0.1 | 1 | <1 | <1 | | APR | 0,0 | 50 | - , | 70 | 50 | -0.1 | • | • | | | 29 | 2600 | 80 | 14 | 70 | 20 | <0.1 | 3 | < 1 | 1 | | MA Y | | | _ | | | | | | | | 25
JUN | 3000 | 80 | 7 | 100 | 20 | <0.1 | 15 | <1 | <1 | | 28 | 720 | 80 | 6 | 70 | 30 | <0.1 | 5 | 1 | <1 | | AUG | , | | • | , - | 3. | • • • | • | · | | | 03 | 700 | 30 | 6 | 80 | 10 | <0.1 | 2
4 | < 1 | <1 | | 31 | 420 | 30 | < 5 | 60 | 10 | 0.1 | 4 | <1 | < 1 | | SEP | | | | | | | | | | | 21 | 340 | 50 | < 5 | 40 | 20 | <0.1 | < 1 | <1 | < 1 | 90 PINEY RIVER BASIN # 09058500 PINEY RIVER BELOW PINEY LAKE, NEAR MINTURN, CO LOCATION.--Lat 39°42'29", long 106°25'34", Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from Dickson Creek, 2.0 mi downstream from Piney Lake, and 8.5 mi north of Minturn. DRAINAGE AREA .-- 13.0 mi2. PERIOD OF RECORD. -- October 1947 to September 1954, October 1963 to current year. GAGE.--Water-stage recorder. Datum of gage is 9,145.25 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to October 1963, water-stage recorder at site 15 ft upstream at present datum. REMARKS.--Estimated daily discharges: Nov. 10 to Apr. 14. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 32 years (1948-54, 1964-88), 25.0 ft3/s; 18,110 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 560 ft³/s, June 8, 1985, gage height, 5.12 ft; maximum gage height observed, 6.44 ft, Apr. 13, 1977; minimum not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |----------------------------|----------------------|----------------------|-----------------------|--------------------|--------------|----------------------|---------------------| | May 19
May 30
June 5 | 0400
0400
0200 | 178
196
*322 | 4.35
4.40
*4.70 | June 20
June 29 | 0100
0600 | 226
246 | 4.48
4.53 | Minimum daily discharge, 1.4 ft³/s, Sept. 7, 8. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|--|--|-----------------------------------|--|-----------------------------------|------------------------------------|----------------------------------|------------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.8
2.6
2.6
2.4
2.4 | 4.2
5.1
5.2
4.8
4.5 | 2.1
2.0
2.2
2.2
2.1 | 2.0
1.7
1.5
1.6
1.8 | 2.1
2.0
2.0
1.9
1.8 | 2.3
2.3
2.3
2.2
2.1 | 4.0
4.4
4.8
5.2 | 29
23
18
18
22 | 61
58
118
219
250 | 62
53
44
41
40 | 8.8
8.5
8.0
7.7
6.6 | 1.9
1.8
1.7
1.6
1.5 | | 6
7
8
9
10 | 2.3
2.3
2.3
2.1
2.1 | 4.7
4.9
4.8
4.8
4.5 | 2.1
2.2
2.1
2.0
2.0 | 2.0
2.2
2.2
2.2
2.1 | 1.9
2.0
2.2
2.3
2.1 | 2.2
2.4
2.6
2.2 | 6.0
8.2
12
10
8.0 | 25
20
19
16
16 | 208
220
203
206
176 | 40
36
34
28
22 | 5.7
5.9
6.6
6.3
5.5 | 1.5
1.4
1.4
1.5
1.5 | | 11
12
13
14
15 | 2.1
2.1
2.1
2.4
2.9 | 4.0
3.6
3.2
2.8
2.5 | 2.0
1.9
1.7
1.6
1.6 | 2.1
2.0
1.8
1.7
1.8 | 2.2
2.2
2.1
2.1
2.2 | 2.1
2.4
2.5
2.5
2.4 | 9.4
11
14
24
23 |
18
29
55
83
99 | 180
124
101
71
83 | 20
23
20
18
17 | 4.9
4.7
4.5
4.4
3.9 | 1.7
2.4
3.3
4.0
4.0 | | 16
17
18
19
20 | 3.3
3.4
3.4
3.1
3.1 | 2.1
2.0
2.0
2.0
2.1 | 1.6
1.7
1.9
2.0
2.1 | 2.0
2.2
2.2
2.1
1.6 | 2.1
2.3
2.1
2.0
2.2 | 2.3
2.6
2.8
2.5
2.4 | 23
25
27
28
28 | 125
130
133
140
74 | 91
105
103
172
168 | 15
14
13
12
11 | 4.0
4.3
4.3
4.0
3.5 | 3.6
3.2
2.9
2.8
2.6 | | 21
22
23
24
25 | 3.5
2.7
2.5
2.5
3.0 | 2.2
2.2
2.1
2.0
2.0 | 2.0
1.9
1.8
2.0
2.0 | 1.6
1.8
1.9
2.0 | 2.0
1.9
2.0
2.0 | 2.4
2.5
2.5
2.5
2.5 | 29
24
20
16
14 | 49
36
29
37
62 | 139
141
111
124
114 | 11
9.8
9.5
9.2
8.5 | 3.4
3.4
3.3
3.0
2.7 | 2.5
2.4
2.3
2.3 | | 26
27
28
29
30
31 | 3.3
3.4
3.3
3.5
3.9 | 2.0
2.1
2.2
2.2
2.2 | 1.9
1.8
2.0
2.0
1.9
2.1 | 1.8
1.9
2.0
2.1
2.2
2.2 | 2.3
2.4
2.4
2.4 | 3.0
3.4
4.0
4.4
3.8
3.8 | 14
12
11
14
20 | 74
89
91
119
146
73 | 103
90
104
170
79 | 8.5
8.8
8.5
8.5
7.9 | 2.5
2.5
2.4
2.1
2.0
2.0 | 2.2
2.3
2.3
2.1
2.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 86.7
2.80
3.9
2.1
172 | 95.0
3.17
5.2
2.0
188 | 60.5
1.95
2.2
1.6
120 | 60.2
1.94
2.2
1.5
119 | 61.4
2.12
2.4
1.8
122 | 82.1
2.65
4.4
2.1
163 | 453.0
15.1
29
4.0
899 | 1897
61.2
146
16
3760 | 4092
136
250
58
8120 | 661.7
21.3
62
7.9
1310 | 141.4
4.56
8.8
2.0
280 | 69.1
2.30
4.0
1.4
137 | CAL YR 1987 TOTAL 6321.8 MEAN 17.3 MAX 182 MIN 1.3 AC-FT 12540 WTR YR 1988 TOTAL 7760.1 MEAN 21.2 MAX 250 MIN 1.4 AC-FT 15390 #### PINEY RIVER BASIN 91 09058610 DICKSON CREEK NEAR VAIL, CO LOCATION.--Lat 39°42'14", long 106°27'25", Eagle County, Hydrologic Unit 14010001, on right bank 0.6 mi upstream from Freeman Creek, 1.0 mi upstream from mouth, and 6 mi northwest of Vail. DRAINAGE AREA. -- 3.41 mi2. PERIOD OF RECORD. -- October 1971 to current year. Prior to October 1972, published as "near Minturn." GAGE.--Water-stage recorder. Elevation of gage is 9,245 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 17 to April 12. Records good except for estimated daily discharges, which are poor. Diversion by Willy N. ditch 75 ft upstream for irrigation of hay meadows downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--17 years, 2.22 ft3/s; 1,610 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48 ft³/s, May 6, 1979, gage height, 2.75 ft; maximum gage height, 4.89 ft, May 9, 1984 (backwater from ice); no flow at times some years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6.4 $\rm ft^3/s$ at 2100 May 18, gage height, 2.41 ft; minimum daily, 0.40 $\rm ft^3/s$, Aug. 11-14. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .94
.93
.93
.93 | 1.2
1.2
1.0
.94 | .76
.76
.84
.84 | .72
.64
.64
.74
.84 | .75
.70
.70
.60 | .80
.89
.89
.84 | 1.0
1.0
1.1
1.1 | 2.7
2.3
2.1
2.2
2.7 | 3.8
3.6
3.6
3.9
4.5 | 1.4
1.4
1.3
1.3 | .93
.80
.72
.72 | .72
.79
.72
.72 | | 6
7
8
9
10 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
.94
.93 | .84
.80
.80 | . 84
. 84
. 84
. 84 | .68
.78
.84
.84 | .90
.86
1.0
1.0 | 1.2
1.3
1.3
1.3 | 2.7
2.5
2.5
2.5
2.5 | 4.3
4.1
4.1
3.9
3.7 | 1.3
1.2
1.2
1.2 | .57
.64
.57
.51
.45 | .77
.75
.75
.68 | | 11
12
13
14
15 | 1.1
1.1
1.0
1.2
1.2 | 1.0
.94
1.0
1.0 | .90
.82
.72
.66 | .84
.78
.68
.62 | .84
.80
.80
.80 | .90
.99
.99
.99 | 1.2
1.2
1.4
1.5 | 2.7
3.4
3.7
4.1
4.1 | 3.5
3.2
3.2
2.9
2.6 | 1.2
1.2
1.1
1.1 | .40
.40
.40
.40 | .87
.87
.95
.88
.77 | | 16
17
18
19
20 | 1.2
1.1
1.0
.94
.93 | .87
.80
.80
.76
.84 | .66
.78
.84
.84 | .72
.80
.80
.80 | .83
.94
.87
.80 | .93
1.0
1.0
.93
.86 | 1.5
1.6
1.6
1.7
2.0 | 4.1
4.2
4.7
5.2
4.1 | 2.5
2.3
2.2
2.4
2.2 | 1.0
1.0
1.0
1.1 | .51
.57
.51
.45 | .71
.67
.65
.62 | | 21
22
23
24
25 | .93
.93
.93
1.1 | .92
.92
.92
.92 | .80
.73
.80
.88 | .54
.54
.60
.60 | .74
.74
.70
.76
.84 | .86
.86
.82
.80 | 2.0
1.6
1.5
1.4
1.4 | 3.6
3.1
3.1
3.1
3.2 | 2.0
2.2
2.0
1.8
1.7 | .87
.80
.83 | .57
.57
.51
.51 | .64
.59
.59
.59 | | 26
27
28
29
30
31 | 1.1
.94
.93
.93
1.1 | .86
.88
.86
.80 | .80
.74
.74
.80
.80 | .56
.62
.75
.75
.75 | .88
.88
.88
 | .87
.98
1.1
1.1
1.0 | 1.4
1.5
1.6
1.9
2.6 | 3.4
3.9
4.5
4.9
4.3 | 1.7
1.7
1.9
1.8
1.5 | .93
.93
.93
.93
.93 | .57
.64
.64
.64
.67 | .57
.59
.65
.58
.62 | | TOTAL
MEAN
MAX
MIN
AC-FT | 31.72
1.02
1.2
.93
63 | 28.03
.93
1.2
.76
56 | 24.55
.79
.90
.66
49 | 22.06
.71
.84
.54
44 | 22.91
.79
.94
.60
45 | 28.63
.92
1.1
.80
57 | 43.6
1.45
2.6
1.0
86 | 107.0
3.45
5.2
2.1
212 | 84.8
2.83
4.5
1.5
168 | 33.46
1.08
1.4
.80
66 | 17.57
.57
.93
.40
35 | 21.00
.70
.95
.57
42 | TOTAL 460.02 MEAN 1.26 MAX 5.1 MIN .40 AC-FT 912 TOTAL 465.33 MEAN 1.27 MAX 5.2 MIN .40 AC-FT 923 CAL YR 1987 WTR YR 1988 #### 09058700 FREEMAN CREEK NEAR MINTURN, CO LOCATION.--Lat 39°41'54", long 106°26'42", Eagle County, Hydrologic Unit 14010001, on right bank 0.8 mi upstream from mouth and 7.5 mi north of Minturn. DRAINAGE AREA .-- 2.94 mi2. PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,335 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 9 to April 13. Records fair except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE .-- 24 years, 1.39 ft3/s; 1,010 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 82 ft³/s, May 25, 1984, gage height, 2.21 ft, maximum gage height, 3.51 ft, May 18, 1973 (backwater from ice); no flow for some days some years. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 25 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|-----------------------------------|---------------------| | May 15 | 1800 | *43 | *2.11 | | | | | Minimum daily, 0.05 ft³/s, Oct. 7, 10, Jan. 20, 21, 25, 26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------| | DA Y | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .11
.09
.07
.09 | .18
.24
.24
.20
.16 | .10
.10
.11
.11 | .09
.08
.07
.07 | .11
.10
.10
.09 | .12
.12
.13
.12 | .16
.17
.18
.19
.20 | 2.7
2.7
2.7
2.7
2.8 | 4.1
3.6
3.6
3.5 | .82
.78
.72
.65 | .12
.10
.12
.11 | .12
.12
.12
.12 | | 6
7
8
9
10 | .08
.05
.08
.06 | .16
.18
.17
.14 | .12
.12
.11
.11 | .08
.11
.11
.11 | .07
.09
.10
.12 | .12
.12
.13
.14 | .21
.24
.27
.24 | 3.0
2.7
2.7
2.6
2.5 | 3.4
3.1
2.8
2.6
2.4 | .62
.50
.43
.40 | .11
.12
.12
.11 | .06
.10
.10
.10 | | 11
12
13
14
15 | .07
.07
.11
.16 | .15
.12
.12
.13
.12 | .12
.10
.08
.07 | .09
.08
.07
.07 | .10
.09
.09
.09 | .12
.14
.14
.14 | .22
.24
.34
.50 | 3.2
5.6
11
15
16 |
2.2
2.2
2.1
1.9
1.7 | .35
.34
.30
.24 | .10
.1,1
.10
.09 | .12
.13
.14
.13 | | 16
17
18
19
20 | .17
.14
.12
.11 | .11
.11
.09
.08 | .07
.08
.10
.10 | .09
.08
.07
.06 | .10
.11
.10
.09 | .12
.14
.16
.14
.13 | .61
.72
.94
1.3
1.6 | 15
12
15
11
6.7 | 1.6
1.5
1.4
2.0
1.6 | .26
.23
.22
.19
.18 | .12
.12
.12
.12 | .11
.11
.11
.11 | | 21
22
23
24
25 | .09
.09
.08
.09 | .14
.14
.13
.12 | .09
.09
.10
.11 | .05
.06
.07
.06 | .11
.12
.13 | .13
.14
.13
.12 | 1.9
1.9
1.9
1.8 | 5.1
4.2
4.0
4.2
4.8 | 1.3
1.6
1.3
1.1 | .17
.15
.15
.15 | .12
.12
.12
.11 | .11
.12
.12
.11 | | 26
27
28
29
30
31 | .18
.16
.14
.13
.14 | .11
.12
.11
.10
.11 | .09
.08
.09
.10
.09 | .05
.06
.08
.09
.10 | .13
.13
.13
.13 | .14
.16
.19
.17
.16 | 1.8
1.8
1.8
1.7 | 4.9
5.4
5.5
5.7
5.0 | .97
.96
1.3
1.3
.99 | .15
.15
.13
.13
.12 | .10
.11
.09
.08
.09 | .11
.11
.11
.12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3.45
.11
.22
.05
6.8 | 4.14
.14
.24
.08
8.2 | 3.05
.098
.12
.07
6.0 | 2.41
.078
.11
.05
4.8 | 3.03
.10
.13
.07
6.0 | 4.22
.14
.19
.12
8.4 | 27.29
.91
1.9
.16
54 | 192.2
6.20
16
2.5
381 | 62.59
2.09
4.1
.96
124 | 10.06
.32
.82
.12
20 | 3.36
.11
.12
.08
6.7 | 3.41
.11
.14
.06
6.8 | CAL YR 1987 TOTAL 230.63 MEAN .63 MAX 9.9 MIN .04 AC-FT 457 WTR YR 1988 TOTAL 319.21 MEAN .87 MAX 16 MIN .05 AC-FT 633 # 09058800 EAST MEADOW CREEK NEAR MINTURN, CO LOCATION.--Lat 39°43'54", long 106°25'34", Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from mouth and 10 mi north of Minturn. DRAINAGE AREA. -- 3.61 mi2. PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,455 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10 to Apr. 13. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--24 years, 4.48 ft3/s; 3,250 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 81 ft³/s, June 30, 1984, gage height, 1.71 ft, but may have been higher during period of no gage height record May 11 to June 26, 1984; maximum gage height, 2.22 ft, May 12, 1970 (backwater from ice); minimum daily discharge, 0.32 ft⁵/s, Jan. 7, 1979. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 30 ft 3 /s at 1800 June 7, gage height, 1.43 ft; minimum daily, 0.58 ft 3 /s, Jan. 26, 27. DISCHARGE CURIC FERT DER SECOND WATER VEAR OCTOBER 1087 TO SEPTEMBER 1088 | | | DISCHARGE | E, CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | R OCTOBER
S | 1987 TO S | EPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .73
.65
.65
.72
.65 | 1.2
1.4
1.2
1.0 | .83
.84
.87
.84
.82 | .76
.71
.67
.66
.68 | .68
.66
.66
.70 | .66
.68
.66
.66 | .96
.92
.88
.88 | 2.8
2.3
2.0
1.8
2.0 | 12
13
17
20
22 | 5.4
4.9
4.6
4.4
4.9 | 1.8
1.7
1.6
1.4 | 1.0
1.1
1.0
.94
.87 | | 6
7
8
9
10 | .65
.59
.65
.65 | 1.1
1.1
1.3
1.3 | .82
.82
.82
.80 | .70
.70
.70
.70 | .66
.66
.64
.64 | .70
.70
.74
.74 | 1.1
1.3
1.5
1.4
1.2 | 2.5
2.0
2.0
1.8
1.8 | 23
23
23
22
22 | 5.0
4.1
3.7
3.5
3.3 | 1.3
1.4
1.4
1.4 | .80
.80
.80
.80 | | 11
12
13
14
15 | .65
.72
.80
1.0 | 1.2
1.0
1.0
1.1 | .82
.84
.82
.78 | .75
.73
.69
.69 | .64
.64
.64
.64 | .70
.70
.72
.74
.72 | 1.4
1.6
1.7
2.0
1.8 | 2.2
4.2
7.4
10
12 | 21
19
17
16
16 | 3.6
3.5
3.0
2.8
2.7 | 1.2
1.2
1.1
1.0 | 1.0
1.3
1.4
1.4 | | 16
17
18
19
20 | 1.0
1.0
.87
.87 | 1.0
.96
.91
.91 | .78
.81
.80
.80 | .72
.72
.72
.72
.72 | .62
.64
.66
.66 | .72
.74
.74
.80 | 1.8
2.2
1.7
2.0
2.1 | 13
14
16
15
11 | 15
15
14
16
14 | 2.7
2.4
2.4
2.3
2.3 | 1.5
1.4
1.4
1.2 | 1.1
.98
.94
.94 | | 21
22
23
24
25 | 1.2
1.3
1.2
.94
1.0 | 1.0
1.1
1.2
1.2 | .80
.78
.78
.78 | .69
.67
.67
.62 | .64
.64
.63
.70 | .80
.80
.80
.80 | 2.4
1.8
1.5
1.4 | 8.5
6.8
6.4
8.8 | 13
12
11
10
9.3 | 2.1
1.9
1.9
1.8 | 1.2
1.3
1.1
1.1 | .94
.94
.94
.94 | | 26
27
28
29
30
31 | 1.0
.87
.94
.94
1.0 | .99
.94
.91
.88
.83 | .72
.74
.76
.76
.76 | .58
.58
.60
.66
.70 | .72
.68
.66
.66 | .84
.90
.96
1.2
1.2 | 1.3
1.3
1.2
1.3
2.2 | 12
13
15
18
17
15 | 8.7
8.0
8.9
8.9
6.5 | 1.9
1.8
1.9
1.9 | .98
1.0
1.0
1.0
.94
1.0 | .87
.80
.80
.87 | | TOTAL
MEAN
MAX
MIN
AC-FT | 26.76
.86
1.3
.59
53 | 32.18
1.07
1.4
.83
64 | 24.64
.79
.87
.72
49 | 21.30
.69
.76
.58
42 | 19.13
.66
.72
.62
38 | 24.54
.79
1.2
.66
49 | 45.02
1.50
2.4
.88
89 | 256.3
8.27
18
1.8
508 | 456.3
15.2
23
6.5
905 | 92.2
2.97
5.4
1.8
183 | 38.42
1.24
1.8
.94
76 | 29.15
.97
1.4
.80
58 | CAL YR 1987 TOTAL 1202.49 MEAN 3.29 MAX 27 MIN .42 AC-FT 2390 WTR YR 1988 TOTAL 1065.94 MEAN 2.91 MAX 23 MIN .58 AC-FT 2110 #### 09059500 PINEY RIVER NEAR STATE BRIDGE, CO LOCATION.--Lat 39°48'00", long 106°35'00", in SW4NE4 sec.16, T.3 S., R.82 W., Eagle County, Hydrologic Unit 14010001, on left bank at downstream side of private bridge at Perry Olsen Ranch 1.2 mi downstream from Rock Creek, and 6.0 mi southeast of State Bridge. DRAINAGE AREA.--86.2 mi². PERIOD OF RECORD. -- May 1944 to current year. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7,272.35 ft above National Geodetic Vertical Datum of 1929. Prior to July 29, 1944, nonrecording gage, and July 29, 1944, to Oct. 24, 1947, water-stage recorder, at datum 2.38 ft, higher. REMARKS.--Estimated daily discharges: Nov. 17 to Dec. 10, Dec. 12 to Jan. 11, 13-16, Feb. 4-8, 17-20, 24-27, Mar. 5, 8, 9, 12-14, and Mar. 17-19. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 400 acres of hay meadows upstream and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 44 years, 76.7 ft 3/s; 55,570 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,300 ft³/s, May 25, 1984 (occured during a period of no gage-height record); maximum recorded discharge, 1,220 ft³/s, June 27, 1983, gage height, 5.82 ft, (from peak stage indicator), but may have been higher May 25, 1984; minimum daily, 1.9 ft³/s, Sept. 1, 18, 19, 1954. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 520 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|------------------|------|------|----------------------|---------------------| | June 5 | 0345 | *487 | *4.90 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 9.0 ft3/s, Sept. 9. | | | | , | | ME | EAN VALUES | 3 | | | | | | |--------------------------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|--------------------------------|----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
13
13
13
13 | 19
23
22
20
17 | 14
14
16
16
16 | 15
14
14
14
15 | 14
13
13
12
12 | 13
13
13
12
12 | 19
18
19
20
20 | 132
107
88
83
96 | 212
208
285
384
424 | 112
98
89
80
78 | 21
21
20
18
18 | 11
11
10
9.5
9.4 | | 6
7
8
9
10 | 13
13
13
13
13 | 18
19
19
16
18 | 16
15
14
14
15 | 15
15
16
15
15 | 12
12
12
13
13 | 13
13
12
12
13 | 22
32
40
33
32 | 111
90
86
73
70 |
410
411
394
377
345 | 80
71
65
59
50 | 17
17
18
17
16 | 9.4
9.3
9.4
9.0
9.1 | | 11
12
13
14
15 | 13
13
13
16
17 | 17
17
17
17
16 | 16
14
14
14
14 | 15
15
14
14
15 | 13
13
13
13
13 | 13
13
13
13 | 34
46
67
82
87 | 76
115
167
238
283 | 342
287
261
220
215 | 46
48
44
42
40 | 15
15
15
14
14 | 11
14
18
20
17 | | 16
17
18
19
20 | 18
17
16
15
13 | 15
15
15
15
15 | 14
14
15
17
16 | 15
16
16
15
14 | 13
13
13
12
12 | 14
14
13
13 | 88
98
93
104
107 | 310
318
329
328
229 | 214
218
211
250
248 | 39
35
35
33
32 | 15
16
16
15
15 | 16
13
13
13
12 | | 21
22
23
24
25 | 13
13
13
14
19 | 16
17
17
16
16 | 16
15
16
16
15 | 17
16
16
16
16 | 13
13
12
11 | 15
15
15
14
13 | 120
96
80
68
61 | 181
152
140
152
194 | 218
213
187
186
172 | 29
27
26
25
23 | 14
16
14
13 | 12
12
12
12
12 | | 26
27
28
29
30
31 | 18
17
15
16
17 | 16
16
15
15
15 | 15
15
16
16
15
16 | 16
16
16
15
15 | 12
12
13
13 | 15
19
20
22
18
17 | 56
53
55
71
99 | 218
253
277
324
334
236 | 165
147
165
200
139 | 23
24
22
23
22
21 | 12
13
13
13
12
12 | 12
12
12
12
12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 454
14.6
19
13
901 | 509
17.0
23
15
1010 | 469
15.1
17
14
930 | 470
15.2
17
14
932 | 364
12.6
14
11
722 | 443
14.3
22
12
879 | 1820
60.7
120
18
3610 | 5790
187
334
70
11480 | 7708
257
424
139
15290 | 1441
46.5
112
21
2860 | 478
15.4
21
12
948 | 364.1
12.1
20
9.0
722 | CAL YR 1987 TOTAL 20991 MEAN 57.5 MAX 472 MIN 12 AC-FT 41640 WTR YR 1988 TOTAL 20310.1 MEAN 55.5 MAX 424 MIN 9.0 AC-FT 40290 # 09060550 ROCK CREEK AT CRATER, CO LOCATION.--Lat 39°58'42", long 106°42'34", in NWINEL sec. 17, T.1 S., R.83 W., Routt County, Hydrologic Unit 14010001, on right bank 250 ft downstream from county bridge crossing, 2 miles downstream from Kayser Mutual Ditch diversion and 0.8 miles northwest of Crater, Colorado. DRAINAGE AREA .-- 72.6 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 7,185 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of approximately 1,025 acres upstream from station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge recorded, 422 ft³/s, May 6, 1985, gage height, 3.97 ft, but may have been higher during period of no gage-height record May 7-14, 1985; minimum daily, 3.5 ft³/s, Aug. 7, 8, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 268 $\rm ft^3/s$ at 2400 May 18, gage height, 3.62 $\rm ft$; minimum daily, 3.5 $\rm ft^3/s$, Aug. 7, 8. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.7
4.7
6.2
9.0
7.3 | 9•3
17
18
15
14 | 7.8
7.8
8.2
8.6
8.7 | 9.3
9.3
9.3
9.3 | 9.3
9.3
9.4
9.4 | 9.4
9.6
9.6
9.8 | 12
12
12
11
11 | 157
111
83
107
132 | 161
159
165
163
164 | 17
15
15
17
16 | 4.7
4.2
3.8
3.7
3.7 | 4.3
4.2
4.3
4.3 | | 6
7
8
9
10 | 4.8
4.8
4.9
4.9 | 14
14
13
9.9
9.8 | 9.0
9.4
9.4
9.3
9.3 | 9.5
9.6
9.6
9.6 | 9.3
9.3
9.3
9.3 | 9.8
9.8
9.7
9.8
9.9 | 12
14
15
15 | 129
95
92
84
91 | 152
132
114
102
96 | 14
15
13
11 | 3.7
3.5
3.6
3.6 | 4.1
4.1
3.9
4.0
4.0 | | 11
12
13
14
15 | 4.9
5.0
5.2
6.3
6.7 | 12
9.7
12
12
10 | 9.3
9.2
8.4
8.5
7.4 | 9.3
8.5
9.3
9.6
9.8 | 9.3
9.2
8.9
8.8
8.8 | 9.7
9.5
9.3
9.0 | 15
19
26
33
45 | 106
141
168
195
215 | 89
83
72
68
60 | 11
11
8.5
7.6
6.9 | 3.6
3.6
3.7
3.8
3.8 | 4.1
11
16
10
5.9 | | 16
17
18
19
20 | 7.1
7.1
6.2
5.5
5.3 | 7.3
9.2
7.0
7.8
9.3 | 7.7
7.7
8.0
8.4
8.6 | 10
10
10
10
9.6 | 8.8
9.2
9.2
9.3
9.3 | 9.0
9.0
8.9
9.0 | 56
69
77
84
96 | 225
238
244
250
208 | 55
47
46
42
38 | 6.9
6.6
6.0
5.4
4.6 | 3.8
3.7
3.8
3.8 | 5.1
4.7
4.3
4.2
4.1 | | 21
22
23
24
25 | 4.7
4.5
4.8
8.4 | 9.9
10
11
10
9.9 | 8.8
8.8
8.8
9.1 | 9.6
9.5
9.3
9.3 | 9.3
9.3
9.2
9.0 | 9.8
10
11
11
10 | 95
70
56
48
45 | 176
154
138
156
166 | 35
33
34
26
24 | 4.5
4.2
4.1
4.0
3.7 | 4.0
4.8
4.8
4.2
4.0 | 4.1
4.3
4.3
4.3 | | 26
27
28
29
30
31 | 8.3
6.3
5.7
5.2
5.6
7.0 | 10
9.5
8.8
8.6
8.2 | 9.3
9.3
9.3
9.3
9.3 | 9.3
9.3
9.3
9.3
9.3 | 9.0
9.0
9.0
9.1 | 11
13
12
12
12
12 | 38
44
60
89
142 | 158
177
191
196
197 | 21
22
23
24
20 | 3.7
3.8
4.1
4.1 | 4.0
4.0
4.0
4.0
4.1 | 4.3
4.3
4.4
4.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 180.4
5.82
9.0
4.5
358 | 326.2
10.9
18
7.0
647 | 270.8
8.74
9.4
7.4
537 | 293.3
9.46
10
8.5
582 | 265.9
9.17
9.4
8.8
527 | 312.1
10.1
13
8.9
619 | 1336
44.5
142
11
2650 | 4955
160
250
83
9830 | 2270
75.7
165
20
4500 | 262.3
8.46
17
3.7
520 | 121.3
3.91
4.8
3.5
241 | 154.0
5.13
16
3.9
305 | CAL YR 1987 TOTAL 9234.2 MEAN 25.3 MAX 186 MIN 4.4 AC-FT 18320 WTR YR 1988 TOTAL 10747.3 MEAN 29.4 MAX 250 MIN 3.5 AC-FT 21320 ROCK CREEK BASIN 96 #### 09060550 ROCK CREEK AT CRATER, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1984 to current year. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1986 to September 1987. WATER TEMPERATURES: April 1986 to September 1987. INSTRUMENTATION.--Water-quality monitor since April 1986. REMARKS.--Daily maximum and minimum specific-conductance data available in district office. Water-quality monitor was not operated during winter. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 187 microsiemens Aug.28, 1986; minimum, 46 microsiemens several days during May and June, 1986. WATER TEMPERATURE: Maximum, 18.9°C July 26,1987; minimum, 0.0°C many days during winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | |------------------|---|---|---|---|---|---|--|--|---|---| | OCT
14
NOV | 1240 | 6.3 | 159 | 8.1 | 6.5 | 0.40 | 10.2 | 76 | 4 | 23 | | 03 | 1115 | 17 | 119 | 7.9 | 4.0 | 2.0 | | 58 | 4 | 17 | | JAN
12 | 1500 | 8.5 | 135 | 7.5 | 0.5 | 0.70 | | 68 | 6 | 20 | | MAR
29
APR | 1440 | 17 | 137 | 7.4 | 1.5 | 2.6 | 10.5 | 65 | 3 | 19 | | 20
MAY | 1040 | 68 | 86 | 8.2 | 7.0 | 4.1 | 11.0 | 42 | 2 | 12 | | 12
JUN | 1440 | 107 | 81 | 7.7 | 7.5 | 3.9 | 9.5 | 34 | 0 | 9.9 | | 02
JUL | 1100 | 147 | 45 | 8.1 | 6.5 | 2.9 | 10.0 | 22 | 0 | 6.7 | | 12
AUG | 1100 | 10 | 127 | 7.9 | 10.5 | 1.4 | 8.1 | 57 | 6 | 17 | | 09
SEP | 1040 | 3.5 | 176 | 8.1 | 10.5 | 1.3 | 7.6 | 74 | 1 | 22 | | 13 | 1315 | 19 | 127 | 8.1 | 8.5 | 7.0 | 10.1 | 59 | 3 | 17 | | DATE | MA GNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RI DE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) |
SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT
14 | 4.6 | 4.5 | 0.2 | 1.1 | 72 | 12 | 0.50 | 0.20 | 11 | 100 | | NOV
03 | 3.8 | 3.7 | 0.2 | 1.1 | 54 | 11 | 0.90 | 0.10 | 13 | 83 | | JAN
12 | 4.3 | 3.8 | 0.2 | 1.0 | 62 | 11 | 1.2 | 0.20 | 14 | 93 | | MAR
29 | 4.3 | 4.2 | 0.2 | 1.2 | 62 | 13 | 1.2 | 0.20 | 14 | 94 | | APR
20 | 2.9 | 2.7 | 0.2 | 1.6 | 40 | 14 | 1.0 | 0.10 | 11 | 70 | | MAY
12 | 2.2 | 2.5 | 0.2 | 0.90 | 38 | 13 | 0.70 | 0.10 | 12 | 65 | | JUN
02 | 1.4 | 2.3 | 0.2 | 0.60 | 23 | 6.7 | 0.60 | 0.20 | 10 | 42 | | JUL
12 | 3.6 | 4.4 | 0.3 | 1.2 | 51 | 11 | 0.40 | 0.10 | 12 | 80 | | AUG
09 | 4.6 | 3.7 | 0.2 | 1.0 | 73 | 11 | 0.40 | 0.20 | 11 | 98 | | SEP
13 | 3.9 | 4.0 | 0.2 | 1.0 | 56 | 9.7 | 0.90 | 0.10 | 11 | 81 | # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | |------------------|---|---|---|--|---|--|---|--|---|--| | ост | | | | | | | | | | | | 14 | 0.13 | 1.65 | | <0.10 | | <0.01 | | | | <0.20 | | NOV
03
JAN | 0.11 | 3.72 | | <0.10 | | 0.03 | | | | <0.20 | | 12 | 0.13 | 2.13 | | 0.10 | | <0.01 | | | | <0.20 | | MAR
29
APR | 0.12 | 4.18 | | 0.10 | | 0.03 | | 0.47 | | 0.50 | | 20 | 0.10 | 14.0 | | 0.10 | | 0.02 | | 0.38 | | 0.40 | | MAY
12
JUN | 0.08 | 17.6 | <0.01 | <0.10 | <0.10 | 0.04 | 0.05 | 0.46 | 0.25 | 0.50 | | 02 | 0.07 | 19.8 | | | | | | | | | | JUL
12
AUG | 0.12 | 2.39 | | <0.10 | - - | 0.01 | | | | <0.20 | | 09
SEP | 0.14 | 0.95 | <0.01 | <0.10 | <0.10 | 0.02 | 0.04 | | | <0.20 | | 13 | 0.11 | 4.31 | | 0.10 | | <0.01 | | | | 0.30 | | | | | | | | | | | | | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS -
PHOROUS
DIS -
SOLVED
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | |-----------|---|---|---|--|---|--|---|--|--| | OCT
14 | | | 40.01 | | 40.04 | | | | 26 | | NOV | | | <0.01 | | <0.01 | | | | 26 | | 03 | | | 0.01 | | 0.02 | | 2.9 | 3.2 | 140 | | JAN
12 | | | 0.02 | | 0.01 | | | | 110 | | MAR
29 | | 0.60 | 0.05 | | 0.01 | | | | 130 | | APR
20 | | 0.50 | 0.05 | | <0.01 | | 7.7 | 7.5 | 240 | | MA Y | | | | | | | | | | | 12
JUN | 0.30 | | 0.05 | 0.04 | | | 7.4 | 6.1 | 170 | | 02 | | | | | | | | | 130 | | JUL
12 | | | 0.02 | | 0.01 | | | | 46 | | AUG
09 | <0.20 | | 0.03 | 0.05 | 0.01 | 0.02 | 2.5 | 2.5 | 9 | | SEP
13 | | 0.40 | 0.04 | | 0.01 | | 3.4 | 2.9 | 130 | 98 09060550 ROCK CREEK AT CRATER, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA TE | TIME | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) | |--------------|--|--|---|--|---|---|---|---|---|---|--| | MAY
12 | 1440 | 630 | 1 | <1 | <100 | 33 | <10 | <10 | <1 | <1 | 2 | | AUG
09 | 1040 | 70 | <1 | 1 | <100 | 65 | <10 | <10 | 2 | <1 | <1 | | DA TE | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | | MAY
12 | 1 | 1 | 4 | 1 | < 5 | < 5 | <10 | 30 | 6 | | | | AUG
09 | <1 | <1 | 3 | 2 | < 5 | < 5 | <10 | <10 | 2 | <0.10 | <0.1 | | DA TE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE -
NIUM,
DIS -
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON -
TIUM,
DIS -
SOLVED
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | MAY
12 | 5 | <2 | 6 | 5 | <1 | <1 | <1 | <1.0 | 63 | 10 | 4 | | AUG
09 | 1 | <1 | <1 | <1 | <1 | <1 | <1 | <1.0 | 110 | <10 | 12 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|--------------|---|---|---|---| | OCT | | | | | | | 14
NOV | 1240 | 6.3 | 11 | 0.19 | 55 | | 03
MAR | 1115 | 17 | 7 | 0.32 | 71 | | 29 | 1440 | 17 | 23 | 1.1 | 80 | | APR
20 | 1040 | 68 | 21 | 3.9 | 76 | | 21
MAY | 0855 | 98 | 22 | 5.8 | 72 | | 11 | 1510 | 74 | 18 | 3.6 | 88 | | 12
13 | 1440
0910 | 107
140 | 26
19 | 7.5
7.2 | 55
70 | | JUN | • | | | | | | 01
02 | 1435
1100 | 130
147 | 9
12 | 3.2
4.8 | 56
75 | | JUL | ,,,,, | 141 | | 4.0 | 1,5 | | 12 | 1100 | 10 | 1 | 0.03 | 67 | | 13
AUG | 0855 | 8.0 | 8 | 0.17 | 37 | | 09
SEP | 1040 | 3.5 | 10 | 0.09 | 47 | | 13 | 0940 | 19 | 17 | 0.87 | 69 | | 14 | 0845 | 11 | 14 | 0.42 | 49 | | | | | | | | ## 09060770 ROCK CREEK AT McCOY, CO LOCATION.--Lat 39°54'44", long 106°43'30", in SE4NE4 sec.6, T.2 S., R.83 W., Eagle County, Hydrologic Unit 14010001, on right bank 1,900 ft downstream from bridge on State Highway 131 and 0.25 mi south of McCoy. DRAINAGE AREA .-- 198 mi2. PERIOD OF RECORD. -- October 1982 to September 1983 (measurements only), October 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,660 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18-22, 25, 26, Nov. 28 to Dec. 4, Dec. 6, 7, 9, 12, Dec. 14 to Feb. 27, Mar. 5, 6, 8, 9, 11-24, 26, 27, 29, 31, and Apr. 1, 2. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of approximately 5,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and published elsewhere in this report. AVERAGE DISCHARGE. -- 5 years, 89.5 ft3/s; 64,840 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,760 ft³/s, May 16, 1984, gage height, 4.74 ft, (outside highwater mark); minimum daily, 4.7 ft³/s, Sept. 9, 1988. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------
----------------------|---------------------|------|------|----------------------|---------------------| | May 19 | 0800 | *470 | *2.45 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 4.7 ft3/s, Sept. 9. | | | DISONANGE, | COBIC | CEI FER S | MI | EAN VALUES | GC10BER | 1907 10 5 | EFIENDEN | 1900 | | | |--------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|--|-----------------------------------|-----------------------------------|-------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
15
17
22
21 | 29
37
39
34
33 | 25
23
24
24
25 | 20
20
20
20
20 | 23
23
23
23
23 | 24
25
24
23
23 | 27
27
29
30
32 | 328
240
179
188
216 | 208
193
184
184
187 | 30
27
29
29
27 | 11
11
12
14
13 | 6.5
7.4
7.7
7.1
6.2 | | 6
7
8
9
10 | 17
18
18
19 | 31
32
32
27
26 | 25
25
25
25
25 | 20
21
21
20
20 | 23
22
23
22
23 | 23
23
23
23
23 | 34
44
63
77
91 | 243
169
163
154
153 | 184
157
136
118
108 | 23
21
19
18
17 | 12
12
13
12
11 | 5.9
5.9
4.8
4.7
5.3 | | 11
12
13
14
15 | 19
19
19
20
21 | 28
26
27
33
28 | 24
23
22
21
19 | 20
19
20
22
23 | 23
23
23
22
22 | 23
23
23
22
21 | 88
111
180
253
294 | 163
233
295
368
405 | 98
90
77
76
70 | 17
15
13
11
9.6 | 11
11
10
10
9.6 | 7.8
20
34
26
18 | | 16
17
18
19
20 | 24
25
23
21
20 | 22
25
23
23
25 | 17
17
18
18
18 | 23
23
24
23
23 | 22
23
23
23
23 | 21
21
21
21
21 | 254
349
283
286
280 | 412
426
446
457
395 | 65
61
59
52
48 | 12
13
12
10
8.8 | 9.6
11
12
11 | 14
13
12
12
12 | | 21
22
23
24
25 | 19
19
20
21
27 | 26
27
28
28
28 | 19
19
19
19 | 23
23
23
23
23 | 23
23
23
22
22 | 21
22
23
24
25 | 270
180
135
119
110 | 288
240
217
217
227 | 43
44
48
41
38 | 9.2
9.2
8.4
8.8
7.7 | 11
13
12
12
11 | 14
14
14
15 | | 26
27
28
29
30
31 | 30
26
24
22
23
28 | 28
28
28
27
26 | 19
20
20
20
20
20 | 23
23
23
23
22
23 | 23
23
24
 | 24
26
27
32
28
28 | 106
117
126
155
239 | 220
241
251
256
265
231 | 36
39
48
39
35 | 6.2
6.8
7.1
12
14 | 10
11
11
8.5
7.4
7.1 | 14
14
14
15
15 | | TOTAL
MEAN
MAX
MIN
AC-FT | 650
21.0
30
14
1290 | 854
28.5
39
22
1690 | 657
21.2
25
17
1300 | 674
21.7
24
19
1340 | 661
22.8
24
22
1310 | 731
23.6
32
21
1450 | 4389
146
349
27
8710 | 8286
267
457
153
16440 | 2766
92.2
208
35
5490 | 462.8
14.9
30
6.2
918 | 341.2
11.0
14
7.1
677 | 374.3
12.5
34
4.7
742 | CAL YR 1987 TOTAL 19494.8 MEAN 53.4 MAX 388 MIN 7.4 AC-FT 38670 WTR YR 1988 TOTAL 20846.3 MEAN 57.0 MAX 457 MIN 4.7 AC-FT 41350 # 09060770 ROCK CREEK AT MCCOY, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1984 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | - | | | | | | | | | |------------------|--|---|---|---|---|---|---|--|---|---| | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NON CARB
WH WAT
TOT FLD
MG/L AS
CACO 3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | | OCT | | | | | | | | | | | | 14
NOV | 1250 | 21 | 377 | 8.5 | 7.5 | 1.3 | 10.3 | 160 | 4 | 44 | | 03
JAN | 1415 | 40 | 326 | 8.5 | 8.0 | 2.2 | | 160 | 27 | 44 | | 12 | 1130 | 19 | 357 | 7.8 | 0.0 | 1.5 | | 160 | 15 | 45 | | MAR
29 | 1110 | 38 | 372 | 8.0 | 0.0 | 3.1 | 11.1 | 160 | 21 | 44 | | APR
20
MAY | 1510 | 228 | 228 | 7.9 | 6.0 | 19 | 10.0 | 110 | 17 | 32 | | 12 | 1050 | 226 | 185 | 7.9 | 5.0 | 20 | 10.1 | 100 | 20 | 30 | | JUN
02 | 1430 | 170 | 141 | 7.9 | 12.0 | 7.4 | 9.6 | 67 | 3 | 19 | | JUL
12
AUG | 1350 | 15 | 344 | 8.4 | 18.0 | 1.2 | 8.3 | 150 | 2 | 41 | | 09
SEP | 1430 | 12 | 376 | 8.3 | 18.5 | 1.1 | 8.1 | 160 | 7 | 41 | | 13 | 1400 | 41 | 353 | 8.2 | 10.0 | 7.8 | 9.2 | 150 | 18 | 39 | | DATE | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SI02) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT
14 | 12 | 11 | 0.4 | 3.7 | 156 | 41 | 2.4 | 0.30 | 12 | 220 | | NOV
03 | 12 | 9.7 | 0.3 | 3.2 | 133 | 42 | 2.3 | 0.20 | 14 | 207 | | JAN
12 | 12 | 11 | 0.4 | 4.1 | 147 | 35 | 3.9 | 0.30 | 16 | 215 | | MAR
29 | 12 | 11 | 0.4 | 4.1 | 139 | 37 | 3.3 | 0.20 | 15 | 210 | | APR
20 | 7.7 | 5.3 | 0.2 | 2.9 | 95 | 33 | 1.8 | 0.10 | 11 | 151 | | MAY
12 | 6.9 | 5.2 | 0.2 | 1.6 | 84 | 25 | 1.5 | 0.20 | 12 | 133 | | JUN
02 | 4.7 | 4.7 | 0.3 | 1.2 | 64 | 16 | 1.0 | 0.20 | 12 | 97 | | JUL
12 | 12 | 12 | 0.4 | 3.7 | 150 | 39 . | 1.8 | 0.20 | 12 | 212 | | AUG
09
SEP | 14 | 13 | 0.5 | 4.7 | 154 | 42 | 1.8 | 0.20 | 13 | 223 | | 13 | 12 | 11 | 0.4 | 3.2 | 129 | 42 | 2.3 | 0.20 | 13 | 200 | WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | | |------------|---|---|---|---|---|---|---|---|--|--|--| | | OCT
14 | 0.30 | 12.6 | | <0.10 | | <0.01 | | | 0.20 | | | | 03 | 0.27 | 21.8 | | <0.10 | | 0.02 | | | <0.20 | | | | JAN
12 | 0.29 | 11.3 | | 0.30 | | 0.02 | | | <0.20 | | | | MAR
29 | 0.29 | 22.0 | | 0.20 | | 0.03 | | 0.47 | 0.50 | | | | APR
20 | 0.22 | 101 | | <0.10 | | 0.03 | | 0.57 | 0.60 | | | | MAY
12 | 0.19 | 86.6 | <0.01 | <0.10 | <0.10 | 0.02 | <0.01 | 0.48 | 0.50 | | | | JUN
02 | 0.14 | 45.9 | | <0.10 | | 0.02 | | 0.38 | 0.40 | | | | JUL
12 | 0.30 | 9.06 | | <0.10 | | 0.02 | | | <0.20 | | | | AUG 09 | 0.31 | 7.42 | <0.01 | <0.10 | <0.10 | 0.01 | 0.02 | | <0.20 | | | | SEP
13 | 0.29 | 23.2 | | <0.10 | | <0.01 | | | 0.30 | | | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | | | 0CT
14 | | | <0.01 | | <0.01 | | | | 17 | | | | NOV
03 | | | 0.03 | | 0.03 | | 4.4 | 4.2 | 36 | | | | JAN
12 | | | 0.02 | | 0.01 | | | | 26 | | | | MAR
29 | | 0.70 | 0.04 | | 0.01 | | | | 69 | | | | APR 20 | | | 0.07 | | 0.02 | | 9.1 | 6.9 | 220 | | | | MAY
12 | 0.30 | | 0.06 | 0.02 | 0.02 | 0.01 | 9.0 | 6.1 | | | | | JUN
02
JUL | | | 0.02 | | <0.01 | | | | 92 | | | | 12
AUG | | | 0.02 | | <0.01 | | | | 14 | | | |
09
SEP | <0.20 | | 0.02 | 0.02 | <0.01 | <0.01 | 4.4 | 4.3 | 24 | | | | 13 | | | 0.08 | | <0.01 | | 6.9 | 3.7 | 47 | | | DATE | TIME | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL -
LIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
TOTAL
RECOV -
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | | MA Y
12 | 1050 | 880 | 1 | | 100 | | <10 | 10 | <1 | | 1 | | AUG 09 | 1430 | 60 | 2 | 2 | <100 | 84 | <10 | 40 | 1 | 1 | <1 | | DATE | CHRO-
MIUM,
DIS-
SOLVED
(UG/L | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L | COPPER,
DIS-
SOLVED
(UG/L | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L | LEAD,
DIS-
SOLVED
(UG/L | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L | MANGA -
NESE,
TOTAL
RECOV -
ERABLE
(UG/L | MANGA-
NESE,
DIS-
SOLVED
(UG/L | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L | MERCURY
DIS-
SOLVED
(UG/L | | | AS CR) | AS CO) | AS CU) | AS CU) | AS PB) | AS PB) | AS LI) | AS MN) | AS MN) | AS HG) | AS HG) | | MAY
12 | | 1 | 6 | | < 5 | | <10 | 60 | | | | | AUG
09 | <1 | 2 | 2 | 1 | < 5 | < 5 | 20 | 30 | 15 | <0.10 | <0.1 | # ROCK CREEK BASIN # 09060770 ROCK CREEK AT MCCOY, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON -
TIUM,
DIS -
SOLVED
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |-----------|--|---|---|--|--|---|---|--|--|---|--| | MAY
12 | 4 | 2 | 9 | 5 | <1 | | <1 | ~- | 190 | 10 | | | AUG
09 | 3 | 3 | <1 | 2 | <1 | <1 | <1 | 2.0 | 320 | <10 | 31 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED. SUSP. SIEVE DIAM. FINER THAN .062 MM | |-----------|--------------|---|--|---|---| | OCT | | | | | | | 14
NOV | 1250 | 21 | 12 | 0.68 | 60 | | 03 | 1415 | 40 | 5 | 0.54 | 62 | | MAR
29 | 1110 | 38 | 19 | 1.9 | 67 | | APR | 1510 | 000 | | 25 | 0.0 | | 20
21 | 1510
1030 | 228
240 | 57
73 | 35
47 | 89
90 | | MAY | 1030 | 240 | 13 | 41 | 90 | | 11 | 1345 | 155 | 18 | 7.5 | 90 | | 12 | 1050 | 226 | 48 | 29 | 85 | | 13 | 1040 | 2 7 0 | 67 | 49 | 91 | | JUN
01 | 1535 | 170 | 17 | 7.8 | 68 | | 02 | 1430 | 170 | 26 | 12 | 72 | | JUL | | | | | | | 12 | 1350 | 15 | 21 | 0.87 | 73 | | 13
AUG | 0955 | 14 | 4 | 0.15 | 58 | | 09 | 1430 | 12 | 5 | 0.16 | 53 | | SEP | . 155 | | _ | 3.10 | | | 13 | 1400 | 41 | 87 | 9.6 | 84 | | 14 | 0945 | 26 | 33 | 2.3 | 64 | 09063000 EAGLE RIVER AT RED CLIFF. CO LOCATION.--Lat 39°30'30", long 106°21'58", in NW#SW# sec.20, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank at Red Cliff, 0.3 mi upstream from Turkey Creek. DRAINAGE AREA . -- 70.0 mi2. PERIOD OF RECORD.--October 1910 to September 1925, May 1944 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. WRD Colo. 1972: 1971. GAGE.--Water-stage recorder. Datum of gage is 8,653.79 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Jan. 8, 1911, to Sept. 30, 1925, nonrecording gage at bridge 0.2 mi downstream at different datum. May 25, 1944, to Oct. 12, 1952, water-stage recorder at site 200 ft upstream at datum 1.46 ft, lower. Prior to May 6, 1982, at site 250 ft downstream at datum 5.00 ft, lower. REMARKS.--Estimated daily discharges: Nov. 17 to Dec. 5, Dec. 8-10, 12-20, 22-23, 25, Jan. 2-7, 12-21, Feb. 3-15, 17-27, 29, Mar. 1, 4, 5, and Mar. 12-16. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Columbine, Ewing, and Wurtz ditches. Transbasin diversion upstream from station from Robinson Reservoir, capacity, 2,520 acre-ft to Tenmile Creek for mining development. Small diversions for irrigation of 400 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--59 years (water years 1911-25, 1945-88), $48.0~\rm{ft}^3/\rm{s};~34,780~\rm{acre-ft/yr}$. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,010 ft³/s, June 5, 1912, gage height, 4.0 ft, site and datum then in use, from rating curve extended above 500 ft³/s; maximum gage height recorded, 6.43 ft, May 24, 1984; minimum daily discharge, 1.0 ft³/s, Oct. 1, 5, 1917. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 280 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | June 5 | 2330 | *170 | *4.21 | | | | | Minimum daily, $5.5 \text{ ft}^3/\text{s}$, Feb. 2-4, Mar. 2, 3. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--------------------------------|--------------------------------|-----------------------------------|---------------------------------------|------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------|--------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
12
12
11
11 | 15
15
16
14
15 | 12
11
11
11 | 9.2
9.0
7.0
7.8
8.0 | 6.6
5.5
5.5
5.6 | 6.0
5.5
5.5
6.8
7.2 | 14
9.3
9.2
9.4
10 | 62
48
41
47
54 | 104
104
121
134
147 | 55
50
50
48
45 | 21
19
18
17
15 | 12
12
12
13
12 | | 6
7
8
9
10 | 12
11
11
11
11 | 15
15
15
13
14 | 11
11
11
15
12 | 7.8
7.5
7.0
7.0 | 6.6
7.0
7.6
7.2
7.6 | 7.6
7.7
8.3
9.0 | 11
16
19
18
19 | 57
46
45
43 | 155
151
147
144
151 | 44
42
40
37
36 | 19
19
19
17
15 | 12
11
11
11
11 | | 11
12
13
14
15 | 11
11
11
13
14 | 15
14
14
15
15 | 11
9.6
8.8
8.2
8.2 | 7.6
7.6
6.8
7.4
8.0 | 7.0
7.0
7.0
7.0
6.8 | 11
10
9.4
10
13 | 17
20
25
28
30 | 44
54
70
86
97 | 142
133
125
117
104 | 35
33
31
32
31 | 15
16
16
14
13 | 12
14
16
15 | | 16
17
18
19
20 | 13
12
12
12
11 | 14
12
11
11
12 | 8.4
9.2
9.6
11 | 8.2
8.2
8.0
7.9
7.0 | 6.9
7.5
7.0
6.6
7.5 | 12
11
14
13 | 34
38
32
34
39 | 108
110
108
117
102 | 97
92
87
86
96 | 30
30
28
26
24 | 13
16
15
13 | 13
13
12
12
12 | | 21
22
23
24
25 | 12
13
13
14
13 | 14
14
15
15
14 | 9.7
9.5
8.8
8.5
8.0 | 7.4
8.1
9.0
9.1
8.8 | 6.8
6.4
6.4
6.4 | 10
9.8
7.1
7.0
6.8 | 45
38
31
27
26 | 84
73
68
67
70 | 87
82
77
74
71 | 22
21
20
20
22 | 12
15
13
12 | 12
12
13
12
12 | | 26
27
28
29
30
31 | 14
13
13
14
14 | 13
13
13
12
12 | 8.7
8.6
9.0
9.1
9.5 | 9.7
10
9.8
9.4
8.6
8.2 | 6.5
6.5
6.6
6.0 | 7.6
9.1
8.7
14
8.1
9.4 | 27
26
28
34
52 | 76
90
101
115
124
111 | 68
66
65
67
61 | 19
19
19
23
22
22 | 12
14
12
12
11 | 12
12
12
12
12 | | TOTAL
MEAN
MAX
MIN
AC-FT | 383
12.4
15
11
760 | 415
13.8
16
11
823 | 308.9
9.96
15
8.0
613 | 252.1
8.13
10
6.8
500 | 193.0
6.66
7.6
5.5
383 | 287.6
9.28
14
5.5
570 | 765.9
25.5
52
9.2
1520 | 2365
76.3
124
41
4690 | 3155
105
155
61
6260 |
976
31.5
55
19
1940 | 459
14.8
21
11
910 | 372
12.4
16
11
738 | CAL YR 1987 TOTAL 12242.9 MEAN 33.5 MAX 230 MIN 8.0 AC-FT 24280 WTR YR 1988 TOTAL 9932.5 MEAN 27.1 MAX 155 MIN 5.5 AC-FT 19700 ## 09063200 WEARYMAN CREEK NEAR RED CLIFF, CO LOCATION.--Lat 39°31'14", long 106°19'06", in SWASEA sec.15, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 0.4 mi upstream from mouth and 2.5 mi east of Red Cliff. DRAINAGE AREA. -- 8.78 mi². PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,158 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 20-23, Nov. 9 to Apr. 14, and Apr. 30 to May 14. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 24 years, 8.73 ft3/s; 6,320 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155 ft³/s, June 20, 1983, gage height, 3.61 ft; minimum daily, 0.30 ft³/s, Feb. 21, 1967. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 70 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|------|------|----------------------|---------------------| | June 10 | 1900 | *56 | *2.63 | | | | | Minimum Daily, 0.90 ft3/s, Jan. 14. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|---------------------------------|--|--|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.3
3.2
3.2
2.9
2.9 | 2.2
2.2
2.2
2.0
1.8 | 1.7
1.6
1.9
1.8
1.7 | 1.6
1.2
1.2
1.4
1.6 | 1.7
1.6
1.5
1.5 | 2.0
2.1
2.0
1.8
1.6 | 2.1
1.9
1.8
1.8
2.0 | 4.3
3.8
3.2
3.5
4.1 | 20
16
19
21
25 | 16
15
14
14
13 | 6.3
5.8
5.4
5.3
5.0 | 2.7
2.8
2.6
2.5
2.5 | | 6
7
8
9
10 | 2.9
2.7
2.6
2.6
2.4 | 2.1
2.0
1.8
1.6 | 1.7
1.6
1.6
1.6 | 1.7
1.7
1.7
1.5
1.4 | 1.4
1.5
1.6
1.6 | 1.8
1.6
1.5
1.6 | 1.8
1.6
1.6
1.8 | 4.3
3.7
3.9
3.9
4.2 | 29
31
37
42
50 | 13
12
12
11
10 | 5.0
4.9
4.6
4.5
4.2 | 2.7
2.7
2.6
2.7
2.4 | | 11
12
13
14
15 | 2.1
2.3
2.3
2.8
2.9 | 1.8
1.8
1.9
1.9 | 1.8
1.7
1.4
1.2 | 1.4
1.3
.92
.90 | 1.5
1.6
1.6
1.6 | 1.7
1.6
1.5
1.5 | 1.8
1.6
1.7
1.8
2.2 | 4.2
4.7
5.5
6.4
7.9 | 49
42
40
33
31 | 10
10
11
11 | 4.2
4.4
4.0
3.8
3.8 | 2.6
2.9
3.0
2.9
2.7 | | 16
17
18
19
20 | 2.7
2.1
1.8
1.8 | 1.8
1.7
1.7
1.7 | 1.1
1.3
1.6
1.6 | 1.3
1.5
1.4
1.5 | 1.5
1.4
1.4
1.5 | 1.7
1.6
1.6
1.7 | 2.4
2.6
2.2
2.2
2.5 | 9.4
10
11
12 | 30
30
28
28
28 | 9.8
9.4
9.2
8.7
8.3 | 4.1
4.1
4.0
3.9
3.8 | 2.6
2.5
2.1
2.0
1.9 | | 21
22
23
24
25 | 1.7
1.8
2.1
2.2
2.2 | 2.0
2.1
2.1
2.0
1.8 | 1.5
1.3
1.5
1.7 | 1.1
1.4
1.5
1.5 | 1.6
1.5
1.5
1.5 | 1.7
1.5
1.4
1.4 | 2.9
2.6
2.6
2.6 | 10
10
10
10 | 27
26
25
24
23 | 7.8
7.4
7.1
6.9 | 4.0
3.9
3.5
3.4
3.2 | 1.9
2.0
1.9
1.9 | | 26
27
28
29
30
31 | 1.9
2.0
2.3
2.2
2.3
2.2 | 1.7
1.8
1.7
1.6
1.8 | 1.4
1.6
1.6
1.4 | 1.3
1.5
1.5
1.6
1.7 | 1.7
1.7
2.0
2.0 | 1.6
1.8
1.8
2.1
1.8 | 2.4
2.2
2.3
2.6
3.5 | 12
13
14
16
18 | 22
21
20
19
18 | 7.1
6.7
6.6
6.6
6.3
6.6 | 3.7
3.8
3.3
3.1
3.0
2.9 | 1.9
1.8
1.7
1.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 74.1
2.39
3.3
1.7
147 | 56.0
1.87
2.2
1.6
111 | 47.9
1.55
1.9
1.0
95 | 43.62
1.41
1.7
.90
87 | 45.6
1.57
2.0
1.3
90 | 52.5
1.69
2.1
1.4
104 | 65.6
2.19
3.5
1.6
130 | 264.0
8.52
19
3.2
524 | 854
28.5
50
16
1690 | 303.2
9.78
16
6.3
601 | 128.9
4.16
6.3
2.9
256 | 69.6
2.32
3.0
1.6
138 | CAL YR 1987 TOTAL 2445.15 MEAN 6.70 MAX 43 MIN .95 AC-FT 4850 WTR YR 1988 TOTAL 2005.02 MEAN 5.48 MAX 50 MIN .90 AC-FT 3980 09063400 TURKEY CREEK NEAR RED CLIFF, CO LOCATION.--Lat 39°31'22", long 106°20'08", in NW4SW4 sec.16, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 400 ft downstream from Lime Creek, 1.9 mi northeast of Red Cliff, and 2.0 mi upstream from mouth. DRAINAGE AREA. -- 23.8 mi² (revised). PERIOD OF RECORD. -- October 1963 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,918 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10 to Apr. 14. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--25 years, 22.8 ft3/s; 16,520 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 556 ft³/s, June 8, 1985, gage height, 2.87 ft, from rating curve extended above 325 ft³/s; maximum recorded gage height, 3.22 ft, June 24, 1983 (backwater from debris); minimum discharge, not determined. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 160 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|------------------|--------|------|----------------------|---------------------| | Nov. 18 | 0600 | | * a2.67 | June 8 | 2300 | *164 | 2.40 | Minimum daily discharge, 1.9 ft³/s, Jan. 13, 14. a Backwater from ice. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT JUL AUG NOV DE C FEB JUN SEP JAN MA R APR MA Y 5.9 4.8 4.0 6.8 65 6.0 3.0 3.2 13 39 17 5.9 5.7 5.5 2.9 2 5.7 4.9 2.9 2.5 4.1 6.8 12 64 37 15 14 5.7 5.7 4.6 3.2 2.5 3.9 3.5 6.5 7.2 3 12 74 36 12 4.5 34 14 2.6 5 5.7 4.3 3.1 3.1 2.6 7.2 13 97 32 13 5.5 4.6 3.6 3.3 3.1 5.4 6 5.6 3.0 3.3 2.7 6.7 6.2 16 96 30 13 13 5.4 4.6 5.2 15 15 91 28 3.0 3.3 2.9 8 5.5 4.5 3.0 3.2 3.0 5.6 97 27 13 5.0 15 16 3.5 3.2 3.0 3.0 3.2 6.2 140 26 12 4.9 3.4 10 4.6 3.4 2.8 2.9 3.4 7.2 136 25 11 5.1 3.3 3.3 6.4 16 138 24 11 5.6 11 4.6 3.5 2.5 2.9 3.5 6.0 5.8 12 4.6 3.4 2.2 3.0 3.2 6.0 20 118 23 11 6.4 2.9 13 4.7 5.3 3.0 28 22 1.9 3.1 111 11 3.2 21 9.8 5.7 36 109 1.9 3.2 3.0 2.8 3.5 7.1 43 21 9.5 15 2.3 2.2 96 16 5.0 2.8 2.5 2.6 2.7 3.7 3.7 7.6 48 87 20 10 5.2 5.3 4.7 2.7 2.9 8.4 17 52 87 19 18 9.7 2.7 3.2 2.9 2.7 9.2 4.7 4.6 18 3.4 7.9 8.1 54 89 5.2 3.8 19 55 93 18 5.0 48 4.9 8.3 4.3 8.5 20 2.8 3.3 2.6 3.1 94 17 4.8 8.8 21 4.2 3.0 3.1 2.3 2.9 4.0 9.4 41 ጸጸ 17 4.5 4.6 2.7 4.0 8.5 22 3.2 2.8 2.9 9.3 36 84 16 5.0 3.2 4.9 2.9 23 3.1 3.3 9.1 8.6 16 35 75 7.7 4.8 3.1 2.9 4.4 69 16 25 5.1 3.0 3.0 2.7 3.2 4.7 8.2 64 16 7.0 4.7 36 7.3 4.7 26 4.8 2.8 2.8 2.7 3.5 3.8 4.9 9.0 40 59 16 7.8 7.8 27 4.7 3.0 2.8 46 53 16 7.5 4.6 3.0 5.4 28 4.5 3.0 3.1 4.0 6.0 16 6.6 4.6 3.1 52 51 29 4.7 2.9 3.2 3.2 4.0 7.0 8.5 61 47 15 6.4 4.6 4.9 30 3.1 3.0 3.3 ---6.6 10 71 11 1 15 6.3 4.6 31 18 ---------3.2 3.3 7.3 70 ---5.9 103.9 87.7 TOTAL 154.2 94.2 86.2 129.2 227.7 1061 2597 694 312.6 155.6 2.78 3.04 4.97 4.17 7.3 34.2 10.1 MEAN 3.02 7.59 86.6 22.4 5.19 5.9 4.9 3.5 4.0 10 140 39 6.0 MA X 1.9 5.6 41 5.9 4.6 MIN 2.6 AC-FT 306 206 187 171 174 256 452 2100 5150 1380 620 309 CAL YR 1987 TOTAL 5788.2 MEAN 15.9 MAX 101 MIN 1.5 AC-FT 11480 WTR YR 1988 TOTAL 5703.3 MEAN 15.6 MAX 140 MIN 1.9 AC-FT 11310 ## 09063900 MISSOURI CREEK NEAR GOLD PARK, CO LOCATION.--Lat 39°23'25", long 106°28'10", Eagle County, Hydrologic Unit 14010003, on left bank 50 ft downstream from road culvert, 0.6 mi upstream from Fancy Creek, 2.2 mi southwest of Gold Park, and 10 mi southwest of Red Cliff. DRAINAGE AREA. -- 6.39 mi² (revised). 106 PERIOD OF RECORD. -- August 1972 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,980 ft, above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 8 to Apr. 16. Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Arkansas River basin through Homestake tunnel. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 16 years, 8.45 ft3/s; 6,120 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD, --Maximum discharge, 300 ft³/s, July 4, 1975, gage height, 3.19 ft, from rating curve extended above 35 ft³/s; maximum gage height, 3.83 ft, July 30, 1983; minimum daily discharge, 0.24 ft³/s, Feb. 12, 13, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 98 ft 3 /s at 2000 June 5, gage height, 2.86 ft; minimum
daily, 0.55 ft 3 /s, Jan. 24-26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.3
1.3
1.2
1.1 | 1.6
1.7
1.7
1.7 | 1.0
1.2
1.2
1.1 | 1.0
.86
.75
.84 | .86
.80
.76
.73 | 1.1
1.0
.90
.83 | 2.2
1.8
1.5
1.5 | 8.3
7.2
5.8
5.0
6.6 | 16
15
17
29
51 | 11
10
10
10
9.8 | 9.2
7.7
6.8
6.0 | 1.6
1.6
1.4
1.3 | | 6
7
8
9
10 | .97
.97
.90
.90 | 1.6
1.7
1.7
1.4
1.2 | 1.2
1.1
1.1
1.1
1.2 | .95
.99
.99
.90 | .76
.84
.84
.84 | .85
.77
.70
.70 | 2.0
2.2
2.0
2.3
2.2 | 9.0
7.1
5.7
4.9
4.8 | 44
43
40
42
49 | 9.5
9.1
8.6
8.3
8.6 | 5.6
5.5
5.2
4.4
4.0 | 1.1
1.0
.82
.81
1.1 | | 11
12
13
14
15 | .82
.82
.85
1.2 | 1.3
1.2
1.2
1.3 | 1.2
1.0
.90
.80
.74 | .76
.69
.60
.60 | .76
.83
.83
.80 | .82
.80
.75
.75
.84 | 2.0
2.3
2.8
3.5
3.9 | 5.7
12
24
37
50 | 41
31
27
17
16 | 8.6
8.3
8.8
11 | 3.6
3.7
3.2
2.9
2.9 | 2.2
3.2
4.3
4.2
3.7 | | 16
17
18
19
20 | 1.4
1.4
1.2
1.1 | 1.2
1.0
1.0
1.0 | .74
.86
1.0
1.0 | .80
.88
.80
.89 | .78
.75
.75
.87
.93 | .90
.86
.86
.97 | 4.3
5.9
6.1
5.9 | 49
32
27
23
20 | 18
17
17
26
29 | 13
12
11
9.8
8.9 | 3.6
3.6
3.1
2.8
2.5 | 3.2
2.8
2.5
2.3
2.2 | | 21
22
23
24
25 | 1.1
1.1
.95
.94
1.2 | 1.4
1.4
1.3
1.2 | .95
.86
.99
1.2
1.0 | .60
.60
.55 | .88
.84
.84
.89 | 1.1
1.0
1.0
1.0 | 7.0
7.0
5.8
4.3
3.8 | 15
13
11
11 | 30
18
19
15
15 | 8.1
7.5
7.1
6.4
6.2 | 3.3
4.1
3.3
2.8
2.6 | 2.2
2.2
2.1
2.0
1.8 | | 26
27
28
29
30
31 | 1.4
1.3
1.4
1.2
1.2 | 1.2
1.2
1.1
1.1 | .90
.90
1.0
1.0
.90 | .55
.69
.80
.86
.89 | 1.1
1.1
1.1
1.1 | 1.5
1.6
1.7
2.0
1.7 | 3.4
3.3
3.0
3.2
5.1 | 19
20
20
23
25
21 | 13
12
26
21
12 | 6.2
6.1
6.1
6.8
10 | 2.4
2.4
2.3
2.0
1.9 | 1.7
1.6
1.4
1.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 35.22
1.14
1.6
.82
70 | 39.6
1.32
1.7
1.0
79 | 31.44
1.01
1.2
.74
62 | 24.06
.78
1.0
.55
48 | 24.80
.86
1.1
.70
49 | 32.85
1.06
2.0
.70
65 | 108.0
3.60
7.0
1.5
214 | 538.1
17.4
50
4.8
1070 | 766
25.5
51
12
1520 | 288.8
9.32
18
6.1
573 | 127.2
4.10
12
1.8
252 | 60.33
2.01
4.3
.81
120 | CAL YR 1987 TOTAL 1829.86 MEAN 5.01 MAX 62 MIN .60 AC-FT 3630 WTR YR 1988 TOTAL 2076.40 MEAN 5.67 MAX 51 MIN .55 AC-FT 4120 09064000 HOMESTAKE CREEK AT GOLD PARK, CO LOCATION.--Lat 39°24'20", long 106°25'58", Eagle County, Hydrologic Unit 14010003, on left bank at Gold Park, 400 ft downstream from ford, at Gold Park Campground, 0.5 mi downstream from French Creek, and 8 mi southwest of Red Cliff. DRAINAGE AREA. -- 36.0 mi² (revised). PERIOD OF RECORD. -- October 1947 to September 1954, August 1972 to current year. REVISED RECORDS. -- WRD Colo. 1973: Drainage area at former site. GAGE.--Water-stage recorder. Elevation of gage is 9,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 1, 1972, water-stage recorder at site 1,500 ft upstream at datum 9,245 ft, above National Geodetic Vertical Datum of 1929 (river-profile survey). REMARKS.--Estimated daily discharges: Nov. 9, 10, 12, 13, and Nov. 16 to Apr. 13. Records good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake, capacity, 44,360 acre-ft, since June 7, 1966. Transmountain diversion upstream from station to Arkansas River basin through Homestake tunnel since June 66 1967. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--7 years (water years 1948-54), 63.4 ft³/s; 45,930 acre-ft/yr, prior to diversion through Homestake tunnel; 15 years (water years 1973-88), 29.6 ft³/s; 21,450 acre-ft/yr, subsequent to diversion through Homestake tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,080 ft³/s, June 13, 1953, gage height, 6.84 ft, site and datum then in use, from rating curve extended above 700 ft³/s; minimum not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 257 ft³/s at 2200 June 4, gage height, 5.16 ft; minimum daily, 5.2 ft³/s, Jan. 26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|--|------------------------------------|------------------------------------|---------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | ма ч | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.6
8.3
8.3
8.0 | 8.8
9.1
8.7
8.4
8.1 | 8.2
7.8
8.7
8.4
8.0 | 8.2
6.8
5.9
7.0
7.7 | 6.5
6.3
6.3
5.9 | 8.6
9.7
9.0
8.4
8.1 | 13
10
10
10
11 | 42
34
31
29
36 | 41
43
65
125
125 | 28
27
29
27
27 | 34
25
20
17
16 | 8.3
8.1
7.5
7.2
7.1 | | 6
7
8
9
10 | 8.0
8.0
7.8
7.7
7.7 | 8.7
9.0
8.8
9.0 | 8.4
8.1
7.8
7.8
8.1 | 8.0
8.2
7.9
7.7
7.6 | 6.0
6.5
7.0
7.5
7.0 | 8.9
8.3
8.3
8.9
8.7 | 13
16
14
16
18 | 40
31
25
25
29 | 100
94
91
104
96 | 26
25
23
20
21 | 15
15
15
13
12 | 7.1
7.1
7.1
7.1
7.0 | | 11
12
13
14
15 | 7.4
7.4
7.7
8.6
9.0 | 9.3
9.0
8.4
7.8
8.5 | 8.6
8.6
7.2
6.6
6.6 | 7.9
7.3
6.6
5.9
6.5 | 7.4
7.4
7.2
7.2
7.0 | 8.3
8.0
8.2
8.6
8.3 | 15
17
19
21
23 | 34
57
80
92
102 | 67
62
45
38
37 | 22
23
27
32
37 | 11
12
11
9.5
9.2 | 8.9
12
14
14
12 | | 16
17
18
19
20 | 8.9
8.5
8.3
7.9
7.5 | 8.6
8.2
8.2
8.8
9.6 | 6.1
5.8
5.8
6.8
8.0 | 7.0
7.0
6.3
6.3 | 7.0
8.1
7.7
7.4
8.0 | 8.3
8.3
8.3
8.0
7.7 | 25
25
23
22
26 | 105
93
91
79
55 | 38
38
37
49
56 | 31
29
25
23
21 | 12
13
12
10
9.3 | 10
9.5
8.8
8.4
8.2 | | 21
22
23
24
25 | 8.7
7.6
7.4
7.5
8.2 | 11
11
9.8
9.5
8.9 | 7.6
7.0
7.7
8.5
8.2 | 5.5
6.0
6.2
6.0
5.6 | 8.4
8.0
8.0
8.2
8.4 | 7.2
7.2
7.2
7.2
7.2 | 35
30
24
22
18 | 42
35
34
43
51 | 56
42
38
36
34 | 19
17
16
15
14 | 11
14
11
10
9.4 | 8.1
8.0
7.7
7.4 | | 26
27
28
29
30
31 | 7.9
7.9
7.9
7.8
8.5
8.7 | 8.4
8.7
8.6
8.0
8.5 | 7.3
7.3
8.0
8.0
7.3
8.0 | 5.2
5.5
6.0
6.3
6.6 | 8.6
8.3
8.3
8.6 | 7.5
8.0
8.2
12
9.2
9.6 | 19
16
15
18
31 | 53
55
60
66
58
44 | 33
31
42
43
30 | 14
14
15
21
29
59 | 9.1
9.4
9.2
8.8
8.6 | 7.0
6.8
6.5
6.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 250.3
8.07
9.0
7.4
496 | 268.4
8.95
11
7.8
532 | 236.3
7.62
8.7
5.8
469 | 206.5
6.66
8.2
5.2
410 | 213.8
7.37
8.6
5.6
424 | 259.4
8.37
12
7.2
515 | 575
19.2
35
10
1140 | 1651
53.3
105
25
3270 | 1736
57•9
125
30
3440 | 756
24.4
59
14
1500 | 400.0
12.9
34
8.5
793 | 252.0
8.40
14
6.5
500 | CAL YR 1987 TOTAL 7673.2 MEAN 21.0 MAX 167 MIN 5.5 AC-FT 15220 WTR YR 1988 TOTAL 6804.7 MEAN 18.6 MAX 125 MIN 5.2 AC-FT 13500 #### 09064500 HOMESTAKE CREEK NEAR RED CLIFF, CO LOCATION.--Lat 39°28'24", long 106°22'02", in NE4NE4 sec.6, T.7 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank at downstream side of Forest Service road bridge, 2.4 mi south of Red Cliff, and 3.0 mi upstream from mouth. DRAINAGE AREA. -- 58.2 mi² (revised). PERIOD OF RECORD. -- October 1910 to September 1918, May 1944 to current year. Published as "at Redcliff" October 1910 to September 1916. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,783 ft above National Geodetic Vertical Datum of 1929 (river-profile survey). See WSP 1713 or 1733 for history of changes prior to May 8, 1961. REMARKS.--Estimated daily discharges: Nov. 10, 12, 13, Nov. 15 to Apr. 14, Apr. 29 to May 19, and Sept. 1-10. Records
good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake (capacity, 44,360 acre-ft) since June 7, 1966. Transmountain diversions upstream from station through Homestake tunnel (see elsewhere in this report) since June 6, 1967. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--30 years (water years 1911-18, 1945-66), 86.6 ft³/s; 62,740 acre-ft/yr, prior to diversion through Homestake tunnel: 22 years (water years 1967-88), 43.7 ft³/s; 31,660 acre-ft/yr, subsequent to diversion through Homestake tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,300 ft³/s, June 24, 1918, gage height, 6.2 ft, site and datum then in use; minimum observed, 0.60 ft³/s, Jan. 25, 1915 (discharge measurement). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 304 $\rm ft^3/s$ at 2300 June 4, gage height, 2.90 $\rm ft$; minimum daily, 6.0 $\rm ft^3/s$, Jan. 26. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C FEB MAR APR MA Y JUN JUI. AUG SEP JAN. 13 14 9.4 7.6 9.7 93 79 42 48 9.0 8.5 12 15 8.8 7.8 7.4 12 74 40 35 28 9.8 12 14 10 6.8 7.4 12 65 98.6 42 12 9.5 8.0 13 8.0 6.9 9.4 14 73 155 42 9.2 7.5 11 8.9 9.0 17 39 5 12 6.6 9.3 9.5 9.2 7.5 7.5 6 11 13 93 77 37 37 19 18 9.7 7.0 10 20 140 14 9.3 141 9.4 26 11 7.5 9.4 62 35 10 14 9.0 131 9.0 9 8.7 13 9.0 8.8 9.8 28 62 143 32 7.5 8.7 8.8 7.8 10 14 9.4 8.2 9.8 28 70 143 31 14 8.7 9.4 85 13 9.1 12 13 7.3 9.9 31 35 13 12 8.5 8.7 9.2 34 120 101 13 16 7.7 6.7 8.4 86 14 11 9.6 45 133 8.4 160 13 7.6 50 71 11 10 9.8 14 11 7.5 7.6 8.2 59 68 14 15 46 68 41 13 16 7.0 8.2 65 170 11 13 10 8.2 9.8 8.2 12 9.4 6.7 9.5 9.8 63 147 67 40 15 12 18 12 9.4 6.7 7.4 9.0 9.8 56 140 13 19 1.1 10 7.7 7.4 8.6 58 130 73 32 12 11 28 20 9.5 9.0 62 90 11 9.3 6.7 9.3 112 11 21 22 9.8 12 8.9 6.4 10 8.6 87 85 24 10 9.5 9.4 62 77 69 12 8.0 7.0 8.4 75 21 15 11 23 8.9 8.4 11 7.2 19 13 9.4 53 61 9.3 9.9 9.6 47 77 19 10 9.8 8.4 25 12 9.9 9.4 6.6 9.8 43 93 57 19 26 9.6 8.5 49 96 57 19 11 9.7 6.0 10 9.0 27 10 10 8.5 6.4 9.7 9.7 37 100 54 20 9.1 11 28 9.5 10 9.3 7.0 10 9.7 37 101 56 21 10 9.2 9.8 29 10 9.3 8.5 7.0 10 14 58 114 74 31 8.8 9.8 76 36 13 9.2 10 109 49 ---31 14 9.4 85 9.8 7.8 11 TOTAL 337.5 347.3 272.7 298.7 2725.6 488.4 302.5 240.3 250.5 1249 1043 3131 10.1 MEAN 10.9 11.6 8.80 7.75 8.64 9.64 101 90.9 33.6 15.8 41.6 14 7.8 16 7.5 MA X 15 10 10 76 186 76 48 14 170 MIN 9.2 8.4 9.8 6.7 6.0 6.6 12 62 49 19 AC-FT 669 689 541 5410 2070 969 600 477 6210 497 592 2480 CAL YR 1987 TOTAL 10327.5 MEAN 28.3 MAX 228 MIN 2.5 AC-FT 20480 WTR YR 1988 TOTAL 10686.5 MEAN 29.2 MAX 186 MIN 6.0 AC-FT 21200 109 ## 09065100 CROSS CREEK NEAR MINTURN, CO LOCATION.--Lat 39°34'05", long 106°24'43", in SW4SW4 sec.36, T.5 S., R.81 W., Eagle County, Hydrologic Unit 14010003, on right bank 0.4 mi upstream from mouth and 1.5 mi southeast of Minturn. DRAINAGE AREA. -- 34.2 mi2 (revised). PERIOD OF RECORD. -- May 1956 to September 1963, October 1967 to current year. REVISED RECORDS. -- WDR-CO-81-2: 1980 (M). GAGE.--Water-stage recorder. Elevation of gage is 7,992 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 18, 1956, nonrecording gage at site 0.3 mi downstream at different datum. REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 13. Records good except for estimated daily discharges, which are poor. Bolts ditch exports water upstream from station to tailings ponds and recreation lake along Eagle River. Diversion 0.5 mi upstream from station for water supply of school and for municipal supply of Minturn. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 28 years, 52.9 ft 3/s; 38,330 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 754 ft³/s, June 30, 1957, gage height, 5.45 ft; maximum gage height, 6.14 ft, Aug. 6, 1983; minimum daily discharge, 0.1 ft³/s, Dec. 27-31, 1962, Jan. 6-8, 11-15, 1963. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height (ft) | |--------|------|----------------------|---------------------|--------|----------|----------------------|------------------| | June 5 | 0500 | *462 | *4.68 | No oth | her peak | greater than base | discharge. | DIGGUARGE GURIG BEEN DER GEGOVE MARER VEAR OGEOPER 4000 EO GERTEURER 4000 Minimum daily, 1.9 ft³/s, Jan. 3, 4. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|--|--|-----------------------------------|--|------------------------------------|--|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.8
9.3
8.5
8.6
8.4 | 8.2
9.5
9.1
7.8
7.2 | 3.8
3.8
4.0
3.8
3.7 | 2.6
2.2
1.9
1.9
2.1 | 2.6
2.5
2.3
2.2
2.2 | 2.8
2.6
2.5
2.5
2.4 | 5.8
4.7
4.7
5.4
6.0 | 58
45
38
41
53 | 103
96
181
283
367 | 118
104
94
89
94 | 45
38
32
29
25 | 8.8
9.5
8.2
7.1
6.2 | | 6
7
8
9
10 | 8.1
7.4
7.1
6.9
6.2 | 6.6
8.0
7.5
5.3
6.6 | 3.7
3.5
3.4
3.4
3.5 | 2.3
2.6
2.7
2.7 | 2.4
2.6
2.5
2.4
2.5 | 2.3
2.3
2.3
2.3
2.3 | 8.7
13
17
16
18 | 61
47
43
39
41 | 314
335
307
325
345 | 87
84
76
66
60 | 23
23
26
21
18 | 5.4
5.1
4.3
3.4
4.1 | | 11
12
13
14
15 | 6.0
6.1
8.0 | 6.5
8.4
7.7
6.2
6.1 | 3.3
3.0
2.7
2.6
2.5 | 2.7
2.6
2.3
2.2
2.1 | 2.5
2.5
2.4
2.3
2.4 | 2.3
2.4
2.5
2.6
2.8 | 17
23
28
39
38 | 40
61
95
135
161 | 310
253
221
153
178 | 61
56
55
55
50 | 16
16
16
14
13 | 10
19
23
25
20 | | 16
17
18
19
20 | 9.8
8.1
7.4
7.3
6.2 | 5.2
5.0
5.0
4.5
5.0 | 2.6
2.6
2.7
2.7
2.6 | 2.2
2.4
2.4
2.2
2.0 | 2.3
2.2
2.2
2.2
2.3 | 2.9
3.0
3.0
3.0
3.1 | 37
44
39
42
41 | 186
208
224
235
154 | 182
201
193
230
274 | 47
45
42
39
35 | 15
20
17
15
13 | 16
14
13
12 | | 21
22
23
24
25 | 6.5
5.5
5.4
5.2
7.5 | 4.7
4.7
4.5
4.3
4.2 | 2.6
2.5
2.4
2.1
2.1 | 2.2
2.3
2.2
2.2 | 2.5
2.6
2.6
2.6
2.7 | 3.4
3.5
3.5
3.5 | 46
38
31
27
25 | 112
84
71
94
142 | 287
265
225
237
211 | 32
29
26
25
24 | 13
24
18
14
13 | 9.9
11
11
9.6
8.7 | | 26
27
28
29
30
31 | 7.3
6.2
5.8
6.1
6.8
7.0 | 4.1
4.2
4.1
3.9
4.0 | 2.1
2.3
2.6
2.6
2.5
2.5 | 2.2
2.3
2.5
2.6
2.7
2.7 | 2.8
2.9
2.9 | 4.0
4.0
3.8
6.0
4.3
4.6 | 25
24
25
31
44 | 141
157
171
229
224
133 | 212
178
147
174
135 | 23
26
24
38
44
60 | 11
13
12
10
9.5
9.0 | 7.4
7.0
6.9
7.0
6.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 225.5
7.27
11
5.2
447 | 178.1
5.94
9.5
3.9
353 | 90.2
2.91
4.0
2.1
179 | 72.9
2.35
2.7
1.9
145 | 71.9
2.48
2.9
2.2
143 | 95.7
3.09
6.0
2.3
190 | 763.3
25.4
46
4.7
1510 | 3523
114
235
38
6990 | 6922
231
367
96
13730 | 1708
55.1
118
23
3390 | 581.5
18.8
45
9.0
1150 | 309.4
10.3
25
3.4
614 | CAL YR 1987 TOTAL 14324.7 MEAN 39.2 MAX 389 MIN 2.0 AC-FT 28410 WTR YR 1988 TOTAL 14541.5 MEAN 39.7 MAX 367 MIN 1.9 AC-FT 28840 EAGLE RIVER BASIN #### 09065500 GORE CREEK AT UPPER STATION, NEAR MINTURN, CO LOCATION.--Lat 39°37'33", long 106°16'39", in NELNWL sec.18, T.5 S., R.79 W., Eagle County, Hydrologic Unit 14010003, on right bank 10 ft downstream from bridge pier on Interstate 70, 0.2 mi upstream from Black Gore Creek, 4.4 mi east of Vail, and 8.4 mi northeast of Minturn. DRAINAGE AREA. -- 14.3 mi². 110 PERIOD OF RECORD. -- October 1947 to September 1956, October 1963 to current year. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1947 to Sept. 30, 1956, Oct. 1, 1963 to Sept. 30, 1980, at various sites about 1200 ft upstream at different datums. See WDR-CO-80-2 for history of changes prior to Oct. 1, 1980. REMARKS.--Estimated daily discharges: Oct. 22 to Apr. 27. Records good, except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 34 years, 30.1 ft3/s; 21,810 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 662 ft³/s, June 24, 1983, gage height, 2.60 ft, from rating curve extended above 140 ft³/s; maximum gage height, 6.65 ft, June 18, 1951, datum then in use; minimum daily discharge, 1.2 ft³/s, Mar. 5, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s, and maximum (*). | Date | Time |
Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 29 | 2000 | *203 | *1.50 | June 8 | 1930 | 319 | 1.85 | Minimum daily discharge, 2.7 ft³/s, Jan. 3-14 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|----------------------------------|------------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.0
6.6
6.6
6.2
6.2 | 5.0
5.0
5.0
5.0 | 3.9
3.7
3.6
3.5
3.5 | 2.9
2.8
2.7
2.7
2.7 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.4
3.8
4.5
4.9
5.6 | 33
25
21
20
21 | 96
108
162
205
225 | 83
72
65
66
65 | 19
15
15
14
13 | 4.2
4.2
3.9
3.9 | | 6
7
8
9
10 | 5.8
5.5
5.5
5.5 | 5.0
5.0
5.0
5.0 | 3.5
3.5
3.5
3.5
3.5 | 2.7
2.7
2.7
2.7
2.7 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 6.2
7.2
8.0
9.4 | 24
20
19
17
16 | 236
225
224
212
209 | 58
5 7
53
46
40 | 12
12
12
10
9.2 | 3.9
3.6
3.6
3.9 | | 11
12
13
14
15 | 5.5
4.8
5.5
8.2
7.4 | 4.9
4.7
4.5
4.3
4.1 | 3.5
3.5
3.5
3.3
3.1 | 2.7
2.7
2.7
2.7
2.9 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 12
13
15
18
20 | 18
29
54
83
110 | 182
165
143
127
143 | 36
35
33
34
31 | 8.7
9.6
8.7
7.4
7.0 | 5.8
7.8
7.4
7.8
6.6 | | 16
17
18
19
20 | 7.0
6.2
6.6
5.8
5.5 | 4.0
4.0
4.0
4.0 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 20
20
20
20
20 | 121
132
125
113
78 | 143
143
142
155
150 | 27
26
24
22
20 | 7.4
9.1
8.3
7.0
5.9 | 5.5
5.5
4.8
4.2
4.2 | | 21
22
23
24
25 | 5.1
5.0
5.0
5.0 | 4.0
4.0
4.0
4.0 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 20
19
18
17
17 | 58
48
41
55
87 | 148
141
134
132
128 | 18
17
15
15 | 5.8
6.6
5.2
4.8
4.5 | 4.2
4.1
4.2
3.9
3.6 | | 26
27
28
29
30
31 | 5.0
5.0
5.0
5.0
5.0 | 4.0
4.0
4.0
4.0 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0 | 3.0
3.0
3.0
3.0
3.0 | 16
15
15
17
22 | 110
123
133
150
138
107 | 125
107
102
138
97 | 15
15
15
18
19
18 | 4.2
4.2
5.5
4.8
4.5 | 3.4
3.4
3.1
3.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 179.3
5.78
8.2
4.8
356 | | 00.6
3.25
3.9
3.0
200 | 89.0
2.87
3.0
2.7
177 | 87.0
3.00
3.0
3.0
173 | 93.0
3.00
3.0
3.0
184 | 418.0
13.9
22
3.4
829 | 2129
68.7
150
16
4220 | 4647
155
236
96
9220 | 1073
34.6
83
15
2130 | 264.9
8.55
19
4.2
525 | 135.2
4.51
7.8
3.1
268 | CAL YR 1987 TOTAL 8474.7 MEAN 23.2 MAX 198 MIN 3.0 AC-FT 16810 WTR YR 1988 TOTAL 9348.5 MEAN 25.5 MAX 236 MIN 2.7 AC-FT 18540 ## 09066000 BLACK GORE CREEK NEAR MINTURN, CO LOCATION.--Lat 39°35'47", long 106°15'52", Eagle County, Hydrologic Unit 14010003, on right bank 200 ft from U.S. Highway 6, 0.3 mi upstream from Timber Creek, 2.5 mi upstream from mouth, and 9 mi east of Minturn. DRAINAGE AREA. -- 12.6 mi² (revised). PERIOD OF RECORD. -- October 1947 to September 1956, October 1963 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to October 1963, at site 15 ft upstream, at present datum. REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 27. Records fair except for estimated daily discharges, which are poor. No diversions upstream from station. Natural regulation by two small recreation lakes upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--34 years, 17.3 ft^3/s ; 12,530 acre-ft/yr. The figure published in the 1987 report was in error; the correct figure is 33 years, 17.5 ft3/s, 12,680 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 365 ft³/s, June 7, 1952, gage height, 5.42 ft; maximum gage height, 6.00 ft, Mar. 30, 1968 (backwater from ice); minimum daily discharge, 0.90 ft³/s, Feb. 22, 1968, Jan. 30, 1970, Feb. 4 to Mar. 6, 1979. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|---------|----------------|----------------------|---------------------| | June 6 | 1900 | *150 | *4.00 | No othe | er peak greate | er than base d | ischarge. | Minimum daily, 1.8 ft³/s, Dec. 17-25. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | VATER YEAR
SAN VALUES | R OCTOBER | 1987 TO S | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|-----------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.2
3.2
3.1
3.1
3.1 | 4.4
4.6
4.3
4.2
4.1 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.0
2.0
2.0
2.0 | 2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3 | 14
13
12
13
15 | 70
74
98
118
116 | 21
20
19
18
17 | 6.6
5.9
5.4
5.1
4.9 | 2.9
2.9
2.7
2.7
2.6 | | 6
7
8
9
10 | 3.1
3.1
3.1
3.0
2.9 | 4.0
3.8
3.6
3.4
3.2 | 2.0
2.0
2.0
2.0
2.0 | 2.0
2.1
2.2
2.3
2.3 | 2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 17
14
14
13
12 | 119
118
115
111
106 | 15
14
13
12
12 | 4.8
4.9
5.1
4.5
4.2 | 2.6
2.5
2.4
2.4
3.0 | | 11
12
13
14
15 | 2.9
3.3
3.4
4.5
4.4 | 3.1
2.9
2.7
2.6
2.4 | 2.0
2.0
2.0
2.0
2.0 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 15
23
37
51
62 | 96
85
76
66 | 11
10
10
9.6
9.2 | 4.1
4.6
4.0
3.8
3.8 | 3.6
3.7
3.2
3.1
3.0 | | 16
17
18
19
20 | 4.3
4.1
3.9
3.7
3.8 | 2.3
2.2
2.0
2.0
2.0 | 1.9
1.8
1.8
1.8 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 2.5
2.7
2.9
3.1
3.4 | 70
72
74
72
53 | 56
52
49
47
45 | 8.7
8.3
7.7
7.4
7.0 | 4.6
4.5
4.1
3.8
3.7 | 2.9
2.8
2.7
2.6
3.8 | | 21
22
23
24
25 | 4.0
4.1
4.0
3.6
4.5 | 2.0
2.0
2.0
2.0
2.0 | 1.8
1.8
1.8
1.8 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3 | 3.8
4.2
4.7
5.1
5.6 | 42
37
34
39
49 | 42
39
36
34
31 | 6.6
6.2
6.0
6.0 | 4.2
4.0
3.6
3.4
3.3 | 7.1
3.2
2.8
2.6
2.5 | | 26
27
28
29
30
31 | 4.1
4.1
4.1
3.9
4.2
4.4 | 2.0
2.0
2.0
2.0
2.0 | 1.9
2.0
2.0
2.0
2.0
2.0 | 2.3
2.3
2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3 | 2.3
2.3
2.3
2.3
2.3
2.3 | 6.0
6.7
7.4
8.5 | 63
75
82
97
98
82 | 30
28
27
29
24 | 6.2
5.8
7.2
7.9
7.1
7.2 | 3.4
3.2
3.1
3.0
2.9 | 2.5
2.5
2.5
2.4
2.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 114.2
3.68
4.5
2.9
227 | | 60.0
1.94
2.0
1.8
119 | 69.2
2.23
2.3
2.0
137 | 66.7
2.30
2.3
2.3
132 | 71.3
2.30
2.3
2.3
141 | 114.1
3.80
13
2.3
226 | 1364
44.0
98
12
2710 | 1997
66.6
119
24
3960 | 322.0
10.4
21
5.8
639 | 129.9
4.19
6.6
2.9
258 | 88.6
2.95
7.1
2.4
176 | CAL YR 1987 TOTAL 4035.7 MEAN 11.1 MAX 110 MIN 1.8 AC-FT 8000 WTR YR 1988 TOTAL 4480.8 MEAN 12.2 MAX 119 MIN 1.8 AC-FT 8890 # 09066100 BIGHORN CREEK NEAR MINTURN, CO LOCATION.--Lat 39°38'24", long 106°17'34", in N2 sec.12, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 0.3 mi upstream from U.S. Highway 6, 0.4 mi upstream from mouth, 4.5 mi east of Vail, and 8.5 mi northeast of Minturn. DRAINAGE AREA. -- 4.54 mi² (revised). PERIOD OF RECORD .-- October 1963 to
current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,625 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 11 to Apr. 12, and Aug. 19 to Sept. 30. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 25 years, 10.0 ft3/s; 7,240 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 338 ft³/s, June 8, 1985, gage height, 4.10 ft, from rating curve extended above 82 ft³/s; maximum gage height, 4.26 ft, June 8, 1985 (backwater from debris); minimum daily discharge determined, 0.10 ft³/s, Feb. 8, 1967, Jan. 30, 1970. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|------------------|--------|------|----------------------|---------------------| | May 16
June 6 | 0200
2000 | 52
*102 | 3.25
*3.53 | May 29 | 2200 | 62 | 3.32 | Minimum daily discharge, 0.76 ft³/s, Jan. 9-15. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, | WATER YE
EAN VALUE | AR OCTOBE | ER 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|------------------------------------|----------------------------------|--|--|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.7
1.7
1.7
1.7 | 2.3
2.4
2.3
2.2 | 1.0
1.0
1.0
1.0 | .80
.80
.80
.80 | .80
.80
.80
.80 | .80
.80
.80
.80 | .92
1.1
1.2
1.4
1.6 | 9.5
7.8
6.7
6.9 | 28
31
48
61
72 | 28
24
21
23
23 | 7.2
5.9
5.9
5.9
5.2 | 2.2
2.2
2.1
2.0
2.0 | | 6
7
8
9
10 | 1.6
1.6
1.6
1.5 | 2.1
2.0
1.9
1.8
1.8 | 1.0
1.0
1.0
1.0 | .80
.80
.78
.76 | .80
.80
.80
.80 | .80
.80
.80
.80 | 1.9
2.2
2.5
2.9
3.3 | 7.8
6.9
6.4
5.9 | 76
71
69
70
66 | 22
21
18
16
14 | 5.2
5.4
5.2
4.6
4.0 | 1.9
1.9
1.8
2.0
2.3 | | 11
12
13
14
15 | 1.5
1.8
2.1
2.4
2.3 | 1.7
1.7
1.6
1.5 | 1.0
1.0
.96
.94
.90 | .76
.76
.76
.76 | .80
.80
.80
.80 | .80
.80
.80
.80 | 3.8
4.5
8.7
10
8.8 | 5.6
9.1
18
37
41 | 60
51
46
43
45 | 13
14
15
15
14 | 4.1
4.1
3.7
3.6
3.6 | 2.5
2.7
2.8
2.7
2.6 | | 16
17
18
19
20 | 2.3
2.2
2.1
2.0
2.0 | 1.5
1.5
1.5
1.4
1.4 | .90
.90
.90
.90 | .80
.80
.80
.80 | .80
.80
.80
.80 | .80
.80
.80
.80 | 9.1
11
9.8
12 | 44
41
40
39
27 | 45
47
46
50
49 | 12
11
11
11
9.1 | 3.7
4.0
3.3
3.2
3.1 | 2.4
2.2
2.0
2.0
1.9 | | 21
22
23
24
25 | 2.0
2.0
2.0
2.0
2.2 | 1.3
1.3
1.2
1.2 | .90
.90
.90
.90 | .80
.80
.80
.80 | .80
.80
.80
.80 | .80
.80
.80
.80 | 13
11
8.8
7.2
6.1 | 18
14
13
18
30 | 46
44
40
41
40 | 8.8
8.1
7.5
6.7
6.4 | 3.0
2.9
2.8
2.7
2.7 | 1.9
1.8
1.8
1.8 | | 26
27
28
29
30
31 | 2.4
2.2
2.0
2.0
2.0 | 1.1
1.0
1.0
1.0 | .88
.84
.80
.80
.80 | .80
.80
.80
.80
.80 | .80
.80
.80 | .80
.80
.80
.80
.80 | 5.9
4.9
4.4
5.0
7.8 | 33
35
40
48
46
36 | 38
34
33
41
32 | 6.1
5.9
6.1
6.1
5.7
7.5 | 2.6
2.5
2.4
2.4
2.3
2.3 | 1.7
1.6
1.6
1.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 60.0
1.94
2.4
1.5
119 | 47.6
1.59
2.4
1.0
94 | 28.72
.93
1.0
.80
57 | 24.50
.79
.80
.76
49 | 23.20
.80
.80
.80
46 | 24.80
.80
.80
.80
49 | 181.82
6.06
13
.92
361 | 708.0
22.8
48
5.4
1400 | 1463
48.8
76
28
2900 | 410.0
13.2
28
5.7
813 | 119.5
3.85
7.2
2.3
237 | 61.4
2.05
2.8
1.6
122 | CAL YR 1987 TOTAL 2849.52 MEAN 7.81 MAX 72 MIN .80 AC-FT 5650 WTR YR 1988 TOTAL 3152.54 MEAN 8.61 MAX 76 MIN .76 AC-FT 6250 ERGLE RIVER BROIN 09066150 PITKIN CREEK NEAR MINTURN, CO LOCATION.--Lat 39°38'37", long 106°18'07", in SW4SW4 sec.1, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank, 1,000 ft upstream from U.S. Highway 6, 1,200 ft upstream from mouth, 4.0 mi east of Vail, and 8 mi northeast of Minturn. DRAINAGE AREA. -- 5.32 mi² (revised). PERIOD OF RECORD.--Annual maximum and occasional low-flow measurements water years 1965-66. October 1966 to current year. REVISED RECORDS. -- WRD Colo. 1971: 1967-70. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,525 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1964, to Sept. 30, 1966, crest-stage gage at datum 0.98 ft lower, at site 300 ft downstream. REMARKS.--Estimated daily discharges: Nov. 16-22, Dec. 7 to Mar. 29, and Apr. 1. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 22 years, 12.0 ft3/s; 8,690 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 265 ft³/s, June 8, 1985, gage height, 2.85 ft; maximum gage height, 3.60 ft, June 21, 1983 (backwater from debris); minimum daily discharge, 0.24 ft³/s, Oct. 29 to Nov. 1, 1972. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 60 ft 3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|--------------|----------------------|---------------------| | June 5 | 2030 | *66 | *2.54 | No oth | ner peak gre | ater than base d | ischarge. | Minimum daily, 0.75 ft³/s, Mar. 30. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
EAN VALUE: | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|----------------------------------|--|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.8
2.7
2.7
2.6
2.6 | 3.1
3.4
3.2
3.1
3.0 | 2.0
1.9
1.9
1.8
1.8 | 1.2
1.1
1.1
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.1
1.1
1.1
1.2
1.3 | 9.3
7.7
7.0
6.7
6.8 | 29
33
46
47
60 | 30
27
24
24
24 | 7.0
6.2
5.9
5.8
5.5 | 2.9
2.9
2.7
2.6
2.5 | | 6
7
8
9
10 | 2.6
2.5
2.5
2.4
2.4 | 3.1
3.2
3.4
2.9
3.0 | 1.7
1.6
1.6
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.5
2.3
3.1
3.4
3.7 | 7.3
7.0
6.9
6.4
6.0 | 59
58
49
52
52 | 22
21
18
15
13 | 5.4
5.6
5.7
5.1
4.8 | 2.5
2.5
2.4
2.3
2.5 | | 11
12
13
14
15 | 2.3
2.4
3.2
3.3 | 3.2
2.9
2.9
3.0
2.9 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 3.0
4.1
5.9
6.9
6.8 | 6.1
8.8
16
27
33 | 49
45
38
34
36 | 12
12
12
12
12 | 4.5
4.7
4.5
4.2
4.2 | 3.3
4.0
4.2
4.1
3.6 | | 16
17
18
19
20 | 3.3
3.0
2.7
2.5
2.3 | 2.5
2.5
2.4
2.4
2.3 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 6.9
8.0
7.2
7.2
7.6 | 39
39
41
40
27 | 38
38
37
44
41 | 10
10
9.6
9.2
8.4 | 4.5
4.8
4.5
4.2
4.0 | 3.2
2.9
2.8
2.8
2.7 | | 21
22
23
24
25 | 2.3
2.2
2.2
2.3
3.0 | 2.3
2.3
2.3
2.4
2.3 | 1.5
1.5
1.5
1.5 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 8.8
7.7
7.0
6.4
5.7 | 19
15
14
21
31 | 40
39
37
39
37 | 7.9
7.5
7.2
6.8
6.7 | 4.2
4.2
3.9
3.6
3.5 | 2.5
2.5
2.4
2.4 | | 26
27
28
29
30
31 | 2.8
2.7
2.6
2.6
2.8
3.0 | 2.2
2.2
2.1
2.2
2.0 | 1.5
1.5
1.4
1.4
1.3 | 1.0
1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0
.75 | 5.4
5.0
4.7
5.1
7.3 | 34
39
41
46
47
36 | 36
34
32
39
31 | 6.5
6.4
6.3
6.4
6.3
7.2 | 3.2
3.1
3.0
3.1
3.0 | 2.3
2.2
2.3
2.4
2.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 81.6
2.63
3.3
2.2
162 |
80.7
2.69
3.4
2.0
160 | 48.1
1.55
2.0
1.2
95 | 31.4
1.01
1.2
1.0
62 | 29.0
1.00
1.0
1.0
58 | 30.85
1.00
1.1
.75
61 | 146.5
4.88
8.8
1.1
291 | 691.0
22.3
47
6.0
1370 | 1249
41.6
60
29
2480 | 399.4
12.9
30
6.3
792 | 139.1
4.49
7.0
3.0
276 | 83.3
2.78
4.2
2.2
165 | CAL YR 1987 TOTAL 2774.2 MEAN 7.60 MAX 46 MIN 1.2 AC-FT 5500 WTR YR 1988 TOTAL 3009.95 MEAN 8.22 MAX 60 MIN .75 AC-FT 5970 #### 09066200 BOOTH CREEK NEAR MINTURN. CO LOCATION.--Lat 39°38'54", long 106°19'21", at NEdSEd of sec.3, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on center bridge pier 100 ft upstream from U.S. Highway 6, 0.4 mi upstream from mouth, 3.0 mi northeast of Vail, and 7.0 mi northeast of Minturn. DRAINAGE AREA. -- 6.02 mi² (revised). PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,325 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 4, 1984, gage at site 1,000 ft upstream at different datum (gage destroyed by rock slide). REMARKS.--Estimated daily discharges: Nov. 22 to Apr. 1. Records good, except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 24 years, 12.5 ft 3/s; 9,060 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 355 ft³/s, June 15, 1978, gage height, 4.07 ft; maximum gage height, 4.62 ft, June 18, 1983 (backwater from debris); minimum daily discharge, 0.20 ft³/s, Feb. 8, 1967, Jan. 29, 1970, Feb. 10-11, 1981. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 149 $\rm ft^3/s$ at 2100 June 6, gage height 3.33 ft; minimum daily, 0.83 $\rm ft^3/s$, Sept. 6, 8, 9. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, W | VATER YEAR | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------|---------------------------------|-----------------------------------| | DAY | ост | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.2
1.1
1.1
1.0
1.1 | 2.2
2.4
2.2
2.1
2.2 | 1.2
1.2
1.2
1.2
1.2 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.2
2.0
2.5
2.9
3.0 | 15
12
10
9.7 | 35
41
61
88
93 | 27
23
19
18
17 | 3.5
3.1
2.8
2.7
2.6 | 1.0
.98
.90
.87
.85 | | 6
7
8
9
10 | 1.1
1.0
1.0
1.0 | 2.3
2.3
2.4
2.3
2.4 | 1.2
1.2
1.2
1.2 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 3.2
5.4
8.1
5.2
4.2 | 13
11
11
9.3
8.5 | 85
73
76
68
70 | 16
15
14
12
11 | 2.5
2.9
2.9
2.5
2.3 | .83
.85
.83
.83 | | 11
12
13
14
15 | .93
.90
.88
1.3 | 2.2
2.0
1.9
1.9 | 1.2
1.2
1.2
1.2 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 4.7
9.0
15
15 | 9.0
25
36
45
47 | 63
58
48
40
44 | 9.4
9.2
8.8
8.4
7.6 | 2.1
2.2
2.0
1.9
1.8 | 1.4
1.8
1.7
1.6 | | 16
17
18
19
20 | 1.5
1.6
1.6
1.5 | 2.0
2.3
2.4
2.1
1.5 | 1.2
1.2
1.2
1.2 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 14
17
14
14
14 | 52
51
53
54
40 | 48
48
49
58
55 | 7.2
6.8
6.3
5.8
5.4 | 1.9
1.9
1.8
1.5 | 1.3
1.3
1.2
1.2 | | 21
22
23
24
25 | 1.3
1.3
1.3
1.3 | 1.5
1.4
1.4
1.4 | 1.2
1.2
1.2
1.2 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 18
15
12
9.5
7.4 | 29
25
22
25
33 | 53
48
45
45
44 | 5.0
4.6
4.2
3.9
3.7 | 1.5
1.5
1.3
1.2 | 1.2
1.2
1.2
1.2
1.1 | | 26
27
28
29
30
31 | 1.7
1.7
1.7
1.8
1.9
2.0 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.2
1.1
1.1
1.0
1.0 | 1.0
1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0 | 1.0
1.0
1.0
1.0
1.0 | 6.4
5.6
5.4
6.0 | 41
48
55
62
57
43 | 39
39
40
51
31 | 3.7
3.5
3.4
3.9
4.1 | 1.1
1.1
1.1
1.1
1.0 | 1.1
1.1
1.1
1.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 41.31
1.33
2.0
.88
82 | | 36.6
1.18
1.2
1.0
73 | 31.0
1.00
1.0
1.0
61 | 29.0
1.00
1.0
1.0
58 | 31.0
1.00
1.0
1.0
61 | 263.7
8.79
18
1.2
523 | 962.5
31.0
62
8.5
1910 | 1636
54.5
93
31
3250 | 290.3
9.36
27
3.4
576 | 59.4
1.92
3.5
1.0 | 34.37
1.15
1.8
.83
68 | CAL YR 1987 TOTAL 3356.82 MEAN 9.20 MAX 58 MIN .60 AC-FT 6660 WTR YR 1988 TOTAL 3470.98 MEAN 9.48 MAX 93 MIN .83 AC-FT 6880 ## 09066300 MIDDLE CREEK NEAR MINTURN, CO LOCATION.--Lat 39°38'45", long 106°22'54", in sec.6, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 200 ft upstream from Interstate Highway 70, 0.2 mi upstream from mouth, and 5.0 mi northeast of Minturn. DRAINAGE AREA. -- 5.94 mi² (revised). PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1977 at site 700 ft upstream, at different datum. REMARKS.--Estimated daily discharges: Nov. 19 to Mar. 20. Records good except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 24 years, 6.12 ft 3/s; 4,430 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 116 ft³/s, June 20, 1974, gage height, 2.65 ft, datum then in use; maximum gage height, 3.28 ft, June 25, 1983, backwater from debris; no flow at times most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 62 ${\rm ft}^3/{\rm s}$ at 2030 June 8, gage height, 2.55 ft; minimum daily, 0.20 ${\rm ft}^3/{\rm s}$, Jan. 12-27. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, M | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .52
.50
.48
.46 | .77
.92
.74
.67 | .30
.30
.30
.30 | .24
.23
.23
.23
.23 | .24
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.29
.33
.34 | 3.2
2.8
2.6
2.5
2.7 | 15
16
23
31
40 | 10
9.0
8.2
7.4
6.9 | 2.8
2.1
1.9
1.6
1.5 | .61
.70
.57
.52
.48 | | 6
7
8
9
10 | .42
.42
.42
.43 | .71
.69
.69
.46 | .30
.30
.30
.30 | .23
.23
.23
.22 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .43
.63
.92
.80 | 3.1
3.0
3.0
2.8
2.8 | 44
47
49
48
46 | 6.4
5.7
5.4
4.9 | 1.5
1.8
1.9
1.4
1.3 | .45
.42
.39
.37 | | 11
12
13
14
15 | .40
.39
.47
.67 | .65
.45
.59
.54 | .30
.30
.30
.30 | .21
.20
.20
.20 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .68
.88
1.3
1.2 | 2.9
4.1
6.1
8.3 | 43
40
33
26
24 | 4.3
4.1
3.7
3.4
3.3 | 1.2
1.2
1.1
1.0 | .73
1.3
1.2
1.2 | | 16
17
18
19
20 | .62
.58
.68
.66 | .25
.30
.33
.31 | .30
.30
.30
.30 | .20
.20
.20
.20 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | .95
1.7
1.2
1.6 | 13
15
18
18
12 | 24
24
24
31
30 | 3.2
3.0
2.8
2.6
2.5 | 1.2
1.3
1.1
.89 | .80
.72
.64
.60 | | 21
22
23
24
25 | .41
.47
.51
.59 | .30
.30
.30
.30 | .30
.30
.30
.30 | .20
.20
.20
.20 | .25
.25
.25
.25 | .25
.27
.24
.23
.21 | 2.5
2.3
2.0
1.7
1.2 | 9.8
8.3
7.4
7.7
8.6 | 27
25
23
20
18 | 2.3
2.1
2.0
1.9
1.8 | .92
.96
.79
.73 | .63
.67
.69
.61 | | 26
27
28
29
30
31 | .73
.62
.55
.64
.73 | .30
.30
.30
.30 | .30
.30
.28
.27
.26 | .20
.20
.21
.22
.23 | .25
.25
.25
.25 | .24
.30
.32
.29
.28 | .94
.97
.93
.91 | 9.6
12
15
20
22
18 | 17
16
14
15
12 | 1.9
2.0
1.8
2.0
2.0 | .67
.73
.69
.65
.62 | .52
.50
.50
.53
.60 | | TOTAL
MEAN
MAX
MIN
AC-FT | 16.95
.55
.89
.39 | 14.13
.47
.92
.25
.28 | 9.16
.30
.30
.25
18 | 6.59
.21
.24
.20 | 7.24
.25
.25
.24
14 | 7.88
.25
.32
.21
16
| 32.55
1.08
2.5
.25
65 | 274.3
8.85
22
2.5
544 | 845
28.2
49
12
1680 | 123.9
4.00
10
1.8
246 | 36.62
1.18
2.8
.61
73 | 19.53
.65
1.3
.37 | CAL YR 1987 TOTAL 1393.96 MEAN 3.82 MAX 32 MIN .25 AC-FT 2760 WTR YR 1988 TOTAL 1393.85 MEAN 3.81 MAX 49 MIN .20 AC-FT 2760 #### 09066400 RED SANDSTONE CREEK NEAR MINTURN, CO LOCATION.--Lat 39°40'58", long 106°24'03", Eagle County, Hydrologic Unit 14010003, on left bank 150 ft upstream from road culvert, 1,400 ft upstream from Indian Creek, and 6.8 mi north of Minturn. DRAINAGE AREA. -- 7.32 mi² (revised). PERIOD OF RECORD. -- October 1963 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,212 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10, 18-20, 24, and Jan. 21-29. Records good except for estimated daily discharges, which are fair. No regulation or diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 25 years, 9.21 ft 3/s; 6,670 acre-ft/yr. Discharge EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 215 ft³/s, June 19, 1983, gage height, 4.66 ft, maximum gage height, 5.18 ft, Apr. 17, 1987 (backwater from ice); minimum daily discharge, 0.20 ft³/s, Jan. 30, 1970. Gage height EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 70 ft3/s, and maximum (*): Gage height | Ι | ate | Time | | 3/s) | u. | (ft) | | ite | Time | (ft ³ /s) | ,• | (ft) | • | |---|----------------|---------|--------------|-------|-----------------------|---------|---------------------------|-------|-----------|----------------------|-----|-------|---| | M | 1 ay 29 | 2000 | | 72 | | 3.74 | Ju | ine 5 | 1700 | *101 | | *3.96 | | | | Minin | um dail | y discharge, | 0.65 | ft ³ /s, 0 | ct. 12. | | | | | | | | | | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUES | | 1987 TO S | SEPTEMBER 19 | 88 | | | | | DAY | OCT | иол | DE C | JAN | FEB | MA R | APR | MA Y | J UN | JUL | AUG | | | MEAN VALUES | | | | | | | | | | | | | |--------------------------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .86
.85
.81
.79
.76 | .85
.85
.81
.99 | .67
.68
.71
.68 | .71
.71
.71
.71 | .72
.71
.71
.71 | .79
.80
.80
.80 | .92
.86
.85
.85 | 9.4
8.3
7.2
6.7
7.5 | 40
41
53
69
79 | 13
12
12
11
10 | 5.6
4.1
3.6
3.4
3.0 | 1.0
1.0
1.0
1.0 | | 6
7
8
9
10 | .76
.71
.71
.69
.70 | 1.5
1.2
.99
.99 | .67
.67
.67
.67 | .71
.73
.76
.76 | .71
.71
.71
.71 | .80
.80
.80
.80 | 1.2
2.0
2.1
2.0
1.2 | 9.6
9.3
8.6
7.6
7.2 | 79
75
71
65
61 | 9.7
9.2
8.9
8.2
7.2 | 3.0
3.1
3.7
3.2
2.7 | 1.0
.92
.87
.85 | | 11
12
13
14
15 | .66
.65
.67
.67 | .98
.83
.89
.88 | .67
.67
.67
.67 | .76
.76
.76
.76 | .71
.74
.76
.76 | .80
.80
.80
.79 | 1.7
3.1
3.4
4.2
4.2 | 8.4
13
20
31
42 | 55
47
42
36
33 | 6.8
6.5
5.9 | 2.5
2.5
2.4
2.0
2.0 | .89
1.4
1.4
1.4 | | 16
17
18
19
20 | .74
1.1
1.2
.85
.92 | .85
.81
.80
.80 | .67
.67
.67
.67 | .76
.76
.76
.76 | .76
.76
.76
.76 | .76
.76
.76
.76 | 4.3
4.4
4.4
4.9 | 46
47
50
54
42 | 32
32
30
39
34 | 5.6
5.2
4.9
4.4
4.3 | 2.5
2.9
2.1
1.8
1.5 | 1.4
1.4
1.2
1.1 | | 21
22
23
24
25 | 1.2
1.3
1.1
1.3 | .96
.86
.94
.96 | .71
.71
.71
.71 | .74
.71
.70
.70 | .76
.76
.76
.76 | .76
.78
.82
.80 | 6.2
6.4
6.2
4.8
4.1 | 33
28
25
27
30 | 29
32
25
23
21 | 4.0
4.1
3.8
3.8
3.8 | 1.5
1.5
1.4
1.3 | 1.0
1.0
1.0
1.0 | | 26
27
28
29
30
31 | 1.1
1.1
1.6
1.1
1.0
.88 | .76
.76
.75
.71
.67 | .71
.71
.71
.71
.71 | .70
.72
.74
.74
.77 | .76
.76
.76
.76 | .82
.86
1.1
1.4
1.4 | 3.8
3.9
3.8
4.1
6.5 | 33
40
45
57
62
48 | 20
19
18
19
16 | 3.8
3.8
3.8
3.8
4.2 | 1.1
1.1
1.1
1.0
1.0 | .92
.98
1.0
1.1
1.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 28.65
.92
1.6
.65 | 27.41
.91
1.5
.67
54 | 21.29
.69
.71
.67
42 | 22.85
.74
.77
.70
45 | 21.48
.74
.76
.71
43 | 26.58
.86
1.4
.76
53 | 101.67
3.39
6.5
.85
202 | 862.8
27.8
62
6.7
1710 | 1235
41.2
79
16
2450 | 200.1
6.45
13
3.8
397 | 70.8
2.28
5.6
1.0
140 | 32.27
1.08
1.4
.85
64 | CAL YR 1987 TOTAL 1813.02 MEAN 4.97 MAX 47 MIN .40 AC-FT 3600 WTR YR 1988 TOTAL 2650.90 MEAN 7.24 MAX 79 MIN .65 AC-FT 5260 ## 09067000 BEAVER CREEK AT AVON, CO LOCATION.--Lat 39°37'47", long 106°31'20", in NELSWL sec.12, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on left bank at Avon, 550 ft upstream from U.S. Highways 6 and 24, and 700 ft upstream from mouth. DRAINAGE AREA. -- 14.8 mi² (revised). #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January to December 1911, January 1912 to September 1914 (gage heights and discharge measurements only), May 1974 to February 1988 (discontinued). GAGE.--Water-stage recorder. Elevation of gage is 7,453 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 1, 1974, nonrecording gage near present site at different datum. REMARKS.--Estimated daily discharges: Nov. 16, 25, 28, 29, Dec. 1, and Dec. 13 to Feb. 29. Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation upstream and downstream from station. Slight natural regulation by several small lakes in headwaters. AVERAGE DISCHARGE .-- 13 years (water years 1975-87), 13.7 ft3/s; 9,930 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 249 ft³/s, June 27, 1983, gage height, 3.46 ft; minimum daily, 0.55 ft³/s, Sept. 10, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 80 ft³/s, and maximum (*) during period October 1987 to February 1988: | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|----------------------|------------------|--------|------|-----------------------------------|---------------------| | Nov. 29 | 1000 | | *a2.47 | Dec. 3 | 1800 | *7.20 | 1.88 | Minimum daily, 2.2 ft³/s, Jan. 3. a-Backwater from ice. | | | DISCHARGE, | CUBIC 1 | FEET PER S | | TER YEAR (| OCTOBER 1 | 1987 TO SE | PTEMBER 1 | 988 | | | |--------------------------------------|------------------------------------|-----------------------------------|--|--|-----------------------------------|------------|-----------|------------|-----------|-----|-----|-----| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.3
3.0
3.3
3.0 | 3.6
4.0
3.5
3.0
2.8 | 3.6
4.0
4.7
3.3
3.5 | 2.4
2.3
2.2
2.3
2.5 | 2.9
2.8
2.7
2.6
2.7 | | | | | | | | | 6
7
8
9
10 | 3.2
3.0
3.3
3.1
3.1 | 3.3
3.0
2.9
2.7
2.7 | 3.3
3.5
2.9
4.5
4.7 | 2.7
2.7
2.6
2.6
2.6 | 2.8
2.9
2.9
2.9
2.8 | | | | | | | | | 11
12
13
14
15 | 2.9
2.7
3.4
3.8
4.0 | 2.7
3.3
3.1
2.8
2.6 | 3.8
3.5
3.3
2.9
2.6 | 2.6
2.4
2.5
2.6
2.8 | 2.8
2.9
2.9
2.9 | | | | | | | | | 16
17
18
19
20 | 3.8
3.5
3.4
3.2
3.0 | 2.4
2.4
2.6
2.8
2.9 | 2.6
2.8
2.9
2.9
2.7 | 2.8
2.8
2.6
2.4
2.3 | 2.7
2.7
2.8
2.9
2.9 | | | | | | | | | 21
22
23
24
25 | 3.0
3.1
3.3
3.5
3.9 | 3.1
3.2
3.2
3.2
3.1 | 2.6
2.7
2.8
2.7
2.6 | 2.4
2.5
2.7
2.7
2.6 | 2.8
2.7
2.6
2.6
2.7 | | | | | | | | | 26
27
28
29
30
31 | 3.5
3.1
3.5
3.8
3.7 | 3.2
3.2
3.2
3.3
3.5 | 2.4
2.5
2.6
2.6
2.6
2.6 | 2.5
2.6
2.7
2.9
3.0
3.1 | 2.9
3.1
3.2
3.2 | | | | | | | | | TOTAL
MEAN
MAX
MIN
AC-FT | 103.0
3.32
4.0
2.7
204 | 91.3
3.04
4.0
2.4
181 | 96.7
3.12
4.7
2.4
192 | 80.4
2.59
3.1
2.2
159 | 82.0
2.83
3.2
2.6
163 | | | | | | | | CAL YR 1987 TOTAL 3851.9 MEAN 10.6 MAX 69 MIN 2.0 AC-FT 7640 # EAGLE RIVER BASIN # 09067000 BEAVER CREEK AT AVON, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- January 1975 to February 1988 (discontinued). WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | |----------------|------
---|---|--------------------------------|--------------------------------------|-------------------------------------| | NOV 1987
03 | 1450 | 3.56 | 222 | 8.2 | 7.5 | 9.4 | ## EAGLE RIVER BASIN 119 09069000 EAGLE RIVER AT GYPSUM, CO LOCATION.--Lat 39°39'00", long 106°57'06", Eagle County, Hydrologic Unit 14010003, at bridge at Gypsum, about 400 ft upstream from Gypsum Creek, about 520 ft upstream from bridge on U.S. Highways 6 and 24, and about 550 ft upstream from gaging station. DRAINAGE AREA. -- 842 mi². PERIOD OF RECORD. -- April 1947 to current year. PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: April 1947 to current year. WATER TEMPERATURE: April 1949 to current year. REMARKS.--Records of discharge are given for Eagle River below Gypsum (station 09070000), located 550 ft, downstream from Eagle River at Gypsum (station 09069000). EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 1,850 microsiemens Aug. 6, 1949; minimum daily, 130 microsiemens June 9, 10, 1976. WATER TEMPERATURES: Maximum daily, 24°C Aug. 24, 1949 and several days in August, 1988; minimum, 0.0°C on many days during winter months. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum daily, 1,400 microsiemens Dec. 9 and 15; minimum daily, 140 microsiemens June 4, 6, 8, 10 (may have been less during missing days in June). WATER TEMPERATURES: Maximum daily, 24.0°C several days in August; minimum daily, 0.0°C on many days in December, January and February. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |------------------|---|--|---|---|--|--|---|---|--|---|--| | DEC
07
MAY | 1600 | 206 | 1030 | 8.1 | 3.0 | 11.0 | 390 | 120 | 23 | 73 | 2 | | 11
JUN | 1145 | 420 | 493 | 8.5 | 8.5 | 11.2 | 190 | 56 | 12 | 26 | 0.9 | | 15 | 0910 | 1680 | 238 | 8.1 | 9.0 | 9.4 | 99 | 30 | 5.9 | 8.7 | 0.4 | | AUG
11 | 0945 | 182 | 908 | 7.9 | 16.0 | 8.6 | 330 | 100 | 19 | 55 | 1 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | DEC
07 | 3.0 | 139 | 250 | 110 | 0.30 | 8.2 | 674 | 0.92 | 375 | <1 | 0.50 | | MAY
11 | 1.8 | 95 | 100 | 35 | 0.20 | 6.5 | 295 | 0.40 | 334 | 9 | <0.10 | | JUN
15 | 0.80 | 60 | 40 | 10 | 0.10 | 5.4 | 138 | 0.19 | 624 | 21 | <0.10 | | AUG
11 | 2.5 | 132 | 200 | 83 | 0.10 | 7.9 | 548 | 0.74 | 269 | 8 | 0.20 | | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO -
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | | DEC
07 | 0.58 | 0.30 | 0.20 | 0.80 | 0.05 | 0.03 | <1 | <1 | <1 | 45 | <0.5 | | MA Y
11 | <0.10 | 0.30 | 0.60 | | 0.04 | 0.01 | 5 | 3 | <1 | 59 | <0.5 | | JUN | | | | | | | | | | | | | 15
AUG | 0.12 | 0.30 | 0.20 | | 0.02 | 0.01 | <1 | <1 | <1 | 38 | <0.5 | MEAN 1070 1080 # 09069000 EAGLE RIVER AT GYPSUM, CO.--Continued # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER, DIS- SOLVED (UG/L AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | | |----------------------------------|--|--|--|--|---|---|---|---|---|---|--|--------------------------------------| | | DEC
07 | <1 | <1 | <1 | <1 | 4 | 2 | 12 | < 5 | < 5 | 69 | | | | MA Y 11 | 2 | <1 | 2 | <1 | 7 | 4 | 68 | < 5 | < 5 | 72 | | | | JUN
15
AUG | 1 | <1 | 1 | <1 | 7 | 3 | 18 | 7 | <5 | 27 | | | | 11 | 1 | 1 | <1 | <1 | 3 | <1 | 9 | <5 | <5 | 31 | | | | DATE | MERCURY
TOTAL
RECOV –
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | | | DEC 07 | <0.10 | <0.1 | 3 | <1 | <1 | <1 | <1 | <1.0 | 50 | 32 | | | | MAY
11
JUN | | | 3 | 5 | <1 | <1 | <1 | <1.0 | 160 | 36 | | | | 15
AUG | <0.10 | <0.1 | 4 | <1 | <1 | <1 | <1 | <1.0 | 20 | 26 | | | | 11 | <0.10 | 0.8 | <1 | <1 | <1 | <1 | <1 | <1.0 | 30 | 12 | | | | SPECIFIC | CONDUCTAN | CE, (MICR | OSIEMENS/ | | DEG. C), W | | OCTOBER | 1987 TO S | EPTEMBER | 1988 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA Y | JUN | JÜL | AUG | SEP | | 1
2
3
4
5 | 1100
1100
1100
1100
1100 | 1000
1000
1000
1000
1000 | 1200
1300
1100
1100 | 1200
1100
1100
1100
1000 | 1000
1000
1100
1000
1000 | 1000
1000

950
950 | 1000
1000
900
900
900 | 400
380
420
420
420 | 220
320
240
140 | 280
300
360
380
380 | 600
600
650
750 | 1000
1000

1200 | | 6
7
8
9 | 1100
1100
1100
1000
1100 | 1000
1000
1050
1000
1000 | 1100
1100
1400 | 1100
1100
1000
1100 | 1000
1000 | 1000
1000
1000
1000
1000 | 800
800
650
650 | 420
420
420
420
440 | 140
140
140 | 400
400
420
480
480 | 700
750
850 | 1100
1200
1300
1200
1200 | | 11
12
13
14
15 | 1100
1100
1100
1100
1100 | 1000
1100
1100
1100
1100 | 1200

1400 | 1000
1000
1000
1100
1000 | 1000
1000
1000
1000
1000 | 1000
950
950
1100
1100 | 650
600
550
500
600 | 440
400
380
300
300 | 165
240
240 | 480
500
500
540
540 | 800
800
850
850
850 | 1300
900
800
1000 | | 16
17
18
19
20 | 1100
1100
1100
1050
1100 | 1100
1100
1200
1200
1200 | 1200
1200
1200
1200
1100 | 1100

950
1000
1100 | 1000
1000
1000
1000
1000 | 1000
1000
1000
950
950 | 650
650
420
 | 200
200
200
200
250 | 210
240
220
240
260 | 520
560
600 | 800

850
850 | 1000
1000
1000
1000
1000 | | 21
22
23
24
25 | 1100
1100
1050
1050
1050 | 1100
1100
1100
1100
1100 | 1200
1200
1200
1100
1200 | 1000
1100 | 1000
1000
1000
1000
1000 | 1000
900
900
 | 380

520 | 250
280

220
220 | 280
240 | 700

750
725 | 900
850
850
950
850 | 1100

900 | | 26
27
28
29
30
31 | 1000
1000
1000
1000
1000
1000 | 1100
1100
1100
1100
1200 | 1100
1100
1100
1100
1100
1100 | 1100
1000
1000
1000
1000
1000 | 1000
1000
1000
1000 | 1000
900
900
950
950 | 520
520
520
540
520 | 220

160
160 | 260
240
260
260
260 | 750
700
750

680 |
850
900
950
900
925
900 | 1000

1100
1100 | --- --- --- --- --- --- # TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 INSTANTANEOUS VALUES MEAN 10.1 3.4 | | INSTANTANEOUS VALUES | | | | | | | | | | | | |----------------------------------|--------------------------------------|---------------------------------|-----------------------|----------------|------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13.0
13.0
13.0
13.0
13.0 | 9.0
9.0
9.0
9.0 | .0
.0
.0
3.0 | .0
.0
.0 | .0 | 1.0
2.0

7.0
6.0 | 10.0
10.0
10.0
10.0 | 10.0
8.0
12.0
12.0
11.0 | 9.0 | 16.0
16.0
17.0
16.0 | 24.0
24.0

23.0 | 20.0 | | 6
7
8
9
10 | 13.0
12.0
11.0
10.0
11.0 | 8.0
7.0
7.0
6.0
6.0 | 3.0
2.0
1.0 | .0 | .0 | 5.0
5.0
5.0
3.0
3.0 | 12.0
12.0
11.0
11.0 | 10.0
10.0
10.0
12.0
12.0 | 13.0 | 16.0
16.0
16.0
18.0
18.0 | 24.0
20.0
23.0 | 20.0
20.0
20.0
20.0
17.0 | | 11
12
13
14
15 | 12.0
10.0
10.0
10.0 | 4.0
2.0
.0
.0
3.0 | .0 | .0
.0
.0 | .0 | 1.0
4.0
4.0
5.0
5.0 | 11.0
12.0
12.0
11.0
11.0 | 13.0
15.0
14.0
12.0
12.0 | 10.0
7.0
16.0 | 19.0
20.0
19.0
19.0 | 24.0
24.0
22.0
23.0
23.0 | 10.0
8.0
15.0
14.0 | | 16
17
18
19
20 | 10.0
10.0
10.0
9.0
9.0 | 3.0
3.0
.0
.0 | .0
.0
.0 | .0 | .0 | 7.0
7.0
8.0
8.0 | 10.0
10.0
12.0 | 11.0
11.0
11.0
11.0 | 13.0
13.0
11.0
18.0
16.0 | 19.0
19.0
19.0 | 22.0

19.0
20.0 | 14.0
14.0
14.0
14.0 | | 21
22
23
24
25 | 8.0
8.0
8.0
8.0 | 1.0
1.0
1.0
1.0 | .0
.0
.0 | .0 | .0
.0
1.0
1.0 | 10.0
8.0
8.0 | 9.0 | 10.0
10.0

11.0
11.0 | 16.0
16.0 | 20.0 | 22.0
19.0
22.0
22.0
20.0 | 15.0

15.0 | | 26
27
28
29
30
31 | 8.0
8.0
9.0
9.0
9.0 | 1.0
1.0
1.0
1.0 | .0 | .0 | .0
1.0
1.0 | 5.0
6.0
6.0
5.0 | 12.0
12.0
12.0
12.0
12.0 | 11.0

7.0
8.0 | 15.0
15.0
16.0
16.0 | 23.0
22.0
23.0

21.0 | 20.0
22.0
18.0
22.0
22.0
22.0 | 15.0
15.0
15.0 | 122 EAGLE RIVER BASIN ## 09070000 EAGLE RIVER BELOW GYPSUM, CO LOCATION.--Lat 39°38'58", long 106°57'11", in SW4NW4 sec.5, T.5 S., R.85W., Eagle County, Hydrologic Unit 14010003, on right bank 30 ft downstream from bridge on U.S. Highways 6 and 24 at Gypsum and 150 ft downstream from Gypsum Creek. DRAINAGE AREA. -- 945 mi² (revised). PERIOD OF RECORD. -- October 1946 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 6,275.11 ft, above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Dec. 28 to Jan. 26. Records good except for estimated daily discharges, which are fair. Transmountain diversions upstream from station (see elsewhere in this report). Transbasin diversions upstream from station from Robinson Reservoir, capacity, 2,520 acre-ft, to Tenmile Creek for mining development. Many small diversions for irrigation of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 42 years, 581 ft3/s; 420,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,020 ft³/s, May 25, 1984, gage height, 9.46 ft; minimum daily, 110 ft³/s, Feb. 21, 1955, Feb. 3, 1956, Dec. 26, 27, 1962. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | June 7 | 0600 | *2,920 | *6.68 | | | | | Minimum daily, 132 ft3/s, Dec. 15. | | | DISCHARGE, | CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|------------------------------------|--|-------------------------------------|--|---|--|--|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 184 | 228 | 183 | 170 | 179 | 188 | 181 | 633 | 1310 | 931 | 322 | 155 | | 2 | 182 | 250 | 205 | 160 | 177 | 192 | 187 | 595 | 1170 | 822 | 265 | 154 | | 3 | 181 | 248 | 209 | 150 | 179 | 190 | 195 | 498 | 1530 | 759 | 235 | 153 | | 4 | 180 | 234 | 209 | 140 | 174 | 185 | 208 | 478 | 2100 | 738 | 220 | 152 | | 5 | 178 | 224 | 207 | 160 | 166 | 169 | 220 | 510 | 2600 | 732 | 204 | 152 | | 6 | 174 | 226 | 206 | 160 | 174 | 178 | 217 | 615 | 2500 | 749 | 192 | 149 | | 7 | 174 | 236 | 205 | 150 | 182 | 186 | 242 | 567 | 2610 | 692 | 197 | 147 | | 8 | 174 | 236 | 204 | 160 | 184 | 169 | 302 | 534 | 2470 | 635 | 204 | 145 | | 9 | 179 | 217 | 184 | 150 | 182 | 176 | 307 | 482 | 2530 | 586 | 190 | 144 | | 10 | 184 | 201 | 204 | 160 | 177 | 180 | 267 | 451 | 2510 | 535 | 178 | 146 | | 11 | 185 | 209 | 209 | 170 | 173 | 174 | 268 | 424 | 2430 | 504 | 178 | 154 | | 12 | 184 | 208 | 190 | 150 | 177 | 166 | 292 | 500 | 2130 | 468 | 176 | 197 | | 13 | 188 | 201 | 157 | 140 | 175 | 166 | 359 | 741 | 1980 | 440 | 178 | 230 | | 14 | 206 | 208 | 137 | 140 | 180 | 157 | 418 | 1140 | 1590 | 446 | 174 | 226 | | 15 | 224 | 222 | 132 | 150 | 177 | 168 | 438 | 1430 | 1570 | 428 | 167 | 206 | | 16 | 229 | 217 | 133 | 160 | 176 | 171 | 435 | 1620 | 1530 | 416 | 163 | 190 | | 17 | 234 | 212 | 153 | 150 | 169 | 166 | 500 | 1730 | 1550 | 388 | 178 | 182 | | 18 | 226 | 183 | 169 | 160 | 166 | 159 | 466 | 1800 | 1540 | 364 | 182 | 180 | | 19 | 224 | 183 | 200 | 150 | 174 | 163 | 482 | 1960 | 1600 | 342 | 177 | 177 | | 20 | 220 | 212 | 192 | 140 | 178 | 175 | 473 | 1530 | 1760 | 323 | 168 | 178 | | 21 | 216 | 227 | 170 | 150 | 175 | 183 | 541 | 1170 | 1720 | 287 | 169 | 177 | | 22 | 215 | 230 | 168 | 150 | 171 | 192 | 518 | 945 | 1660 | 263 | 179 | 177 | | 23 | 214 | 232 | 190 | 160 | 170 | 193 | 455 | 802 | 1490 | 245 | 182 | 177 | | 24 | 216 | 224 | 184 | 150 | 171 | 198 | 406 | 797 | 1480 | 235 | 174 | 174 | | 25 | 235 | 206 | 176 | 150 | 172 | 184 | 382 | 1000 | 1380 | 224 | 167 | 171 | | 26
27
28
29
30
31 | 240
228
220
217
224
234 | 213
215
189
190
196 | 156
178
170
170
160
170 | 170
173
173
176
182
179 | 174
177
188
189
 | 188
207
231
191
204
192 | 361
361
356
381
448 | 1170
1340
1470
1740
1980
1550 | 1350
1240
1140
1350
1100 | 217
217
210
229
255
287 | 159
163
170
164
160
160 | 169
166
161
165
167 | | TOTAL
MEAN
MAX
MIN
AC-FT | 6369
205
240
174
12630 | 216
250
183 | 5580
180
209
132
1070 | 4883
158
182
140
9690 | 5106
176
189
166
10130 | 5641
182
231
157
11190 | 10666
356
541
181
21160 | 32202
1039
1980
424
63870 | 52920
1764
2610
1100
105000 | 13967
451
931
210
27700 | 5795
187
322
159
11490 | 5121
171
230
144
10160 | CAL YR 1987 TOTAL 162970 MEAN 446 MAX 2470 MIN 132 AC-FT 323300 WTR YR 1988 TOTAL 154727 MEAN 423 MAX 2610 MIN 132 AC-FT 306900 ## 09070500 COLORADO RIVER NEAR DOTSERO, CO LOCATION.--Lat 39°38'38", long 107°04'38", in NW4SE4 sec.6, T.5 S., R.86 W., Eagle County, Hydrologic Unit 14010001, on left bank about 500 ft south of Interstate Highway 70, 1.5 mi west of Dotsero, and 1.5 mi downstream from Eagle River. DRAINAGE AREA . -- 4,394 mi2. PERIOD OF RECORD. -- October 1940 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,130 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 21, 28, Nov. 1, 2, 9, 10, and Nov. 14 to Feb. 25. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, diversions for irrigation of 68,000 acres upstream from station, and return flow from irrigated areas. COOPERATION. -- Gage-height record collected in cooperation with the Colorado Division of Water Resources. AVERAGE DISCHARGE. -- 48 years, 2,152 ft 3/s; 1,559,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,200 ft 3 /s, May 25, 1984, gage height, 14.20 ft; minimum daily, 350 ft 3 /s, Jan. 5, 1944. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,300 ft³/s at 1115 June 7, gage height, 6.64 ft; minimum daily, 790 ft³/s, Dec. 15. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---|--------------------------------------|--|--|---------------------------------------
--|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1230
1220
1230
1230
1240 | 1100
1130
1160
1170
1140 | 1000
1000
1080
1100
1100 | 1040
1000
940
940
1000 | 1060
1080
1020
1000
1000 | 1060
1080
1090
1070
1010 | 1070
1080
1140
1310
1570 | 2880
3010
2610
2370
2430 | 4290
3680
3820
4580
5590 | 3460
3340
3240
3150
2970 | 1630
1580
1440
1380
1380 | 1320
1310
1290
1250
1220 | | 6
7
8
9
10 | 1220
1210
1210
1220
1230 | 1130
1190
1190
1120
1180 | 1080
1030
1000
960
1000 | 1000
1030
1050
1030
1020 | 1000
1050
1050
1020
1000 | 1030
1070
987
1020
1050 | 1570
1600
1910
1950
1710 | 2690
2730
2550
2410
2320 | 5740
5860
5550
5410
5190 | 2780
2500
2370
2240
2160 | 1420
1480
1490
1460
1440 | 1200
1190
1190
1240
1250 | | 11
12
13
14
15 | 1230
1240
1250
1280
1260 | 1130
1080
1120
1130
1180 | 960
900
820
800
790 | 1000
960
940
960
1000 | 1000
1050
1000
1050
1000 | 1000
967
940
905
1040 | 1620
1680
1970
2270
2410 | 2300
2440
2960
3750
4520 | 5140
4610
4330
3730
3530 | 2140
2080
1920
1740
1580 | 1480
1480
1480
1500
1490 | 1330
1460
1520
1440
1320 | | 16
17
18
19
20 | 1210
1200
1180
1170
1120 | 1100
1080
1050
1060
1100 | 800
880
940
1000
930 | 1000
1020
1000
980
960 | 1000
980
980
970
987 | 1020
996
952
977
991 | 2450
2690
2670
2570
2640 | 4990
5380
5650
6030
5880 | 3440
3410
3330
3350
3650 | 1560
1540
1480
1410
1420 | 1490
1520
1520
1470
1440 | 1280
1240
1190
1160
1170 | | 21
22
23
24
25 | 1100
1040
1010
1010
972 | 1180
1200
1200
1200
1200 | 930
980
1060
1000
930 | 960
980
980
1000 | 1000
1000
1010
1010
1020 | 1020
1060
1050
1080
1050 | 2790
2760
2460
2200
2070 | 5380
4360
3720
3540
3620 | 3650
3670
3740
4120
3650 | 1480
1490
1490
1520
1490 | 1440
1490
1490
1440
1390 | 1170
1170
1160
1120
1100 | | 26
27
28
29
30
31 | 996
983
960
935
950
1000 | 1120
1100
1100
1100
1050 | 930
960
1000
1000
1020
1000 | 1000
1000
1020
1030
1060
1080 | 1070
1040
1060
1050 | 1050
1120
1280
1220
1190
1130 | 2000
1940
1910
1970
2220 | 3810
4080
4410
4980
5470
4910 | 3390
3100
2990
3370
3460 | 1480
1480
1420
1440
1530
1580 | 1390
1460
1460
1430
1390
1370 | 1090
1080
1070
1060
1050 | | TOTAL
MEAN
MAX
MIN
AC-FT | 35336
1140
1280
935
70090 | 1133
1200
1050 | 29980
967
1100
790
59470 | 30980
999
1080
940
61450 | 29557
1019
1080
970
58630 | 32505
1049
1280
905
64470 | 60200
2007
2790
1070
119400 | 118180
3812
6030
2300
234400 | 123370
4112
5860
2990
244700 | 61480
1983
3460
1410
121900 | 45320
1462
1630
1370
89890 | 36640
1221
1520
1050
72680 | CAL YR 1987 TOTAL 604616 MEAN 1656 MAX 5470 MIN 790 AC-FT 1199000 WTR YR 1988 TOTAL 637538 MEAN 1742 MAX 6030 MIN 790 AC-FT 1265000 ## 09071300 GRIZZLY CREEK NEAR GLENWOOD SPRINGS, CO LOCATION.--Lat 39°43'00", long 107°18'35", in NE4SW4 sec.7, T.4 S., R.88 W., Garfield County, Hydrologic Unit 14010001, on left bank 0.5 mi west of Grizzly Cow Camp and 14 mi north of Glenwood Springs. DRAINAGE AREA . -- 5.73 mi². 124 PERIOD OF RECORD. -- September 1976 to current year. GAGE.--Water-stage recorder. Elevation of gage is 10,435 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 19, 1978, at site 600 ft upstream, at datum, 25.33 ft, higher. REMARKS.--Estimated daily discharges: Dec. 22-24, May 16-24. Records good except for estimated daily discharges, which are fair. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 12 years, 14.8 ft3/s; 10,720 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $364 \text{ ft}^3/\text{s}$, June 5, 1986, gage height, 4.99 ft, maximum gage height observed, 8.63 ft, May 4, 1982 (backwater from ice); no flow many days most years. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 85 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|-----------------------------------|---------------------| | May 18
May 29 | 1500
1600 |
128 | *a7.04
4.43 | June 6 | 2200 | *165 | 4.63 | No flow many days. a Backwater from ice. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES JUN SEP DAY OCT NOV DE C JAN FEB MA R APR MA Y JUI. AUG 1.8 .96 .87 .68 .00 .55 66 7.7 .27 .00 .00 2 -97 .97 52 76 6.8 2.0 1.0 .70 .10 .00 .00 .00 .56 3 1.0 .90 .68 .21 .00 .00 .00 -57 6.1 2.0 1.3 1.8 1.0 .92 .62 .21 .00 .00 .00 .66 106 5.7 5.1 5 .86 .61 .00 1.5 1.0 1.0 .21 .00 .71 130 .00 .93 .91 .84 5.0 6 .61 .21 .00 .00 -00 .82 152 1.6 .91 .92 .80 155 4.5 1.7 1.7 1.7 .21 .00 - 60 .00 .00 1.0 8 .90 .56 .00 .00 1.2 147 3.8 .89 .00 .91 .85 .21 .00 .00 .00 3.9 1.2 10 .91 .76 .55 .21 .00 .00 .00 1.3 129 3.8 1.5 1.7 .90 118 3.7 1.3 1.6 11 .70 .59 .18 .00 .00 .00 1.4 3.7 1.2 2.1 12 .85 .71 .58 .18 .00 .00 .00 1.7 105 .77 1.0 ·51 .00 13 .16 .00 .10 2.3 82 3.3 5.7 1.2 1.2 58 - 16 -00 -00 .10 3.1 1.2 .82 2.6 15 .43 .00 49 .16 .00 .13 16 1.1 .86 .40 .16 -00 .18 6.8 111 2.9 1.3 1.6 . 00 •97 •94 1.4 17 .79 .78 .38 1.9 .24 37 33 3.1 .16 .00 -00 2.0 18 .38 .16 .00 .00 .21 10 2.4 1.2 19 .91 . 68 .38 . 14 .00 .00 .21 15 26 1.2 1.9-1.9 20 1.0 .66 • 35 .13 -00 .00 .21 18 24 2.0 1.2 1.4 21 .84 .66 .35 .27 30 22 2.1 .13 .00 .00 22 •33 •35 51 61 .84 .63 .13 .00 .00 .30 21 1.9 1.7 2.2 2.1 1.9 .00 16 14 1.3 .80 .61 .13 .00 .30 2.0 .61 2.3 .34 -30 56 . 13 - 00 - 00 25 .88 .61 .32 .30 82 1,8 1.3 .00 .00 .00 13 .85 26 .61 .32 .30 113 12 2.0 1.2 1.7 .00 .00 .00 .89 1.2 .61 .00 12 1.6 .00 2.0 .00 114 28 .84 .61 .27 .00 .35 118 12 2.0 1.6 .00 .00 .79 1.9 29 .63 .27 .00 .00 .00 123 10 1.1 1.6 30 . 66 . 45 8.7 1.0 1.5 . 27 - 00 ---. 00 119 .86 .27 1.8 1.0 ---100 ---.00 .00 TOTAL 28.76 22.47 •75 47.52 14.01 4.64 1048,47 104.0 43.2 4.16 0.00 0.00 1862.7 MEAN .93 33.8 3.35 7.7 1.39 1.58 .45 .13 .00 .00 .15 62.1 MA X 1.2 .97 .70 .27 .00 .00 .45 123 155 2.0 2.2 MIN .79 .27 . oò .00 .00 .00 8.7 1.8 1.0 .89 AC-FT 8.3 28 57 45 .0 .0 9.2 2080 3690 206 CAL YR 1987 TOTAL 4648.76 MEAN 12.7 MAX 164 MIN .27 AC-FT 9220 WTR YR 1988 TOTAL 3179.93 MEAN 8.69 MAX 155 MIN .00 AC-FT 6310 ## 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO LOCATION.--Lat 39°33'38", long 107°17'59", Garfield County, Hydrologic Unit 14010001, 100 yards downstream of No Name Creek and two miles above Clenwood Springs. DRAINAGE AREA . -- 4,556 mi2. PERIOD OF RECORD. -- December 1985 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: December 1985 to current year. WATER TEMPERATURE: December 1985 to current year. INSTRUMENTATION .-- Water-quality monitor since December 1985. REMARKS.--Discharge obtained by subtracting the flow in Roaring Fork River at Glenwood Springs (station 09085000) from the flow in the Colorado River below Glenwood Springs (station 09085100). Water-quality data collection was moved downstream to this site from previous site 09071100 on Dec.12,1985. Water-quality data collected at this site are considered equivalent to data collected at old site. Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 806 microsiemens Aug.21, 1986; minimum, 228 microsiemens June 10, 1 WATER TEMPERATURE: Maximum, 22.5°C July 26, 1987; minimum, 0.0°C many days in winter period, 1986. 1986. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum, 878 microsiemens Dec. 1; minimum recorded, 253 microsiemens June 9 (but may have been less during period of missing record May 17-June 8). WATER TEMPERATURE: Maximum 21.3°C August 4; minimum, 0.0°C many days during winter period. ## WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | | TIME | STRE.
FLOV
INST
TANE
(CF: | AM- CO
W, CO
AN- DO
DUS AN | PE-
IFIC
DN-
JCT-
NCE
S/CM) | PH
(STANI
ARD
UNITS) | O- AT
WA | IPER-
URE
TER
(G C) | HARE
NESS
TOTA
(MG/
AS
CACO | ;
.L
'L | HARI
NESS
NONCA
WH WA
TOT I
MG/L
CACO | S
ARB
AT
FLD
AS | CALCI
DIS-
SOLV
(MG/
AS (| UM
ED S
L (| AGNE-
SIUM,
DIS-
OLVED
MG/L
S MG) | SODIU
DIS-
SOLVI
(MG. | JM,
- SC
ED T
/L R/ | DIUM
AD-
ORP-
TION
ATIO | |-------------|------------------|-------|-------|---|--|--|-----------------------------------
---|------------------------------|--|---------------------------------|---|-----------------------------|---------------------------------------|--|--|---|---|-------------------------------------| | 0 CT
0 8 | 3 | | 1230 | E1250 | | 682 | 8. | l | 13.0 | 2 | 200 | | 97 | 61 | | 11 | 61 | | 2 | | | 5 | | 1420 | E1220 | | 730 | | | 7.5 | 2 | 200 | | 84 | 59 | | 12 | 61 | | 2 | | | 9 | | 1010 | E980 | | 782 | | - | 1.0 | 2 | 200 | | 89 | 61 | | 12 | 74 | | 2 | | | ١ | | 1620 | E1090 | | 713 | | | 0.5 | 1 | 90 | | 83 | 57 | | 12 | 6 6 | | 2 | | | ١ | | 1505 | E256 | | 705 | | | 2.5 | 2 | 200 | | 90 | 60 | | 13 | 64 | | 2 | | |) | | 0910 | E1330 | | 643 | | | 4.0 | 1 | 170 | | 68 | 50 | | 11 | 58 | | 2 | | | ١ | | 0830 | E2650 | | 433 | | | 7.5 | 1 | 30 | | 44 | 3 9 | | 8.7 | 29 | | 1 | | | 3 | | 1045 | E4200 | | 341 | | | 12.0 | 1 | 10 | | 32 | 33 | | 7.4 | 21 | | 0.9 | | | ١ | | 0910 | E1890 | | 615 | 8.1 | ı | 18.5 | 1 | 90 | | 81 | 56 | | 12 | 47 | | 2 | | | 2 | | 1020 | E1560 | | 558 | 7.8 | 3 | 19.0 | 1 | 150 | | 62 | 47 | | 9.1 | 44 | | 2 | | SEP
15 | 5 | | 0930 | E1560 | | 678 | 8. | 1 | 12.5 | 1 | 90 | | 88 | 5 5 | | 12 | 55 | | 2 | | | 1 | DATE | : | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3 | DI
SO
(M | FATE
S-
LVED
G/L
SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOL
(M) | DE,
IS-
LVED
G/L | SILI
DIS
SOL
(MC
AS | S-
.VED
G/L | SOL | OF
TI- | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | D S | LIDS,
DIS-
OLVED
TONS
PER
DAY) | NITROGEN, NO2+NO3 DIS- SOLVEI (MG/L AS N) | 3 | | | | | | 3.2 | 101 | 10 | 0 | 85 | (| 0.40 | 6 | 5.1 | | 389 | 0.5 | 3 1 | 310 | 0.140 |) | | | | | | 2.6 | 113 | 10 | 0 | 91 | (| 30 | 9 | 0.0 | | 403 | 0.5 | 5 1 | 320 | <0.100 |) | | | | | | 2.9 | 113 | 11 | 0 | 100 | (| 30 | 9 | 9.7 | | 438 | 0.6 | 0 1 | 160 | 0.130 |) | | | | | | 2.9 | 109 | 9 | 1 | 99 | (| 30 | 10 |) | | 405 | 0.5 | 5 1 | 190 | 0.240 |) | | | FEB
24
Mar | | | 3.2 | 114 | 8 | 9 | 90 | (| 50 | 9 | .2 | | 398 | 0.5 | 4 | 274 | 0.160 |) | | | | | | 2.9 | 102 | 8 | 4 | 78 | (| 30 | 9 | 9.0 | | 358 | 0.4 | 9 1 | 280 | 0.880 |) | | | | | | 2.0 | 89 | 5 | 8 | 36 | (| 30 | 10 |) | | 236 | 0.3 | 2 1 | 680 | <0.100 |) | | | 03 | | | 1.4 | 81 | 4 | 6 | 2 5 | (| 30 | 8 | 3.5 | | 191 | 0.2 | 6 2 | 160 | <0.100 |) | | | JUL
14
AUG | • • • | | 2.3 | 109 | 9 | 1 | 61 | (| 0.20 | ç | 9.4 | | 344 | 0.4 | 7 1 | 750 | <0.100 |) | | | | | | 2.3 | 93 | 7 | 7 | 66 | C | 30 | 8 | 3.3 | | 310 | 0.4 | 2 1 | 300 | <0.100 |) | | | | • • • | | 2.6 | 99 | 9 | 1 | 76 | (| 30 | 8 | 3.4 | | 360 | 0.4 | 9 1 | 510 | <0.100 |) | | | | | - 4 1 | | | | | | | | | | | | | | | | | E Estimated. MEAN COLORADO RIVER MAIN STEM # 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO--Continued | | SPECIFIC | CONDUCT | ANCE (I | MICROSIEMENS | CM AT | 25 DEG. C),
MEAN VALUES | WATER | YEAR OCTOBER | 1987 | TO SEPTEMBER | 1988 | | |-----|----------|---------|---------|--------------|-------|----------------------------|-------|--------------|------|--------------|------|-----| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 627 | 725 | 858 | 793 | | | 632 | 422 | | 474 | 585 | | | 2 | 629 | 729 | 855 | 775 | | 680 | 630 | 415 | | 484 | 558 | | | 3 | 634 | 712 | 843 | 745 | | 678 | 629 | 405 | | 495 | 545 | | | 4 | 635 | 723 | 796 | 740 | | 673 | 631 | 401 | | 508 | 558 | | | 5 | 632 | 716 | 777 | 740 | | 668 | 621 | 39 7 | | 509 | 573 | | | 6 | 625 | 729 | 761 | 789 | | 671 | 599 | 390 | | 523 | 579 | | | 7 | 628 | 736 | 758 | 743 | | 675 | 594 | 382 | | 536 | 576 | | | 8 | 631 | 732 | 755 | 715 | | 669 | 595 | 379 | | 548 | 566 | | | 9 | 649 | 722 | 778 | 712 | | 672 | 584 | 379 | 258 | 557 | 560 | | | 10 | 644 | 721 | 803 | 699 | | 674 | 568 | 380 | 261 | 565 | 560 | | | 11 | 649 | 726 | 822 | 686 | | 679 | 557 | 380 | 268 | 577 | 563 | | | 12 | 639 | 729 | 823 | 703 | | 683 | 547 | 379 | 280 | 589 | 559 | | | 13 | 640 | 732 | | 806 | | 696 | 542 | 374 | 294 | 602 | 550 | | | 14 | 638 | 735 | | 841 | | | 524 | 359 | 304 | 609 | 546 | | | 15 | 629 | 736 | | 849 | | 681 | 500 | 338 | 318 | 602 | 538 | | | 16 | 648 | 738 | | 809 | | | 464 | 313 | 327 | 596 | 524 | | | 17 | 661 | 743 | | 774 | | 680 | 452 | | 356 | 588 | 532 | | | 18 | 681 | 747 | | 767 | | | 444 | | 382 | 577 | 533 | | | 19 | 684 | | | 774 | | | 435 | | 403 | | 540 | | | 20 | 687 | 797 | 8 1 4 | 794 | | | 429 | | 404 | | 543 | | | 21 | | 797 | 807 | 813 | | | 425 | | 397 | 764 | | | | 22 | | 798 | 806 | 829 | | | 421 | | 408 | 742 | | | | 23 | | 797 | 802 | 839 | | 699 | 420 | | 420 | 699 | | | | 24 | | 795 | 800 | 833 | | 699 | 418 | , | 420 | 657 | | | | 25 | | 791 | 797 | 820 | | 689 | 418 | | 402 | 628 | | | | 26 | | 786 | 796 | 837 | | 688 | 418 | | 414 | 604 | | | | 27 | | 785 | 816 | 838 | | 690 | 416 | | 427 | 581 | | | | 28 | | 812 | 790 | 820 | | 683 | 416 | | 438 | 578 | | | | 29 | | | 785 | 808 | | 651 | 416 | | 447 | 583 | | | | 30 | | 839 | 793 | | | 635 | 416 | | 461 | 589 | | | | 31 | | | 789 | | | 633 | | | | 590 | | | 505 # 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |----------------------------------|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|------------------------------|------------------------------|--|--|--|--| | | OCT | DBER | NOVE | EMBER | DE CI | EMBER | JANU | JARY | FEBI | RUARY | MA | R CH | | 1
2
3
4
5 | 14.2
13.9
14.3
13.7
13.2 | 11.6
11.2
11.2
11.1
11.1 | 9.2
9.0
9.1
8.4
7.6 | 6.2
8.1
7.7
6.6
6.1 | .4
.9
.9
1.3 | .0
.1
.2
.6
1.2 | . 4
. 4
. 1
. 0 | .4
.0
.0
.0 | . 4
. 4
. 4 | .0
.0
.0 | 3.7
3.9
3.7
3.1 | 2.5
2.3
2.0
1.4 | | 6
7
8
9 | 13.8
13.3
13.2
12.3
12.2 | 11.0
10.6
10.6
10.1
10.6 | 7.5
7.4
6.6
5.9
5.0 | 6.6
6.3
5.5
4.4
3.9 | 2.4
2.4
1.9
1.4 | 1.6
1.3
1.1
.4 | .0
.4
.0
.0 | .0
.0
.0 | .4
.4
.3
.5 | .4
.0
.0 | 3.4
3.4

3.9
3.4 | 1.9
1.6

1.4
1.9 | | 11
12
13
14
15 | 12.2
11.4
11.4
11.0
11.9 | 10.5
10.3
10.9
10.2
10.3 | 5.1
4.9
4.7
5.3
5.2 | 4.2
4.0
4.1
4.7
4.4 | 2.6
2.7
.4
.4 | 1.7
.1
.0
.0 | .0
.4
.0
.4 | .0
.0
.0 | .9
.6
.6 | .0
.0
.0 | 2.6 | 1.2 | | 16
17
18
19
20 | 11.7
10.8
10.1
9.7
8.7 | 9.7
8.7
7.2
7.6
6.1 | 4.4
2.8
1.4
2.0 | 2.8
1.5
.0
.0 | . 4
. 4
. 0
. 4 | .0 | .0
.4
.0 | .0
.0
.0 | .9
.8
.9
.9 | .1
.0
.0
.0 | 3.3
2.7
 | 1.6
1.3
 | | 21
22
23
24
25 |

 |

 | .6
.9
1.4
1.7 | .1
.4
.8
.9 | .0
.0
.1
.0 | .0 | .0
.0
.0 | .0
.0
.0 |

 |

 | 6.6
7.6
7.3
7.3
6.9 | 3.8
4.8
5.5
5.2
5.6 | | 26
27
28
29
30
31 |

 |

 | 1.5
1.6
.9
1.6
.4 | .4
.6
.0
.0 | . 0
. 4
. 4
. 0
. 4 | .0 | .0
.4
.0
.0 | .0 |

 |

 | 8.0
9.0
7.2
5.0
4.4
3.9 | 5.6
6.6
4.9
3.2
3.0
3.0 | | MONTH | | | 9.2 | .0 | 2.7 | .0 | . 4 | .0 | | | | | | | API | RIL | MA | ΛY | J | JNE | Jt | JL Y | AUG | GUST | SEPTI | EMBER | | 1
2
3
4
5 | 5.3
7.8
8.2
7.8
8.7 | 3.2
4.4
5.5
6.9
7.4 | 10.7
8.6
7.8
8.5
9.7 | 8.7
7.2
6.3
7.4
8.0 | 11.2
13.7
14.4
14.4
14.3 | 9.8
10.4
12.1
12.8
12.4 | 18.0

17.6
16.9 | 16.4

16.0
16.2 | 19.2
19.1
20.4
21.3
20.9 | 18.1
17.8
19.1
19.8
19.3 | 18.1
17.0

19.0
19.2 | 16.2
15.9

15.9
15.1 | | 6
7
8
9 | 8.0
9.0
9.6
8.4
5.7 | 7.0
7.7
8.4
5.8
4.4 | 9.7
8.0
8.6
8.5
9.6 | 8.2
6.6
6.9
7.2
8.4 | 13.0
12.9
13.7
14.2
14.2 | 11.0
11.6
11.6
12.2
12.6 |

19.2
17.8 | 17.3
16.0 | 20.4
19.6
19.6
19.4
19.1 | 18.8
18.6
18.5
18.0
17.8 |

16.5 | 14.4 | | 11
12
13
14
15 | 6.8
8.6
9.6
9.6
8.9 | 5.4
6.8
8.5
7.9
7.9 | 10.5
11.8
12.7
12.8
12.7 | 8.7
9.8
11.0
11.6
11.1 | 13.5
13.5
13.4
14.1
14.4 | 12.4
11.4
11.8
11.2
12.9 |

 |

 | 19.6
19.4
18.5
18.7
19.0 | 18.1
18.3
17.4
17.6
18.3 | 15.4
13.8
12.3
12.6
12.9 | 13.7
12.2
10.6
11.4
11.9 | | 16
17
18
19
20 | 8.9
8.6
8.6
9.2
9.3 | 7.1
7.8
6.5
7.9
7.9 | 12.1
11.4
10.8
10.5
8.7 | 10.6
10.7
9.9
8.7
8.0 | 14.7
15.2
15.2
16.9
16.8 | 13.4
13.4
13.7
14.5
15.0 |

 |

 | 19.3
19.2
17.9
18.3
18.7 | 18.5
17.9
16.7
16.9
16.5 | 12.9
14.2
14.9
13.5 | 11.9
12.9
12.9
11.1 | |
21
22
23
24
25 | 9.3
7.9
7.5
7.5
7.5 | 8.1
6.8
6.3
6.5
6.6 | 8.2
9.9
10.7
12.0
12.6 | 6.7
7.7
8.4
10.1
11.0 | 17.3
17.5
17.5
18.0
18.1 | 15.9
15.5
16.3
16.5
17.0 |

 |

 | 18.5
18.6
19.3
19.9 | 16.1
16.4
17.4
18.3 | 13.1
14.1

14.1 | 11.6
11.2

12.3 | | 26
27
28
29
30
31 | 7.0
8.3
8.9
9.7
10.7 | 5.6
6.8
7.8
8.6
9.3 | 12.1
12.5
12.8
12.6
12.1
10.9 | 10.8
10.3
10.7
11.1
10.2
9.0 | 17.7
17.5
17.6
17.2
18.0 | 16.8
16.1
16.2
16.9
16.0 | 19.6
19.7
20.2
19.9 | 17.9
18.0
18.7
18.8 | 19.8
18.4
17.7

18.2
17.2 | 17.6
17.0
16.4

16.7
16.3 | 13.2
13.0
13.0
11.7
11.2 | 12.0
11.6
10.8
9.6
9.7 | | MONTH | 10.7 | 3.2 | 12.8 | 6.3 | 18.1 | 9.8 | | | | | | | #### 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO LOCATION.--Lat 39°08'28", long 106°46'25", Pitkin County, Hydrologic Unit 14010004, on left bank in the White River National Forest at Difficult Creek Campground, 0.45 mi above Difficult Creek tributary and 4.25 mi southeast of Aspen. DRAINAGE AREA .-- 75.8 mi2. PERIOD OF RECORD. -- October 1979 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,120 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1-5, Nov. 18, 19, 25, 28, Dec. 1, 9, 13-18, 26-28, Jan. 13, 14, 20, 21, Feb. 4, 5, 18, Mar. 5, 14, 18, 29, and Apr. 1. Records fair except for estimated daily discharges, which are poor. Transmountain diversion 11 mi upstream through Twin Lakes Tunnel to Arkansas River basin since May 24, 1935 (32,450 acre-ft diverted, during current year, provided by U.S. Bureau of Reclamation). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--9 years, 138 ft3/s; 100,000 acre-ft/yr, including diversion by Twin Lakes tunnel. EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 2,350 ft^3/s , June 8, 1985, gage height, 5.10 ft, from rating curve extended above 910 ft^3/s ; minimum daily, 8.0 ft^3/s , Jan. 11, 1980. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 455 $\rm ft^3/s$ at 2400 June 6, gage height, 3.17 ft; minimum daily, 14 $\rm ft^3/s$, Dec. 15, 16, Jan. 13. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
18
18
18
18 | 23
21
20
20
20 | 18
18
18
18 | 19
17
17
17
17 | 16
16
16
15
16 | 18
18
18
18 | 20
21
22
22
23 | 51
41
37
36
40 | 118
132
166
203
252 | 83
77
73
68
65 | 82
75
71
67
64 | 30
29
29
28
28 | | 6
7
8
9
10 | 18
18
18
18 | 21
22
22
21
25 | 18
18
19
17
20 | 17
17
17
16
16 | 17
17
17
17
17 | 18
18
17
18
18 | 28
31
35
32
29 | 44
39
40
37
36 | 284
319
293
260
262 | 65
64
58
52
49 | 62
54
51
48
41 | 28
28
27
26
26 | | 11
12
13
14
15 | 19
19
19
19 | 23
23
24
23
23 | 20
20
17
15
14 | 16
16
14
15
16 | 17
17
17
17
17 | 18
19
18
17
19 | 30
35
42
45
46 | 37
50
71
97
132 | 228
211
180
161
158 | 53
46
47
65
64 | 39
36
35
34
32 | 28
32
39
38
35 | | 16
17
18
19
20 | 19
19
18
18 | 21
20
19
18
20 | 14
16
18
19 | 16
16
16
16
15 | 17
17
16
17 | 19
18
18
19 | 45
51
46
49
47 | 140
141
166
152
116 | 143
130
123
163
172 | 62
58
53
52
47 | 32
36
37
38
37 | 36
37
38
40
42 | | 21
22
23
24
25 | 18
21
21
21
21 | 20
21
19
19
18 | 18
18
18
18 | 16
17
17
16
16 | 17
17
17
17
16 | 19
20
20
20
19 | 52
45
41
37
34 | 93
78
71
84
90 | 192
174
151
140
128 | 46
42
41
39
37 | 39
47
41
38
35 | 43
43
40
40 | | 26
27
28
29
30
31 | 21
21
21
22
23
24 | 19
19
18
18 | 17
16
18
20
19 | 16
16
16
16
16 | 17
17
17
17 | 19
20
22
22
21
20 | 32
31
32
35
40 | 119
143
172
176
172 | 113
100
95
110
97 | 36
41
40
66
69
86 | 32
31
30
30
30
30 | 33
31
31
31
30 | | TOTAL
MEAN
MAX
MIN
AC-FT | 602
19.4
24
18
1190 | 618
20.6
25
18
1230 | 553
17.8
20
14
1100 | 504
16.3
19
14
1000 | 485
16.7
17
15
962 | 584
18.8
22
17
1160 | 1078
35.9
52
20
2140 | 2839
91.6
176
36
5630 | 5258
175
319
95
10430 | 1744
56.3
86
36
3460 | 1354
43.7
82
30
2690 | 1009
33.6
43
26
2000 | CAL YR 1987 TOTAL 39852 MEAN 109 MAX 1260 MIN 14 AC-FT 79050 WTR YR 1988 TOTAL 16628 MEAN 45.4 MAX 319 MIN 14 AC-FT 32980 ## 09073400 ROARING FORK RIVER NEAR ASPEN, CO LOCATION.--Lat 39°10'48", long 106°48'05", Pitkin County, Hydrologic Unit 14010004, on right bank 25 ft upstream from private bridge, 115 ft upstream from Salvation ditch headgate, 1.0 mi southeast of Aspen, and 2.0 mi upstream from Hunter Creek. DRAINAGE AREA. -- 108 mi2. PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Datum of gage is 8,014.01 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 25, 1968, at site 85 ft upstream at datum 1.16 ft, higher. REMARKS.--Estimated daily discharges: Jan. 2, 3, 19-21, 25, 26, Feb. 4-7, and Feb. 17-19. Records good except for estimated daily discharges, which are poor. Transmountain diversion 14 mi upstream through Twin Lakes tunnel to Arkansas River basin since May 24, 1935 (32,420 acre-ft diverted, current year, provided by U.S. Bureau of Reclamation). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--24 years, 149 ft3/s; 108,000 acre-ft/yr, including diversion by Twin Lakes tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,230 ft³/s, June 9, 1985, gage height, 5.29 ft; minimum daily, 12 ft³/s, Nov. 28, 1976. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 508 ft^3/s at 0100 June 10, gage height, 2.74 ft ; minimum daily, 25 ft^3/s , Jan. 20. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|--|---------------------------------|-----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 38 | 41 | 38 | 29 | 33 | 34 | 31 | 92 | 186 | 153 | 102 | 41 | | 2 | 37 | 42 | 38 | 29 | 33 | 34 | 32 | 76 | 189 | 138 | 89 | 41 | | 3 | 37 | 39 | 39 | 32 | 32 | 34 | 33 | 72 | 250 | 129 | 85 | 40 | | 4 | 37 | 37 | 38 | 29 | 28 | 33 | 35 | 71 | 318 | 132 | 82 | 40 | | 5 | 36 | 37 | 38 | 29 | 29 | 33 | 35 | 76 | 379 | 119 | 77 | 39 | | 6
7
8
9
10 | 36
36
36
36
39 | 39
41
39
35
37 | 37
37
36
38
38 | 29
28
28
28
28 | 31
32
33
34
34 | 34
34
34
34 | 36
43
51
47
43 | 88
76
76
69
71 | 406
425
412
410
416 | 114
103
94
87
85 | 73
69
65
62
54 | 38
38
38
37
37 | | 11 | 38 | 39 | 38 | 28 | 34 | 33 | 46 | 73 | 389 | 99 | 51 | 45 | | 12 | 37 | 35 | 36 | 27 | 33 | 32 | 52 | 98 | 358 | 81 | 50 | 54 | | 13 | 37 | 38 | 34 | 28 | 33 | 31 | 62 | 141 | 321 | 74 | 49 | 64 | | 14 | 40 | 38 | 35 | 29 | 34 | 33 | 69 | 185 | 266 | 93 | 46 | 57 | | 15 | 41 | 37 | 32 | 28 | 35 | 32 | 72 | 208 | 267 | 88 | 45 | 50 | | 16 | 41 | 35 | 33 | 28 | 34 | 32 | 68 | 237 | 274 | 85 | 47 | 52 | | 17 | 39 | 34 | 35 | 29 | 32 | 33 | 73 | 257 | 264 | 84 | 52 | 52 | | 18 | 39 | 35 | 35 | 29 | 30 | 31 | 68 | 296 | 252 | 74 | 54 | 52 | | 19 | 38 | 32 | 35 | 28 | 34 | 32 | 69 | 267 | 293 | 72 | 51 | 55 | | 20 | 36 | 36 | 34 | 25 | 36 | 32 | 70 | 205 | 277 | 66 | 50 | 56 | | 21 | 35 | 38 | 33 | 28 | 35 | 33 | 79 | 164 | 308 | 63 | 52 | 56 | | 22 | 36 | 39 | 35 | 30 | 35 | 32 | 69 | 143 | 264 | 59 | 67 | 58 | | 23 | 37 | 38 | 35 | 31 | 36 | 32 | 65 | 129 | 249 | 58 | 55 | 56 | | 24 | 38 | 38 | 33 | 31 | 35 | 33 | 62 | 144 | 231 | 56 | 52 | 53 | | 25 | 41 | 37 | 33 | 28 | 35 | 33 | 56 | 154 | 214 | 54 | 49 | 49 | | 26
27
28
29
30
31 | 41
40
39
41
41
41 | 38
38
36
38
37 | 33
32
32
33
33
32 | 31
32
31
31
33
33 | 35
35
36
34 |
32
34
38
32
34
32 | 54
56
57
60
72 | 165
203
224
268
277
212 | 199
183
171
206
186 | 55
60
55
82
92
114 | 44
45
44
42
41
41 | 45
43
42
41
41 | | TOTAL | 1184 | 1123 | 1088 | 907 | 970 | 1024 | 1665 | 4817 | 8563 | 2718 | 1785 | 1410 | | MEAN | 38.2 | 37.4 | 35.1 | 29.3 | 33.4 | 33.0 | 55.5 | 155 | 285 | 87.7 | 57.6 | 47.0 | | MAX | 41 | 42 | 39 | 33 | 36 | 38 | 79 | 296 | 425 | 153 | 102 | 64 | | MIN | 35 | 32 | 32 | 25 | 28 | 31 | 31 | 69 | 171 | 54 | 41 | 37 | | AC-FT | 2350 | 2230 | 2160 | 1800 | 1920 | 2030 | 3300 | 9550 | 16980 | 5390 | 3540 | 2800 | CAL YR 1987 TOTAL 49179 MEAN 135 MAX 1190 MIN 29 AC-FT 97550 WTR YR 1988 TOTAL 27254 MEAN 74.5 MAX 425 MIN 25 AC-FT 54060 #### 09074000 HUNTER CREEK NEAR ASPEN. CO LOCATION.--Lat 39°12'21", long 106°47'49", Pitkin County, Hydrologic Unit 14010004, on right bank 280 ft upstream from headgate of Red Mountain ditch, 1.5 mi upstream from mouth, and 1.5 mi northeast of Aspen. DRAINAGE AREA . -- 41 . 1 mi 2 PERIOD OF RECORD. -- June 1950 to September 1956, September 1969 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,610 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 1, 1969, at site 220 ft downstream, at different datum. REMARKS.--Estimated daily discharges: Nov. 16-21, and Jan. 22 to Apr. 5. Records fair except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Charles H. Boustead tunnel by feeder conduit. Several small diversions upstream from station for irrigation of hay meadows upstream from and downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--16 years (water years 1951-1956, 1970-1979), 50.7 ft³/s; 36,730 acre-ft/yr, prior to diversion through Charlés H. Boustead Tunnel; 9 years (water years 1980-88), 47.8 ft³/s; 34,630 acre-ft/yr, subsequent to diversions through Charles H. Boustead Tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft³/s, June 8, 1985, gage height, 2.33 ft; from rating curve extended above 300 ft³/s; maximum gage height, 4.30 ft, Nov. 30, 1984 (backwater from ice); minimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,040 ft³/s at 2200 June 7, gage height, 2.18 ft; minimum daily, 4.1 ft³/s, Dec. 12-14. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|--|------------------------------------|--|-----------------------------------|----------------------------------|---------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.3
8.0
8.0
8.0 | 9.4
10
9.1
8.3
7.3 | 7.9
9.0
9.0
9.0 | 5.5
5.7
5.8
5.8 | 7.0
7.0
7.0
6.0 | 8.0
8.0
8.0
7.0 | 6.0
6.0
6.0
7.0
7.5 | 71
49
41
38
50 | 170
225
482
716
770 | 59
56
52
52
53 | 35
28
25
23
22 | 13
12
9.9
10
9.4 | | 6
7
8
9
10 | 7.6
7.2
6.9
6.5 | 9.8
9.4
9.4
7.3
8.3 | 7.6
7.2
7.2
6.5
6.5 | 6.2
6.5
6.5 | 6.0
7.0
7.0
7.0
7.0 | 7.0
7.0
7.0
7.0
7.0 | 9.2
13
15
14
15 | 71
46
42
35
37 | 786
776
767
560
180 | 53
51
49
41
39 | 20
21
21
18
16 | 9.0
6.9
6.5
6.7
7.2 | | 11
12
13
14
15 | 6.5
5.8
6.3
7.9
8.3 | 9.0
8.2
9.4
9.0
9.4 | 5.5
4.1
4.1
4.1
4.4 | 6.9
6.5
5.8
6.2
6.9 | 7.0
7.0
7.0
7.0 | 6.0
6.0
6.0
7.0 | 14
18
23
27
31 | 54
104
163
206
262 | 145
132
96
72
70 | 42
41
39
37
35 | 14
13
13
12
11 | 17
23
34
25
16 | | 16
17
18
19
20 | 7.6
6.5
5.8
6.2
5.0 | 9.0
8.0
8.0
9.0 | 4.4
4.5
5.0
5.0 | 7.2
7.2
7.2
6.9
5.5 | 7.0
6.0
5.0
5.0 | 7.0
6.0
6.0
6.0
7.0 | 36
37
30
27
28 | 367
417
577
471
195 | 63
61
60
61
62 | 34
34
30
28
25 | 13
19
18
15
13 | 14
14
12
10
9.4 | | 21
22
23
24
25 | 6.1
6.9
7.2
7.9
9.0 | 11
9.5
7.6
7.2
6.9 | 4.7
4.7
4.7
5.0
5.0 | 5.5
6.0
6.0
6.0 | 6.0
6.0
6.0
7.0 | 7.0
7.0
8.0
8.0 | 33
33
28
26
25 | 126
107
97
108
148 | 67
60
57
56
58 | 25
23
22
20
19 | 15
30
22
18
15 | 11
12
9.9
9.4
8.2 | | 26
27
28
29
30
31 | 9.4
8.5
7.6
9.0
8.7
9.0 | 7.6
6.9
6.5
7.4
6.9 | 5.0
5.2
5.2
5.5
5.5 | 6.0
7.0
8.0
8.0
8.0 | 8.0
8.0
8.0
 | 8.0
9.0
9.0
8.0
7.0
6.0 | 24
26
27
32
47 | 195
252
340
511
499
197 | 55
56
66
92
65 | 20
26
22
25
39
73 | 14
15
15
13
12 | 7.6
8.1
8.0
7.4
5.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 230.5
7.44
9.4
5.0
457 | 255.8
8.53
11
6.5
507 | 180.4
5.82
9.0
4.1
358 | 201.0
6.48
8.0
5.5
399 | 194.0
6.69
8.0
5.0
385 | 221.0
7.13
9.0
6.0
438 | 670.7
22.4
47
6.0
1330 | 5876
190
577
35
11660 | 6886
230
786
55
13660 | 1164
37.5
73
19
2310 | 552
17.8
35
11
1090 | 352.4
11.7
34
5.8
699 | CAL YR 1987 TOTAL 18724.9 MEAN 51.3 MAX 737 MIN 4.1 AC-FT 37140 WTR YR 1988 TOTAL 16783.8 MEAN 45.9 MAX 786 MIN 4.1 AC-FT 33290 #### 09074800 CASTLE CREEK ABOVE ASPEN, CO LOCATION.--Lat 39°05'15", long 106°48'42", Pitkin County, Hydrologic Unit 14010004, on right bank 0.4 mi downstream from Forest Service bridge, 0.4 mi upstream from Sandy Creek, and 7 mi south of Aspen. DRAINAGE AREA .-- 32.2 mi. PERIOD OF RECORD. -- September 1969 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18-20, and Dec. 14 to Apr. 2. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 19 years, 44.1 ft3/s; 31,950 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 559 ft³/s, June 30, 1984, gage height, 3.64 ft; maximum gage height, 3.88 ft, June 23, 1970; minimum daily discharge, 6.0 ft³/s, Jan. 7, 1982. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 200 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|------|------|-----------------------------------|---------------------| | June 6 | 2200 | *285 | *2.66 | | | | | Minimum daily discharge, 6.5 ft³/s, Feb. 18. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---------------------------------|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | vои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22
21
21
21
21 | 20
20
19
19
18 | 13
13
13
13
12 | 11
9.5
10
11 | 9.5
9.5
9.5
8.0
8.0 | 8.5
8.5
8.0
7.5
7.0 | 9.5
10
11
11 | 21
20
19
20
20 | 68
75
116
185
206 | 97
87
80
75
75 | 45
40
37
35
34 | 21
20
19
18
18 | | 6
7
8
9
10 | 21
21
21
20
20 | 20
19
18
17
16 | 12
12
12
13
12 | 12
12
12
11
11 | 9.0
9.5
10
9.0
9.5 | 7.5
8.0
7.0
7.5
8.0 | 11
11
11
12
12 | 21
20
20
20
20 | 215
203
189
191
195 | 76
70
66
58
53 | 34
33
32
31
30 | 17
17
16
16
17 | | 11
12
13
14
15 | 20
20
20
22
21 | 17
16
15
15
15 | 12
12
12
10
9•5 | 11
10
8.0
10 | 8.5
8.5
8.5
8.5 | 7.5
7.0
7.5
7.0
8.0 | 12
12
13
12 | 22
25
32
55
73 | 176
150
135
105
122 | 57
51
49
54
48 | 28
28
27
26
25 | 20
28
27
25
24 | | 16
17
18
19
20 | 20
20
20
20
19 | 14
14
14
13
13 | 10
12
12
13
11 | 11
10
10
9.0
7.0 | 9.0
7.5
6.5
7.0
7.5 | 7.5
7.0
7.0
7.5
8.0 | 12
12
13
13 | 88
100
105
87
65 | 130
128
127
146
152 | 45
44
42
41
38 | 28
29
27
26
25 | 25
24
24
23
22 | | 21
22
23
24
25 | 18
18
18
19
20 | 13
13
13
13
13 | 10
11
12
11 | 9.0
8.5
9.0
9.0 |
7.0
7.5
7.5
7.5
7.5 | 8.5
9.0
9.0
9.0
8.5 | 16
15
15
15
15 | 50
42
40
47
67 | 158
137
136
140
125 | 37
36
35
35
34 | 28
31
28
27
26 | 25
24
23
23
22 | | 26
27
28
29
30
31 | 19
19
18
18
20 | 13
13
13
12
13 | 9.5
10
11
10
11 | 9.0
9.5
9.5
10
9.5 | 7.5
8.0
8.5
8.5 | 9.0
11
12
10
10
9.5 | 15
15
16
17
19 | 85
102
107
132
116
81 | 135
116
134
125
117 | 34
35
35
50
49
50 | 25
25
25
23
22
22 | 22
21
22
21
20 | | TOTAL
MEAN
MAX
MIN
AC-FT | 618
19.9
22
18
1230 | 461
15.4
20
12
914 | 355.0
11.5
13
9.5
704 | 306.5
9.89
12
7.0
608 | 241.0
8.31
10
6.5
478 | 257.0
8.29
12
7.0
510 | 392.5
13.1
19
9.5
779 | 1722
55.5
132
19
3420 | 4337
145
215
68
8600 | 1636
52.8
97
34
3250 | 902
29•1
45
22
1790 | 644
21.5
28
16
1280 | CAL YR 1987 TOTAL 17275.0 MEAN 47.3 MAX 306 MIN 9.5 AC-FT 34260 WTR YR 1988 TOTAL 11872.0 MEAN 32.4 MAX 215 MIN 6.5 AC-FT 23550 ## 09075700 MAROON CREEK ABOVE ASPEN, CO LOCATION.--Lat 39°07'25", long 106°54'17", Pitkin County, Hydrologic Unit 14010004, on left bank 0.3 mi upstream from Silver Queen Forest Service campground, 1.2 mi downstream from confluence of East and West Maroon Creeks, and 7.2 mi southwest of Aspen. DRAINAGE AREA.--35.4 mi². PERIOD OF RECORD. -- September 1969 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,720 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 14 to Apr. 14. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Natural regulation by Maroon Lake. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 19 years, 68.4 ft3/s; 49,560 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 836 ft³/s, June 22, 1980, gage height, 3.39 ft, from rating curve extended above 350 ft³/s, but may have been higher during a period of indefinite stage-discharge relationship in June, 1984; maximum gage height, 4.53 ft, Feb. 3, 1972 (backwater from ice); minimum daily discharge, 9.0 ft³/s, Mar. 29, 1975. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft 3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|-----------------------|---------------------|------|------|----------------------|---------------------| | June 11 | 0200 | * 2 7 5 | *2.83 | | | | | DISCHARGE CURIC FEET PER SECOND. WATER YEAR OCTOBER 1087 TO SEPTEMBER 1088 Minimum daily, 14 ft³/s, Apr. 10. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | R OCTOBER
ES | 198 7 T O | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|---------------------------------|--|---------------------------------|---------------------------------------|------------------------------------|-----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 39
39
38
38
38 | 32
32
32
32
31 | 24
24
23
23
23 | 23
19
21
24
24 | 22
22
22
19
20 | 31
31
30
29
27 | 18
19
20
21
22 | 19
19
19
20
21 | 118
125
153
199
224 | 180
166
158
149
147 | 67
65
63
62
62 | 48
47
47
45
45 | | 6
7
8
9
10 | 37
37
36
35
35 | 32
31
31
30
29 | 23
23
23
23
22 | 26
26
26
25
25 | 22
23
25
23
25 | 28
30
27
29
30 | 22
23
24
19
14 | 21
22
22
21
21 | 241
246
252
256
247 | 143
129
122
112
104 | 63
62
60
59 | 44
44
43
44 | | 11
12
13
14
15 | 35
35
36
36
35 | 29
29
29
29
29 | 22
22
22
21
19 | 25
23
19
23
23 | 24
24
24
24
24 | 29
26
27
25
29 | 15
15
15
16
17 | 21
22
24
28
40 | 252
236
211
191
189 | 101
97
92
88
86 | 57
56
54
53
54 | 45
49
48
47
47 | | 16
17
18
19
20 | 35
35
35
34
34 | 28
28
28
27
27 | 20
26
26
27
25 | 25
24
25
23
17 | 26
24
23
26
27 | 27
26
25
26
27 | 17
18
18
18
18 | 57
68
75
71
68 | 188
187
186
194
192 | 85
83
80
79
76 | 54
53
53
51
50 | 46
45
44
43 | | 21
22
23
24
25 | 34
34
33
33
34 | 26
26
26
26
25 | 22
25
26
25
22 | 21
20
21
21
18 | 26
28
28
28
27 | 28
29
29
30
29 | 19
18
18
18
18 | 74
80
82
81
91 | 200
201
201
210
204 | 73
71
71
69
68 | 51
51
52
51
50 | 42
42
42
43
42 | | 26
27
28
29
30
31 | 33
33
32
32
33
33 | 25
25
25
25
24 | 22
24
24
22
24
24 | 21
21
22
22
23
23 | 28
30
31
31 | 30
32
34
36
26
22 | 17
17
18
17
18 | 98
111
111
137
143
117 | 197
191
193
194
192 | 67
66
66
70
77
71 | 50
51
50
50
49
49 | 42
41
41
40
40 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1086
35.0
39
32
2150 | 848
28.3
32
24
1680 | 721
23.3
27
19
1430 | 699
22.5
26
17
1390 | 726
25.0
31
19
1440 | 884
28.5
36
22
1 7 50 | 547
18.2
24
14
1080 | 1804
58.2
143
19
3580 | 6070
202
256
118
12040 | 3046
98.3
180
66
6040 | 1715
55•3
67
49
3400 | 1323
44.1
49
40
2620 | CAL YR 1987 TOTAL 20702 MEAN 56.7 MAX 217 MIN 13 AC-FT 41060 WTR YR 1988 TOTAL 19469 MEAN 53.2 MAX 256 MIN 14 AC-FT 38620 #### 09076520 OWL CREEK NEAR ASPEN, CO LOCATION.--Lat 39°13'25", long 106°52'45", in NE4SE4 sec.33, T.9 S., R.85 W., Pitkin County, Hydrologic Unit 14010004, on left bank 1.2 mi upstream from mouth and 3.8 mi northwest of Aspen. DRAINAGE AREA . -- 6.60 mi². PERIOD OF RECORD. -- October 1974 to current year. GAGE.--Water-stage recorder with V-notch concrete control. Elevation of gage is 7,870 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1-7, Nov. 18-20, Dec. 8 to Jan. 12, Mar. 27-28, 31, Apr. 1, and Apr. 3-5. Records good except for estimated daily discharges, which are poor. Several small diversions upstream from station for irrigation of hay meadows. Water imported upstream from station, at times, from West Willow Creek through Willow and Owl ditches. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 14 years, 3.10 ft 3/s; 2,250 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90 ft³/s, May 21, 1984, gage height, 2.39 ft; no flow, Feb. 9 to Mar. 6, Sept. 10, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 24 ft³/s at 1945 May 18, gage height, 1.64 ft; maximum gage height, 1.75 ft at 2100 Apr. 4, (backwater from ice); minimum daily discharge, 0.07 ft³/s, Aug. 27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISCHARGE | s, CUBIC | reel ren . | SECOND, W | EAN VALUE | S | 1907 10 3. | EFIENDEN | 1900 | | | |--------------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|------------------------------------|--|-----------------------------------|-----------------------------------|---------------------------------|---------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .18
.17
.17
.16 | .21
.22
.21
.19
.20 | .19
.18
.24
.30 | .31
.26
.30
.40
.43 | .38
.33
.35
.35
.34 | .23
.27
.30
.32 | 1.8
1.8
1.9
2.0
2.1 | 11
12
11
9.0
9.9 | 3.3
2.4
2.2
2.7
3.3 | 2.1
2.1
2.0
1.9 | .27
.30
.25
.25
.25 | .12
.12
.09
.09 | | 6
7
8
9
10 | .15
.14
.11
.09 | .22
.27
.30
.22 | .32
.32
.29
.29 | .46
.46
.46
.45 | .32
.27
.27
.26
.25 | .32
.35
.35
.35
.35 | 2.1
4.0
4.5
3.9
3.8 | 12
11
10
10 | 2.6
2.4
2.5
2.1
2.5 | 1.8
1.5
1.3
1.2 | .21
.21
.19
.21 | .09
.08
.09
.09 | | 11
12
13
14
15 | .09
.09
.13
.22 | .21
.21
.22
.25
.22 | .30
.28
.22
.20 | .45
.42
.39
.33
.35 | .25
.25
.23
.22 | .35
.32
.32
.30 | 4.1
4.8
5.2
5.4
5.4 | 11
13
16
20
20 | 1.6
2.9
3.4
2.9
2.5 | 1.9
1.2
.89
.82
.75 | .18
.18
.17
.16
.14 | .14
.37
.35
.25 | | 16
17
18
19
20 | .32
.27
.27
.27
.25 | .26
.22
.17
.18
.22 |
.19
.31
.31
.32 | .38
.39
.43
.40
.43 | .22
.20
.19
.19 | .32
.32
.32
.32
.37 | 5.4
5.7
5.9
6.1 | 20
20
22
22
19 | 2.2
2.7
2.6
2.0
2.2 | .75
.75
.75
.81 | .14
.14
.14
.14
.12 | .21
.19
.19
.19 | | 21
22
23
24
25 | .25
.25
.25
.25
.40 | .26
.25
.19
.27 | .24
.28
.31
.29
.23 | .42
.38
.38
.38 | .19
.18
.18
.18 | .38
.38
.48
1.1 | 7.0
7.0
6.8
5.9
5.4 | 15
11
10
7.3
3.2 | 1.9
2.0
1.9
2.1
2.4 | .75
.55
.55
.41 | .14
.17
.18
.18 | .22
.22
.21
.21 | | 26
27
28
29
30
31 | .43
.39
.38
.35
.74 | .27
.28
.25
.25
.22 | .22
.26
.27
.25
.29 | .35
.35
.36
.36
.35 | .18
.18
.19
.21 | 1.7
2.3
3.0
2.7
2.1 | 5.0
5.2
6.6
7.0
9.3 | 2.0
2.2
2.6
6.0
7.8
6.2 | 2.4
2.6
2.4
3.1
2.9 | .30
.32
.35
.30
.30 | .10
.07
.09
.09
.10 | .19
.19
.19
.19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 7.63
.25
.74
.09 | 6.92
.23
.30
.17 | 8.31
.27
.32
.17 | 12.00
.39
.46
.26
24 | 6.95
.24
.38
.18 | 23.93
.77
3.0
.23
47 | 146.8
4.89
9.3
1.8
291 | 362.2
11.7
22
2.0
718 | 74.7
2.49
3.4
1.6
148 | 30.93
1.00
2.1
.30
61 | 5.28
.17
.30
.07 | 5.26
.18
.37
.08 | CAL YR 1987 TOTAL 881.48 MEAN 2.42 MAX 28 MIN .09 AC-FT 1750 WTR YR 1988 TOTAL 690.91 MEAN 1.89 MAX 22 MIN .07 AC-FT 1370 #### 09078600 FRYINGPAN RIVER NEAR THOMASVILLE, CO LOCATION.--Lat 39°20'41", long 106°40'23", in NW4NW4 sec.21, T.8 S., R.83 W., Pitkin County, Hydrologic Unit 14010004, on right bank 400 ft upstream from private bridge, 400 ft downstream from North Fork, 1.6 mi southeast of Thomasville, and 1.7 mi northwest of Norrie. DRAINAGE AREA .-- 134 mi2. PERIOD OF RECORD. -- October 1975 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,210 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18, and Dec. 19 to Apr. 11. Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Arkansas River basin through Busk-Ivanhoe tunnel since June 1925 and Charles H. Boustead tunnel since May 16, 1972. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. AVERAGE DISCHARGE.--13 years, 98.8 ft3/s; 71,580 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s, June 8, 1987, gage height, 4.50 ft; minimum daily, 10 ft³/s, Nov. 28, 1976, Jan. 2, 1979. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,190 ft³/s at 2330 June 6, gage height, 4.08 ft; minimum daily, 18 ft³/s, Jan. 20, 21. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 35 32 29 ЪR 34 25 122 8 25 13 58 23 11 1 35 34 23 27 69 31 ---TOTAL MEAN 29.7 28.4 23.9 20.8 51.8 35.6 22.0 29.6 88.9 MA X 26 MTN AC-FT CAL YR 1987 TOTAL 47436 MEAN 130 MAX 1200 MIN 15 AC-FT 94090 WTR YR 1988 TOTAL 40970 MEAN 112 MAX 975 MIN 18 AC-FT 81260 ## 09080190 RUEDI RESERVOIR NEAR BASALT, CO LOCATION.--Lat 39°21'50", long 106°49'05", in NW4 sec.18, T.8 S., R.84 W., Pitkin County, Hydrologic Unit 14010004, in gatehouse of Ruedi Dam just upstream from Rocky Fork Creek and 13 mi east of Basalt. DRAINAGE AREA. -- 223 mi². PERIOD OF RECORD. -- May 1968 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in May 1968; dam completed July 16, 1968. Capacity, 102,300 acre-ft, 1969 survey, between elevations 7,540.00 ft, sill of auxiliary outlet, and 7,766.00 ft, crest of spillway. Dead storage below elevation 7,540.00 ft, 61 acre-ft. Figures given are total contents. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 103,900 acre-ft, July 15, 1973, elevation, 7,767.56 ft; minimum after first filling, 48,000 acre-ft, May 13, 1971, elevation, 7,698.03 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 98,300 acre-ft, July 16, 17, elevation, 7,761.88 ft; minimum contents, 54,900 acre-ft, May 11, elevation, 7,708.60 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Elevation | Contents (acre-feet) | Change in contents
(acre-feet) | |--|--|--|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 7,759.17
7,754.02
7,748.86
7,742.65 | 95,700
90,900
86,200
80,800 | -4,800
-4,700
-5,400 | | CAL YR 1987 | | | -3,700 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 7,736.06
7,726.68
7,714.02
7,708.74
7,731.82
7,761.44
7,761.32
7,757.86
7,750.60 | 75,200
67,800
58,600
55,000
71,800
97,900
97,800
94,500
87,800 | -5,600
-7,400
-9,200
-3,600
+16,800
+26,100
-100
-3,300
-6,700 | | WTR YR 1988 | | | - 7,900 | ## 09080400 FRYINGPAN RIVER NEAR RUEDI, CO LOCATION.--Lat 39°21'56", long 106°49'30", in SELSEL sec.12, T.8 S., R.85 W., Eagle County, Hydrologic Unit 14010004, on right bank 0.4 mi downstream from Rocky Fork Creek and Ruedi Dam, 1.5 mi west of former site of Ruedi, and 12.5 mi east of Basalt. DRAINAGE AREA .-- 238 mi2. PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder and concrete control. Datum of gage is 7,473.25 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Nov. 7, 1970, at site 2.0 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station to Arkansas River basin through Busk-Ivanhoe tunnel since June 1925 and Charles H. Boustead tunnel since May 16, 1972 (see elsewhere in this report). Flow regulated by Ruedi Reservoir (station 09080190) since May 18, 1968. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--21 years (water years 1968-88), 189 ft³/s; 136,900 acre-ft/yr, subsequent to completion of Ruedi Reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,690 ft³/s, June 18, 1965, gage height, 5.16 ft, site and datum then in use; minimum daily, 16 ft³/s, Feb. 2, 1968 (result of storage in Ruedi Reservoir); minimum daily prior to construction of Ruedi Reservoir, 28 ft³/s, Mar. 4, 1966. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 319 ft³/s at 0930 June 13, gage height, 2.24 ft; minimum daily, 117 ft³/s, Feb. 12. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|------------------------------------|--|------------------------------------|-----------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 134
134
134
136
136 | 146
146
146
146
146 | 142
142
142
142
142 | 144
142
144
144 | 140
140
140
139
138 | 180
180
181
182
182 | 190
190
190
187
185 | 205
205
205
205
205 | 228
228
228
225
225 | 195
195
195
194
192 | 140
140
140
140
140 | 146
146
146
148
148 | | 6
7
8
9 | 136
136
136
137
138 | 146
146
146
146
146 | 142
142
142
142
142 | 144
144
144
144 | 138
138
138
138
138 | 182
182
182
182
182 | 185
186
196
200
200 | 205
205
205
205
205 | 226
228
229
231
252 | 179
170
170
166
165 | 140
140
140
140
140 | 148
148
156
176
177 | | 11
12
13
14 | 138
138
138
138
140 | 146
146
146
146
146 | 142
142
142
142
142 | 144
144
144
143
142 | 125
117
174
177
177 | 182
182
182
182
182 | 200
190
196
199
200 | 205
205
207
209
214 | 273
273
303
319
319 | 165
165
165
165
140 | 141
142
142
142
142 | 177
178
177
177
183 | | 16
17
18
19
20 | 140
140
140
140
143 | 146
146
144
144
142 | 143
144
144
144
144 | 142
142
142
142
142 | 177
177
176
176
178 | 182
182
182
182
182 | 200
200
200
200
200 | 219
219
219
219
219 | 319
309
277
276
258 | 136
136
138
138
138 | 142
143
144
144
144 | 185
185
185
185
185 | | 21
22
23
24
25 | 144
144
144
144
146 | 142
142
142
142
142 |
144
144
144
144
144 | 141
140
140
140
140 | 180
181
180
180
180 | 182
182
184
189
190 | 201
202
202
202
202 | 219
219
219
219
219 | 204
202
202
202
202 | 138
138
138
138
138 | 144
144
146
146
146 | 183
180
180
180
180 | | 26
27
28
29
30
31 | 146
146
145
144
145
146 | 142
142
142
142
142 | 144
144
144
144
144 | 140
140
139
138
138 | 180
180
180
180 | 190
190
190
190
190
190 | 202
202
204
205
205 | 219
223
225
225
228
228 | 200
200
199
197
196 | 138
138
138
138
138 | 146
146
145
146
146 | 180
180
177
177
170 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4346
140
146
134
8620 | 4332
144
146
142
8590 | 4433
143
144
142
8790 | 4401
142
144
138
8730 | 4662
161
181
117
9250 | 5702
184
190
180
11310 | 5921
197
205
185
11740 | 6628
214
228
205
13150 | 7230
241
319
196
14340 | 4825
156
195
136
9570 | 4427
143
146
140
8780 | 5143
171
185
146
10200 | CAL YR 1987 TOTAL 70597 MEAN 193 MAX 403 MIN 120 AC-FT 140000 WTR YR 1988 TOTAL 62050 MEAN 170 MAX 319 MIN 117 AC-FT 123100 # 09081600 CRYSTAL RIVER ABOVE AVALANCHE CREEK, NEAR REDSTONE, CO LOCATION.--Lat 39°13'56", long 107°13'36", in SE4SW4 sec.33, T.9 S., R.88 W., Pitkin County, Hydrologic Unit 14010004, on right bank 1.2 mi upstream from Avalanche Creek and 3.6 mi north of Redstone. DRAINAGE AREA .-- 167 mi2. PERIOD OF RECORD. -- October 1955 to current year. GAGE .-- Water-stage recorder. Elevation of gage is 6,905 ft, from river-profile map. REMARKS.--No estimated daily discharges. Records good. A few small diversions for irrigation upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--33 years, 302 ft3/s; 218,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,180 ft³/s, June 25, 1983, gage height, 6.12 ft; minimum daily, 22 ft³/s, Dec. 5, 1955, Feb. 15, 1964, Jan 2, Feb. 17, 18, 1978. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage heigh
(ft) | |--------|------|----------------------|--------------------| | June 6 | 2400 | *1,790 | *4.33 | Minimum daily, 33 ft³/s, Jan. 20. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|---------------------------------------|--|------------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 79
74
73
75
73 | 75
90
78
77
71 | 47
53
51
49
52 | 44
36
40
45
47 | 44
44
44
35
37 | 53
53
51
49
46 | 59
62
65
71
74 | 311
249
214
208
234 | 645
612
877
1230
1450 | 642
564
526
471
458 | 178
154
144
139
133 | 88
87
82
80
78 | | 6
7
8
9
10 | 73
68
65
65
64 | 85
84
76
68
67 | 50
50
49
50
52 | 49
49
48
47 | 41
43
46
41
45 | 48
50
46
48
50 | 82
110
141
121
111 | 276
236
219
208
225 | 1540
1510
1410
1370
1430 | 443
402
356
312
296 | 132
133
127
120
115 | 75
73
70
69
76 | | 11
12
13
14
15 | 63
63
71
80
79 | 68
60
63
64
61 | 51
46
40
38
35 | 48
43
34
43
44 | 43
42
43
43 | 47
43
45
41
49 | 122
155
196
211
230 | 283
422
594
754
880 | 1340
1230
1080
878
928 | 282
269
261
255
243 | 112
108
107
104
104 | 124
212
198
153
128 | | 16
17
18
19
20 | 72
67
66
64
61 | 57
58
46
51
56 | 37
51
49
51
48 | 47
45
46
43
33 | 44
39
37
41
45 | 46
44
42
44
47 | 237
233
194
181
177 | 975
1070
1140
981
736 | 980
990
1000
1080
1150 | 225
220
206
195
184 | 118
116
106
101
98 | 117
115
116
109
102 | | 21
22
23
24
25 | 59
59
59
62
78 | 58
56
55
52
50 | 42
48
51
48
42 | 42
40
42
42
37 | 44
46
47
46
45 | 53
60
62
63
59 | 207
193
183
169
156 | 563
478
463
564
719 | 1120
1070
973
1020
962 | 176
169
163
158
153 | 111
143
120
110
105 | 106
111
104
98
93 | | 26
27
28
29
30
31 | 68
64
64
65
73
70 | 53
51
47
51
48 | 41
45
46
42
47
46 | 43
42
44
45
46
45 | 46
49
53
51
 | 63
79
91
69
70
64 | 147
148
161
177
233 | 813
925
980
1120
1090
804 | 883
773
814
933
775 | 151
153
148
145
154
197 | 101
103
99
95
92
91 | 90
86
84
81
78 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2116
68.3
80
59
4200 | 1876
62.5
90
46
3720 | 1447
46.7
53
35
2870 | 1348
43.5
49
33
2670 | 1265
43.6
53
35
2510 | 1675
54.0
91
41
3320 | 4606
154
237
59
9140 | 18734
604
1140
208
37160 | 32053
1068
1540
612
63580 | 8577
277
642
145
17010 | 3619
117
178
91
7180 | 3083
103
212
69
6120 | CAL YR 1987 TOTAL 98636 MEAN 270 MAX 1520 MIN 35 AC-FT 195600 WTR YR 1988 TOTAL 80399 MEAN 220 MAX 1540 MIN 33 AC-FT 159500 #### 09085000 ROARING FORK RIVER AT GLENWOOD SPRINGS, CO LOCATION.--Lat 39°32'37", long 107°19'44", IN SWdSEd sec.9, T.6 S., R.89 W., Garfield County, Hydrologic Unit 14010004, on left bank at Glenwood Springs, 2,100 ft, upstream from mouth. DRAINAGE AREA .-- 1,451 mi2. PERIOD OF RECORD.--October 1905 to September 1909, September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1960, published as Roaring Fork at Glenwood Springs. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 5,720.73 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 20, 1915, nonrecording gage on highway bridge 800 ft downstream, at different datum. Nov. 20, 1915, to Oct. 26, 1917, nonrecording gage at present site and datum. REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 35,000 acres. Transmountain diversions to Arkansas River basin through Busk-Ivanhoe tunnel since 1925, Twin Lakes tunnel since 1935, and Charles H. Boustead tunnel since 1972. Natural flow of stream affected by storage in Ruedi Reservoir on Fryingpan River (station 09080190) since May 1968. AVERAGE DISCHARGE.--65 years (water years 1906-9, 1911-71), 1,368 ft³/s; 991,100 acre-ft/yr prior to diversion through Charles H. Boustead tunnel; 17 years (water years 1972-88), 1,275 ft³/s, 923,700 acre-ft/yr, subsequent to diversions through Charles H. Boustead tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,000 ft³/s, July 1, 1957, gage height, 8.65 ft; maximum gage height, 8.7 ft, June 14, 1921, from floodmarks; minimum discharge, 145 ft³/s, Jan. 21, 1935, gage height, 0.65 ft; minimum daily discharge, 179 ft³/s, Jan. 21, 1935. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,690 ft³/s at 0430, June 7, gage height, 5.21 ft; minimum daily 390 ft³/s, Feb. 12. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | _, | | , | MEAN VALUE | S | ., | | ., | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|---------------------------------|--|--------------------------------------|--|--|---------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 490 | 631 | 549 | 485 | 457 | 521 | 505 | 1140 | 1700 | 2030 | 767 | 468 | | 2 | 499 | 657 | 583 | 476 | 446 | 527 | 529 | 981 | 1510 | 1820 | 713 | 467 | | 3 | 499 | 653 | 584 | 476 | 456 | 528 | 538 | 851 | 1940 | 1710 | 650 | 468 | | 4 | 502 | 629 | 569 | 471 | 414 | 518 | 547 | 799 | 2920 | 1600 | 610 | 465 | | 5 | 509 | 624 | 575 | 536 | 408 | 484 | 55 7 | 793 | 3750 | 1560 | 592 | 459 | | 6 | 510 | 657 | 579 | 560 | 420 | 498 | 549 | 877 | 4030 | 1520 | 568 | 465 | | 7 | 518 | 701 | 563 | 506 | 424 | 528 | 599 | 793 | 4090 | 1410 | 590 | 458 | | 8 | 529 | 671 | 574 | 501 | 449 | 488 | 692 | 727 | 3970 | 1290 | 566 | 441 | | 9 | 549 | 640 | 537 | 505 | 429 | 495 | 661 | 663 | 3820 | 1200 | 541 | 454 | | 10 | 560 | 624 | 568 | 500 | 443 | 529 | 620 | 616 | 3760 | 1140 | 524 | 468 | | 11 | 559 | 638 | 564 | 504 | 432 | 502 | 630 | 633 | 3650 | 1140 | 512 | 498 | | 12 | 558 | 648 | 533 | 496 | 390 | 469 | 676 | 781 | 3330 | 1070 | 515 | 681 | | 13 | 567 | 640 | 496 | 455 | 452 | 483 |
782 | 1100 | 3050 | 1010 | 519 | 893 | | 14 | 599 | 645 | 481 | 490 | 479 | 443 | 844 | 1490 | 2440 | 959 | 508 | 769 | | 15 | 619 | 649 | 475 | 485 | 462 | 495 | 904 | 1770 | 2420 | 903 | 503 | 7 02 | | 16 | 608 | 630 | 471 | 512 | 479 | 510 | 936 | 1990 | 2540 | 842 | 513 | 675 | | 17 | 607 | 624 | 526 | 477 | 461 | 481 | 973 | 2270 | 2540 | 827 | 506 | 661 | | 18 | 608 | 577 | 543 | 481 | 442 | 465 | 891 | 2660 | 2550 | 801 | 509 | 650 | | 19 | 605 | 569 | 571 | 474 | 462 | 481 | 849 | 2460 | 2680 | 739 | 483 | 651 | | 20 | 608 | 610 | 550 | 44 7 | 485 | 497 | 838 | 1890 | 2960 | 706 | 483 | 633 | | 21 | 607 | 629 | 509 | 470 | 462 | 508 | 933 | 1460 | 2860 | 663 | 497 | 630 | | 22 | 621 | 627 | 527 | 492 | 470 | 532 | 913 | 1250 | 2760 | 638 | 551 | 631 | | 23 | 625 | 618 | 558 | 457 | 462 | 543 | 865 | 1130 | 2520 | 629 | 544 | 628 | | 24 | 632 | 610 | 539 | 471 | 464 | 554 | 840 | 1180 | 2660 | 619 | 516 | 596 | | 25 | 659 | 581 | 501 | 444 | 469 | 521 | 785 | 1430 | 2530 | 608 | 501 | 576 | | 26
27
28
29
30
31 | 643
639
639
620
641
650 | 610
595
556
575
568 | 497
531
534
511
523
514 | 462
476
457
462
477
458 | 479
486
508
509 | 531
580
629
539
576
538 | 739
716
752
799
930 | 1600
1880
2080
2540
2740
2050 | 2390
2210
2110
2670
2410 | 604
586
574
589
663
77 3 | 492
490
485
460
446
455 | 571
569
582
577
568 | | TOTAL | 18079 | 18686 | 16635 | 14963 | 13199 | 15993 | 22392 | 44624 | 84770 | 31223 | 16609 | 17354 | | MEAN | 583 | 623 | 537 | 483 | 455 | 516 | 746 | 1439 | 2826 | 1007 | 536 | 578 | | MAX | 659 | 701 | 584 | 560 | 509 | 629 | 973 | 2740 | 4090 | 2030 | 767 | 893 | | MIN | 490 | 556 | 471 | 444 | 390 | 443 | 505 | 616 | 1510 | 574 | 446 | 441 | | AC-FT | 35860 | 37060 | 33000 | 29680 | 26180 | 31720 | 44410 | 88510 | 168100 | 61930 | 32940 | 34420 | CAL YR 1987 TOTAL 434078 MEAN 1189 MAX 5720 MIN 471 AC-FT 861000 WTR YR 1988 TOTAL 314527 MEAN 859 MAX 4090 MIN 390 AC-FT 623900 # 09085100 COLORADO RIVER BELOW GLENWOOD SPRINGS, CO LOCATION.--Lat 39°33'18", long 107°20'13", in NW4NW4 sec.9, T.6 S., R.89W., Garfield County, Hydrologic Unit 14010005, on left bank 0.6 mi downstream from Roaring Fork River and 1.0 mi northwest of Post Office in Glenwood Springs. DRAINAGE AREA. -- 6,013 mi². PERIOD OF RECORD. -- October 1966 to current year. GAGE.--Water-stage recorder. Datum of gage is 5,700.75 ft above National Geodetic Vertical Datum of 1929 (Colorado State Highway Department benchmark). REMARKS.--Estimated daily discharges: Sept. 7, 8, 26, 27. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation of 110,000 acres. AVERAGE DISCHARGE. -- 22 years, 3,580 ft3/s; 2,594,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,500 ft³/s, May 25, 1984, gage height, 12.49 ft; minimum daily, 870 ft³/s, Feb. 11, 1981. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,000 ft^3/s at 0700 June 7, gage height, 7.50 ft; minimum daily, 1,130 ft^3/s , Dec. 16. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|--------------------------------------|--|--|--|--|---|--|---|--|--|---| | DAY | OCT | иои | DE C | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1 | 1770 | 1770 | 1540 | 1430 | 1550 | 1720 | 1720 | 4080 | 6400 | 5630 | 2590 | 1890 | | 2 | 1790 | 1960 | 1610 | 1310 | 1530 | 1750 | 1730 | 4170 | 5640 | 5290 | 2490 | 1830 | | 3 | 1770 | 1970 | 1750 | 1190 | 1550 | 1760 | 1800 | 3730 | 6140 | 5060 | 2280 | 1830 | | 4 | 1770 | 1940 | 1720 | 1200 | 1430 | 1750 | 1950 | 3440 | 7850 | 4840 | 2170 | 1760 | | 5 | 1810 | 1910 | 1740 | 1370 | 1340 | 1640 | 2250 | 3460 | 9670 | 4640 | 2130 | 1740 | | 6 | 1760 | 1920 | 1720 | 1510 | 1330 | 1650 | 2320 | 3760 | 10100 | 4370 | 2110 | 1750 | | 7 | 1770 | 2050 | 1690 | 1640 | 1390 | 1760 | 2340 | 3760 | 10200 | 4000 | 2200 | 1700 | | 8 | 1790 | 2000 | 1680 | 1580 | 1490 | 1600 | 2720 | 3550 | 9730 | 3770 | 2210 | 1690 | | 9 | 1830 | 1950 | 1600 | 1550 | 1510 | 1630 | 2880 | 3370 | 9420 | 3560 | 2150 | 1810 | | 10 | 1890 | 1870 | 1640 | 1540 | 1550 | 1710 | 2580 | 3220 | 9150 | 3440 | 2090 | 1810 | | 11 | 1860 | 1920 | 1690 | 1590 | 1510 | 1630 | 2470 | 3230 | 9030 | 3390 | 2120 | 1980 | | 12 | 1840 | 1910 | 1590 | 1570 | 1450 | 1560 | 2530 | 3480 | 8220 | 3270 | 2160 | 2250 | | 13 | 1860 | 1860 | 1330 | 1410 | 1500 | 1540 | 2940 | 4240 | 7640 | 3080 | 2140 | 2590 | | 14 | 1910 | 1900 | 1290 | 1380 | 1530 | 1480 | 3280 | 5430 | 6460 | 2870 | 2150 | 2400 | | 15 | 1910 | 1900 | 1160 | 1470 | 1530 | 1610 | 3530 | 6490 | 6100 | 2650 | 2150 | 2240 | | 16 | 1870 | 1890 | 1130 | 1600 | 1550 | 1590 | 3600 | 7300 | 6130 | 2570 | 2160 | 2120 | | 17 | 1850 | 1850 | 1430 | 1570 | 1500 | 1590 | 3830 | 8050 | 6090 | 2540 | 2180 | 2080 | | 18 | 1850 | 1850 | 1490 | 1540 | 1490 | 1560 | 3820 | 8740 | 6010 | 2480 | 2190 | 2010 | | 19 | 1830 | 1630 | 1640 | 1510 | 1450 | 1540 | 3640 | 8910 | 6100 | 2350 | 2100 | 1970 | | 20 | 1830 | 1750 | 1580 | 1350 | 1540 | 1590 | 3710 | 8170 | 6660 | 2320 | 2080 | 1980 | | 21 | 1720 | 1730 | 1420 | 1370 | 1640 | 1640 | 3880 | 7240 | 6560 | 2360 | 2090 | 1970 | | 22 | 1730 | 1750 | 1390 | 1370 | 1650 | 1680 | 3920 | 6010 | 6500 | 2370 | 2170 | 1930 | | 23 | 1690 | 1790 | 1540 | 1410 | 1590 | 1740 | 3610 | 5280 | 6240 | 2380 | 2170 | 1940 | | 24 | 1710 | 1790 | 1560 | 1480 | 1510 | 1780 | 3300 | 5170 | 6770 | 2410 | 2090 | 1830 | | 25 | 1700 | 1700 | 1360 | 1390 | 1600 | 1750 | 3100 | 5520 | 6270 | 2370 | 2020 | 1810 | | 26
27
28
29
30
31 | 1630
1710
1680
1660
1650
1750 | 1730
1700
1610
1580
1590 | 1200
1360
1480
1500
1540
1490 | 1360
1460
1500
1510
1550
1550 | 1610
1630
1690
1700 | 1670
1790
2020
1950
1930
1830 | 2990
2900
2890
2970
3300 | 5920
6470
7030
8030
8590
7420 | 5890
5430
5220
6060
5970 | 2360
2340
2270
2240
2410
2550 | 2000
1980
2000
1980
1950
1940 | 1800
1700
1770
1770
1750 | | TOTAL
MEAN
MAX
MIN
AC-FT | 55190
1780
1910
1630
109500 | 1826
2050
1580 | 46860
1512
1750
1130
92950 | 45260
1460
1640
1190
89770 | 44340
1529
1700
1330
87950 | 52440
1692
2020
1480
104000 | 88500
2950
3920
1720
175500 | 173260
5589
8910
3220
343700 | 213650
7122
10200
5220
423800 | 98180
3167
5630
2240
194700 | 66240
2137
2590
1940
131400 | 57700
1923
2590
1690
114400 | CAL YR 1987 TOTAL 1048260 MEAN 2872 MAX 10600 MIN 1130 AC-FT 2079000 WTR YR 1988 TOTAL 996390 MEAN 2722 MAX 10200 MIN 1130 AC-FT 1976000 140 DIVIDE CREEK BASIN #### 09089500 WEST DIVIDE CREEK NEAR RAVEN, CO LOCATION.--Lat 39°19'52", long 107°34'46", in NE4SW4 sec.29, T.8 S., R.91 W., Mesa County, Hydrologic Unit 14010005, on left bank 10 ft, downstream from private road bridge, 0.8 mi upstream from Brook Creek, 8 mi south of Raven, and 16 mi south of Silt. DRAINAGE AREA . - - 64.6 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1955 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 16-17, and Dec. 3 to Mar. 31. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by water imported from Thompson Creek (Roaring Fork basin), Muddy Creek (Muddy Creek basin), and Buzzard Creek (Plateau Creek basin). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 33 years, 35.9 ft 3/s; 26,010 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,410 ft³/s, May 14, 1984, gage height, 5.83 ft, from rating curve extended above 670 ft³/s; no flow at times in most years. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 160 ft³/s, and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|--------------------------------|------------------|----------|-------------|----------------------|---------------------| | May 17 | 2300 | *228 | *4.22 | No other | peak greate | r than base di | scharge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 No flow, Sept. 6-10. | | | DIDONANGE | , cobic i | BBI IBM I | | MEAN VALUE | | 1901 10 52 | n renden | 1900 | | | |--------------------------------------|--|------------------------------------|--|-----------------------------------|-----------------------------------|--|-------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |
1.5
1.5
1.5
1.5 | 3.4
4.4
4.1
3.3
2.8 | 2.3
2.7
2.9
2.9
3.0 | 2.6
2.4
2.5
2.7
3.0 | 2.4
2.4
2.3
2.1
2.1 | 2.9
2.8
2.7
2.5
2.5 | 7.6
8.7
10
15 | 106
80
71
77
75 | 80
75
92
124
141 | 25
21
19
17
19 | 1.4
2.3
1.5
.97
.63 | .13
.11
.09
.06 | | 6
7
8
9
10 | 1.5
1.6
1.6
1.6 | 4.2
5.4
4.5
3.2
3.2 | 2.9
2.9
2.9
2.9
3.0 | 3.1
3.1
3.1
3.0
2.9 | 2.2
2.4
2.4
2.3
2.4 | 2.8
2.6
2.6
2.7
2.9 | 18
28
33
28
22 | 89
75
71
67
81 | 138
141
134
114
102 | 19
20
13
11
9.4 | .54
1.1
1.3
.82
.41 | .00
.00
.00
.00 | | 11
12
13
14
15 | 1.6
1.6
1.9
3.9
3.4 | 3.6
3.2
3.3
3.4
3.1 | 2.9
2.8
2.6
2.4
2.3 | 2.9
2.7
2.9
3.0
2.7 | 2.4
2.4
2.5
2.4 | 2.8
2.8
3.0
2.9
3.4 | 24
34
44
48
60 | 99
133
165
188
194 | 96
86
82
72
64 | 13
9.4
8.1
7.2
6.4 | .20
.17
2.7
1.1
.47 | .12
7.6
14
7.7
3.8 | | 16
17
18
19
20 | 3.0
2.7
2.3
2.2
1.9 | 3.0
2.9
3.2
3.7
3.6 | 2.6
2.8
2.9
3.0
2.9 | 2.7
2.6
2.6
2.5
2.1 | 2.4
2.2
2.2
2.3
2.4 | 3.2
3.1
3.1
3.3
3.5 | 50
49
38
37
39 | 196
200
214
190
142 | 63
60
57
55
55 | 5.6
5.2
3.6
2.8 | .56
1.4
.90
.41
.20 | 2.6
2.1
2.0
1.8
1.5 | | 21
22
23
24
25 | 1.9
1.8
1.9
2.2
3.8 | 3.8
3.9
3.5
3.6
3.3 | 2.7
2.7
3.1
2.9
2.7 | 2.4
2.3
2.4
2.4
2.2 | 2.4
2.5
2.5
2.5
2.5 | 4.0
4.4
4.4
4.5 | 47
43
41
38
39 | 109
96
94
99
104 | 50
45
43
37
34 | 2.2
1.9
1.7
1.3 | .64
1.8
1.5
.71 | 1.2
1.0
1.1
.96 | | 26
27
28
29
30
31 | 4.2
3.0
2.5
2.5
3.3
4.1 | 3.4
3.2
2.8
2.9
2.6 | 2.6
2.6
2.7
2.7
2.9
2.8 | 2.4
2.5
2.6
2.6
2.5 | 2.6
2.7
2.7
2.9 | 5.2
8.0
8.4
7.8
7.6
7.2 | 39
43
50
62
90 | 103
109
111
107
105
90 | 31
30
30
45
33 | .94
1.3
1.4
1.3
1.2 | .17
.29
.43
.27
.15 | .83
.76
.76
.78
.77 | | TOTAL
MEAN
MAX
MIN
AC-FT | 71.2
2.30
4.2
1.5
141 | 104.5
3.48
5.4
2.6
207 | 86.0
2.77
3.1
2.3
171 | 81.8
2.64
3.1
2.1
162 | 69.9
2.41
2.9
2.1
139 | 124.0
4.00
8.4
2.5
246 | 1099.3
36.6
90
7.6
2180 | 3640
117
214
67
7220 | 2209
73.6
141
30
4380 | 255.09
8.23
25
.90
506 | 25.47
.82
2.7
.13
51 | 52.68
1.76
14
.00
104 | CAL YR 1987 TOTAL 12791.2 MEAN 35.0 MAX 296 MIN 1.5 AC-FT 25370 WTR YR 1988 TOTAL 7818.94 MEAN 21.4 MAX 214 MIN .00 AC-FT 15510 # 09089500 WEST DIVIDE CREEK NEAR RAVEN, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1986 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | : | | ANCE | STAND- A
ARD W | TURE | XYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS N
TOTAL W
(MG/L T
AS M | H WAT I
OT FLD S
G/L AS (| LCIUM
DIS-
SOLVED
MG/L | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |----------------------------|---|---|--|---|--|---|---|---|--|--| | MAY
05
20 | 1115
1250 | 69
153 | 258
192 | 8.2
8.0 | 5.0
3.5 | 10.1
10.2 | 120
92 | 0 | 38
30 | 5.7
4.2 | | JUL
15 | 1120 | 6.7 | 299 | 8.4 | 16.5 | 7.3 | 130 | 0 | 39 | 7.5 | | SEP 16 | 1130 | 2.4 | 324 | 8.0 | 7.0 | 9.3 | 140 | 0 | 41 | 8.3 | | DATE MAY 05 20 JUL 15 SEP | SODIUN
DIS-
SOLVEI
(MG/I
AS NA
11
6.9 | SODIU A, AD- SORP- O TION RATIO O O O O O O O O O | M POTAS- SIUM, DIS- SOLVEI (MG/L AS K) 1.1 3 0.80 6 1.2 | - ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFAT
DIS-
SOLVE
(MG/L
AS SO4 | CHLO E RIDE DIS- D SOLVE (MG/L)) AS CI | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
) AS F) | SILICA, DIS-, SOLVEI D (MG/L AS SI02) 0 9.5 0 9.5 | SOLIDS
SUM OF
CONSTI
TUENTS
DIS-
SOLVE
(MG/L | ,
-,
D
)
66
88 | | 16 | 17 | 0. | 7 1.3 | 148 | 16 | 4.8 | 0.2 | 0 10 | 18 | 7 | | DATE | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | DIS-
D SOLVE
TONS
PER | GEN,
D NITRITE | NITRITE | NITRO
GEN,
NO2+NO | NO2+NO
3 DIS-
SOLVE
(MG/L | NITRO GEN, AMMONI D TOTAL (MG/L | AMMONÍA
A DIS- | GEN,AM
MONIA
ORGANI | -
+
C | | MAY
05
20 | 0.2 | | | <0.01 | <0.10
<0.10 | | 0.03 | 0.02 | <0.2
<0.2 | | | 15
SEP | 0.2 | 24 3.2 | 0 <0.01 | | <0.10 | | - <0.01 | | 0.7 | 0 | | 16 | 0.2 | 25 1.2 | 0 <0.01 | | <0.10 | - | <0.01 | | <0.2 | 0 | | DATE | NITRO
GEN, AN
MONIA
ORGANI
DIS.
(MG/L
AS N) | 1-
+ PHOS-
IC PHOROU
TOTAL
(MG/L | S DIS-
SOLVEI
(MG/L | ORTHO, | PHOS-
PHOROU
ORTHO
DIS-
SOLVED
(MG/L
AS P) | S CARBON
ORGANI | C DIS-
SOLVED
(MG/L | | DIS- | D | | MAY
05
20
JUL | <0.2 | 0.04
20 0.05 | | 0.03 | 0.01 | - 6.5
7.6 | | <10
<10 | | 8
2 | | 15
SEP | - | 0.03 | | <0.01 | - | - 3.9 | 3.3 | 10 | | 8 | | 16 | - | 0.02 | | <0.01 | - | - 6.0 | 4.5 | 10 | 3 | 6 | # DIVIDE CREEK BASIN # 09089500 WEST DIVIDE CREEK NEAR RAVEN, CO--Continued # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | | TIME | ALUINU
TOT
REC
ERA
(UG
AS | M, BA
AL T
OV- R
BLE E
/L (| RIUM,
OTAL
ECOV-
RABLE
UG/L
S BA) | LIU
TOT | AĹ
OV-
BLE
/L | ERA
(UG | M,
AL
OV-
BLE | ERA
(UC | AL
OV -
BLE | COPPI
TOTA
RECO
ERAI
(UG. | AL´
OV-
BLE
/L | ERA
(UC | AL
OV-
BLE | LEAD,
TOTAL
RECOV
ERABL
(UG/L
AS PE | J-
LE | |-----------|------|---------------------------------|--|---|--|--|------------------------|------------|------------------------|---------------------------------|-------------------|---------------------------------------|--------------------------------|------------|-------------------|--|----------| | MAY
20 | | 1250 | 7 | 900 | 100 | <1 | 0 | | 6 | | 8 | | 5 | 6 | 000 | | 8 | | | DATE | NES
TOT
REC
ERA
(UC | | MERCUR
TOTAL
RECOV
ERABL
(UG/L
AS HG | Y DEI
TO:
- RE(
E ER/ | YB-
NUM,
FAL
COV-
ABLE
G/L
MO) | ERA
(UC | | NI
TO
(U | LE-
UM,
TAL
G/L
SE) | ERA
(UC | | TI
TOT
REC
ERA
(UG | OV-
BLE | TO:
RE(
ER/ | NC,
TAL
COV-
ABLE
G/L
ZN) | | | MAY
20 | | | 260 | <0.1 | 0 | 3 | | 11 | | <1 | | 1 | | 270 | | 50 | | # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |---|------------------|------|---|--|--|---| | 0 | CT | | | | | | | | 06 | 1135 | 1.8 | 17 | 0.08 | | | М | AY | | | | | | | | 05 | 1115 | 69 | 291 | 54 | 77 | | | 20 | 1250 | 153 | 417 | 172 | 73 | | J | UN | 4040 | 445 | | 460 | 0.14 | | | 09 | 1010 | 117 | 505 | 160 | 84 | | , | 15
Մ L | 1240 | 65 | 124 | 22 | 77 | | J | 15 | 1120 | 6 7 | 17 | 0.31 | 66 | | ۸ | UG | 1120 | 6.7 | 17 | 0.31 | 00 | | n | 08 | 1410 | 1.4 | 14 | 0.05 | 58 | | | 08 | 1420 | 1.4 | 10 | 0.04 | | | S | EP | 1420 | 1.4 | , 0 | 0.04 | | | ~ | 16 | 1020 | 2.4 | 22 | 0.14 | 64 | | | 16 | 1035 | 2.2 | 20 | 0.12 | 76 | | | | | | | | | #### 09093700 COLORADO RIVER NEAR DE BEQUE, CO LOCATION.--Lat 39°21'45", long 108°09'07", in NELSW4 sec.7, T.8 S., R.96 W., Mesa County, Hydrologic Unit 14010006, on left bank 3.0 mi downstream from Alkali Creek and 3.8 mi northeast of De Beque. DRAINAGE AREA . -- 7.370 mi². PERIOD OF RECORD.--Streamflow records, October 1966 to current year. Water-quality data available, August 1973 to September 1982. Sediment data available, October 1974 to September 1976. GAGE.--Water-stage recorder. Elevation of gage is 4,940 ft from National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Jan. 2 to Feb. 10, and May 7-9. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation of about 158,000 acres. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 22 years, 3,945 ft3/s; 2,858,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 38,200 ft³/s, May 26, 1984, gage height, 14.83 ft; minimum
daily, 914 ft³/s, Dec. 22, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,500 ft³/s at 1600 June 7, gage height, 8.64 ft; minimum daily, 1,270 ft³/s, Dec. 16. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---|--------------------------------------|--|--|--|--|---|--|---|--|--|---| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 1860 | 1880 | 1650 | 1640 | 1580 | 1820 | 1820 | 3850 | 7170 | 5750 | 2420 | 1880 | | 2 | 1860 | 1930 | 1660 | 1600 | 1600 | 1820 | 1770 | 4470 | 6360 | 5430 | 2380 | 1830 | | 3 | 1870 | 2030 | 1720 | 1500 | 1500 | 1820 | 1780 | 4230 | 6260 | 5220 | 2220 | 1780 | | 4 | 1860 | 1970 | 1790 | 1460 | 1460 | 1810 | 1860 | 3730 | 7480 | 5020 | 2070 | 1770 | | 5 | 1870 | 1970 | 1790 | 1400 | 1400 | 1760 | 2050 | 3560 | 9550 | 4820 | 2020 | 1720 | | 6 | 1900 | 2000 | 1780 | 1380 | 1400 | 1680 | 2300 | 3740 | 10800 | 4570 | 1990 | 1710 | | 7 | 1880 | 2000 | 1760 | 1400 | 1460 | 1740 | 2280 | 4010 | 10900 | 4210 | 2040 | 1730 | | 8 | 1870 | 2060 | 1760 | 1500 | 1480 | 1740 | 2520 | 3850 | 10500 | 3870 | 2100 | 1700 | | 9 | 1900 | 2020 | 1720 | 1560 | 1500 | 1650 | 2860 | 3620 | 9930 | 3600 | 2060 | 1670 | | 10 | 1940 | 1950 | 1680 | 1600 | 1550 | 1690 | 2760 | 3380 | 9660 | 3420 | 1980 | 1770 | | 11 | 1980 | 1930 | 1740 | 1600 | 1620 | 1710 | 2520 | 3250 | 9420 | 3320 | 1930 | 1860 | | 12 | 1930 | 1960 | 1720 | 1600 | 1580 | 1650 | 2490 | 3410 | 8840 | 3200 | 1960 | 2400 | | 13 | 1970 | 1930 | 1580 | 1560 | 1540 | 1590 | 2710 | 4120 | 8060 | 3040 | 1970 | 2750 | | 14 | 2010 | 1930 | 1450 | 1500 | 1600 | 1570 | 3190 | 5470 | 7140 | 2800 | 1980 | 2500 | | 15 | 2030 | 1960 | 1360 | 1400 | 1600 | 1540 | 3440 | 6520 | 6490 | 2590 | 1980 | 2330 | | 16 | 1980 | 1940 | 1270 | 1360 | 1600 | 1690 | 3660 | 7390 | 6420 | 2410 | 2000 | 2160 | | 17 | 1940 | 1920 | 1420 | 1400 | 1610 | 1590 | 3820 | 8280 | 6340 | 2340 | 2060 | 2080 | | 18 | 1940 | 1880 | 1590 | 1480 | 1550 | 1620 | 4050 | 9230 | 6300 | 2300 | 2030 | 2020 | | 19 | 1940 | 1800 | 1630 | 1500 | 1570 | 1640 | 3810 | 9770 | 6220 | 2160 | 1990 | 1960 | | 20 | 1920 | 1910 | 1730 | 1460 | 1530 | 1650 | 3760 | 9290 | 6580 | 2080 | 1950 | 1980 | | 21 | 1860 | 1820 | 1600 | 1500 | 1640 | 1680 | 3900 | 8050 | 6600 | 2050 | 1970 | 2000 | | 22 | 1820 | 1820 | 1520 | 1400 | 1720 | 1730 | 4210 | 6990 | 6560 | 2060 | 2100 | 1960 | | 23 | 1830 | 1840 | 1570 | 1360 | 1670 | 1740 | 3970 | 6100 | 6310 | 2060 | 2060 | 1920 | | 24 | 1810 | 1830 | 1680 | 1460 | 1630 | 1800 | 3630 | 5860 | 6550 | 2050 | 2020 | 1910 | | 25 | 1840 | 1810 | 1570 | 1520 | 1600 | 1820 | 3310 | 6040 | 6430 | 2050 | 1960 | 1840 | | 26
27
28
29
30
31 | 1790
1750
1780
1770
1790 | 1770
1770
1750
1630
1720 | 1380
1380
1500
1620
1630
1640 | 1480
1500
1580
1600
1580
1560 | 1680
1680
1730
1770 | 1740
1800
1910
2060
1930
1950 | 3150
3000
2950
2950
3140 | 6370
6800
7370
8170
8980
8480 | 6070
5670
5370
5810
6050 | 2040
2030
2030
1980
2100
2210 | 1910
1910
1910
1920
1900
1870 | 1820
1810
1800
1800
1790 | | TOTAL
MEAN
MAX
MIN
AC-FT | 58280
1880
2030
1750
115600 | 1891
2060
1630 | 49890
1609
1790
1270
98960 | 46440
1498
1640
1360
92110 | 45850
1581
1770
1400
90940 | 53940
1740
2060
1540
107000 | 89660
2989
4210
1770
177800 | 184380
5948
9770
3250
365700 | 221840
7395
10900
5370
440000 | 94810
3058
5750
1980
188100 | 62660
2021
2420
1870
124300 | 58250
1942
2750
1670
115500 | CAL YR 1987 TOTAL 1159580 MEAN 3177 MAX 11400 MIN 1270 AC-FT 2300000 WTR YR 1988 TOTAL 1022730 MEAN 2794 MAX 10900 MIN 1270 AC-FT 2029000 #### 09095500 COLORADO RIVER NEAR CAMEO. CO LOCATION.--Lat 39°14'20", long 108°16'00", in SW4SW4 sec.30, T.9 S., R.97 W., Mesa County, Hydrologic Unit 14010006, on left bank 100 ft north of Interstate 70, 0.5 mi upstream from Jackson Canyon, 5.9 mi upstream from Grand Valley project diversion dam, and 7 mi northeast of Cameo. DRAINAGE AREA. -- 8,050 mi², approximately. WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1933 to current year. REVISED RECORDS .-- WRD Colo. 1973: 1970. GAGE.--Water-stage recorder. Datum of gage is 4,813.73 ft above National Geodetic Vertical Datum of 1929. (Levels by Colorado Department of Highways). Prior to Oct. 10, 1934, nonrecording gage on river and water-stage recorder on Highline Canal, about 10 mi downstream at different datum. Oct. 10, 1934, to Feb. 27, 1958, water-stage recorder at site 3.0 mi downstream at datum 22.55 ft, lower. REMARKS.--Estimated daily discharges: Dec. 26 to Feb. 23. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversion for irrigation of about 160,000 acres. AVERAGE DISCHARGE.--55 years, 3,948 ft^3/s ; 2,860,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 39,300 ft³/s, May 26, 1984, gage height, 14.36 ft, minimum daily, 700 ft³/s, Dec. 29, 1939. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,000 $\rm ft^3/s$ at 1745 June 7, gage height, 7.97 ft, minimum daily, 1,380 $\rm ft^3/s$, Dec. 16. DISCULDED CHOIC BREW DED GEGOND HAMED VEAD OCHORED 1007 TO GERTEMBER 1000 | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---|--------------------------------------|--|---|--|--|---|--|---|--|--|---| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 2050 | 1990 | 1820 | 1790 | 1700 | 2060 | 2010 | 3890 | 7710 | 5630 | 2390 | 1990 | | 2 | 2040 | 2130 | 1810 | 1800 | 1700 | 2000 | 1950 | 4600 | 6680 | 5230 | 2380 | 1950 | | 3 | 2040 | 2210 | 1880 | 1700 | 1700 | 1980 | 1960 | 4350 | 6430 | 5040 | 2270 | 1900 | | 4 | 2040 | 2170 | 1990 | 1670 | 1650 | 1960 | 2020 | 3910 | 7970 | 4820 | 2130 | 1880 | | 5 | 2050 | 2150 | 1990 | 1600 | 1580 | 1920 | 2210 | 3730 | 10600 | 4650 | 2060 | 1800 | | 6 | 2080 | 2300 | 2020 | 1520 | 1560 | 1810 | 2490 | 3890 | 12100 | 4390 | 2060 | 1800 | | 7 | 2060 | 2230 | 1960 | 1550 | 1570 | 1890 | 2480 | 4250 | 12100 | 4120 | 2120 | 1800 | | 8 | 2050 | 2310 | 1940 | 1680 | 1600 | 1910 | 2620 | 4080 | 11600 | 3690 | 2170 | 1770 | | 9 | 2050 | 2330 | 1920 | 1720 | 1650 | 1800 | 2960 | 3860 | 11100 | 3450 | 2130 | 1760 | | 10 | 2060 | 2260 | 1920 | 1760 | 1700 | 1840 | 2890 | 3610 | 10400 | 3260 | 2070 | 1860 | | 11 | 2080 | 2210 | 1920 | 1780 | 1720 | 1880 | 2700 | 3510 | 10000 | 3190 | 2050 | 1940 | | 12 | 2020 | 2210 | 1900 | 1800 | 1700 | 1800 | 2640 | 3600 | 9410 | 3130 | 2090 | 2510 | | 13 | 2060 | 2120 | 1780 | 1780 | 1650 | 1 7 20 | 2790 | 4180 | 8500 | 2940 | 2110 | 2860 | | 14 | 2170 | 2110 | 1540 | 1700 | 1700 | 1700 | 3220 | 5480 | 7570 | 2730 | 2130 | 2620 | | 15 | 2200 | 2160 | 1520 | 1600 | 1700 | 1670 | 3480 | 6910 | 6560 | 2540 | 2130 | 2450 | | 16 | 2150 | 2140 | 1380 | 1500 | 1700 | 1840 | 3690 | 7880 | 6500 | 2420 | 2160 | 2280 | | 17 | 2090 | 2110 | 1440 | 1550 | 1700 | 1740 | 3820 | 8920 | 6410 | 2340 | 2210 | 2150 | | 18 | 2110 | 2070 | 1730 | 1650 | 1650 | 1760 | 4090 | 10200 | 6420 | 2320 | 2190 | 2090 | | 19 | 2110 | 2050 | 1770 | 1700 | 1720 | 1750 | 3880 | 10900 | 6310 | 2230 | 2170 | 2010 | | 20 | 2100 | 1940 | 1890 | 1650 | 1660 | 1750 | 3840 | 10300 | 6780 | 2080 | 2130 | 2030 | | 21 | 2070 | 2000 | 1790 | 1660 | 1720 | 1800 | 3910 | 8830 | 6900 | 2040 | 2150 | 2090 | | 22 | 2000 | 2000 | 1650 | 1700 | 1800 | 1910 | 4190 | 7380 | 6940 | 2080 | 2300 | 2040 | | 23 | 2000 | 2040 | 1700 | 1600 | 1720 | 1930 | 4000 | 6320 | 6500 | 2070 | 2190 | 2020 | | 24 | 1980 | 2020 | 1880 | 1500 | 1660 | 2000 | 3810 | 5890 | 6730 | 2090 | 2160 | 2010 | | 25 | 2050 | 2000 | 1840 | 1600 | 1610 | 2020 | 3520 | 6080 | 6710 | 2090 | 2100 | 1950 | | 26
27
28
29
30
31 | 1980
1910
1960
1950
1960 | 1970
1970
1940
1850
1820 | 1800
1750
1700
1700
1750
1780 | 1620
1680
1720
1740
1700 | 1700
1730
1850
1930 | 1970
1990
2070
2300
2120
2150 | 3350
3260
3200
3230
3340 | 6640
7210
7940
8880
9930
9290 | 6200
5710
5310
5600
6060 | 2090
2080
2080
2020
2110
2210 | 2060
2030
2000
2050
2080
2070 | 1940
1950
1910
1930
1950 | | TOTAL
MEAN
MAX
MIN
AC-FT | 63430
2046
2200
1910
125800 | 2094
2330
1820 | 55460
1789
2020
1380
10000 | 51720
1668
1800
1500
102600 | 49030
1691
1930
1560
97250 | 59040
1905
2300
1670
117100 | 93550
3118
4190
1950
185600 | 196440
6337
10900
3510
389600 | 233810
7794
12100
5310
463800 |
93160
3005
5630
2020
184800 | 66340
2140
2390
2000
131600 | 61240
2041
2860
1760
121500 | CAL YR 1987 TOTAL 1217210 MEAN 3335 MAX 12400 MIN 1380 AC-FT 2414000 WTR YR 1988 TOTAL 1086030 MEAN 2967 MAX 12100 MIN 1380 AC-FT 2154000 # 09095500 COLORADO RIVER NEAR CAMEO, CO -- Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1933 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: December 1935 to current year. WATER TEMPERATURES: April 1949 to current year. ${\tt INSTRUMENTATION.--Water-quality\ monitor\ since\ October\ 1982.}$ REMARKS .-- Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,970 microsiemens Jan. 19, 1940; minimum, 230 microsiemens June 2, 3, 1984. WATER TEMPERATURES: Maximum, 25.0°C July 27, 1987; minimum, 0.0°C on many days during winter months. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 1,480 microsiemens Dec. 28; minimum, 310 microsiemens June 7 and 8. WATER TEMPERATURES: Maximum recorded, 24.1°C August 4; minimum, 0.0°C many days in winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | W | ATER QUA | LITY | DATA, W | ATER YE | AR OC | TOBER | | | PTEMBE. | R 1988 | | | | | |------------------|-----------|------|--|---|--------------------------------|-------------------------------|---|----------------------------------|---|---|---|---|------------------------------------|--|---|---|----| | DATE | | TİME | STREA
FLOV
INSTA
TANEO
(CF: | AM- CI
N, CO
AN- DU
DUS AN | E-
FIC
N-
ICT-
ICE | PH
(STAND
ARD
UNITS) | TEMP
- ATU
WAT
(DEG | RE
ER | HARD-
NESS
TOTAL
(MG/I
AS
CACO | - N
NC
WH
TC | ARD-
ESS
NCARB
WAT
T FLD
J/L AS
CACO3 | CALC:
DIS-
SOL'
(MG:
AS | IUM
-
VED SO
/L (I | AGNE-
SIUM,
DIS-
OLVED
MG/L
S MG) | SODIU
DIS-
SOLVE
(MG/
AS N | IM, A
- SOR
D TI
L RAT | ON | | OCT 21 | | 1400 | 1970 | | 1170 | 8.3 | | 8.0 | 21 | 70 | 120 | 75 | | 20 | 120 | | 3 | | NOV
18 | | 1300 | 1930 | | 1140 | 8.3 | | 1.5 | 2 | 70 | 120 | 74 | | 20 | 120 | | 3 | | DE C
09 | | 1200 | 1820 | | 1090 | 8.4 | | 2.0 | 27 | 0 | 120 | 75 | ; | 20 | 130 | | 4 | | JAN
28
FEB | | 1300 | 1720 | | 1240 | 8.0 | | 0.0 | 26 | 50 | 97 | 73 | | 19 | 140 | | 4 | | 26
MAR | | 1300 | 1700 | | 1140 | 8.3 | | 3.5 | 26 | 50 | 110 | 71 | | 19 | 140 | | 4 | | 16
APR | | 1400 | 1870 | | 1370 | 8.2 | | 4.0 | 26 | 50 | 120 | 72 | ; | 20 | 140 | | 4 | | 20
MAY | | 1300 | 3800 | | 667 | 8.2 | 1 | 2.0 | 18 | 80 | 66 | 50 | | 13 | 66 | | 2 | | 18
JUN | | 1200 | 9980 | | 380 | 8.0 | 1 | 1.5 | 12 | 20 | 27 | 34 | | 8.3 | 26 | | 1 | | 15
JUL | | 1300 | 6660 | | 491 | 8.2 | 1 | 3.5 | 11 | 10 | 43 | 40 | | 9.7 | 40 | | 2 | | 20
AUG | | 1300 | 2070 | | 935 | 8.5 | 2 | 20.0 | 23 | 30 | 95 | 66 | | 17 | 110 | | 3 | | 31
SEP | | 1000 | 1980 | | 1020 | 8.7 | 1 | 8.5 | 23 | 80 | 99 | 65 | | 16 | 110 | | 3 | | 22 | | 1200 | 2080 | | 1020 | 8.5 | 1 | 4.5 | 25 | 0 | 110 | 69 | | 19 | 110 | | 3 | | | DATE | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | DI
SO
(M | FATE
S-
LVED
G/L | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLU
RIDI
DI:
SOL
(MG | E,
S-
Ved
/L | SILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | COI
D TUI | LIDS,
M OF
NSTI-
ENTS,
DIS-
OLVED
MG/L) | SOLIDS DIS- SOLVEI (TONS PER AC-FT | I
D SC
(T
P | JIDS,
DIS-
DLVED
TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | | | 1 | | 4.1 | 151 | 17 | 0 | 170 | 0 | .40 | 7.0 | | 657 | 0.8 | 9 349 | 00 | <0.10 | | | NOV
18
DEC | 3 | | 2.8 | 150 | 17 | 0 | 170 | 0 | .40 | 8.4 | | 656 | 0.8 | 9 342 | 20 | 0.10 | | | | · · · | | 3.9 | 152 | 16 | 0 | 170 | 0 | .40 | 8.0 | | 659 | 0.90 | 324 | 10 | | | | | 3 | | 4.6 | 164 | 17 | 0 | 200 | 0 | .30 | 8.7 | | 715 | 0.9 | 7 331 | 0 | 0.33 | | | | 5 | | 4.1 | 144 | 16 | 0 | 180 | 0 | .40 | 7.9 | | 670 | 0.9 | 1 306 | 50 | 0.20 | | | | 5 | | 1.4 | 146 | 16 | 0 | 200 | 0 | .40 | 7.1 | | 688 | 0.9 | 4 348 | 30 | <0.10 | | | |) | | 2.8 | 113 | 9 | 5 | 78 | 0 | .30 | 9.6 | | 384 | 0.5 | 2 394 | 10 | 0.27 | | | | 3 | | 1.6 | 92 | 4 | 7 | 29 | 0 | .30 | 8.3 | | 211 | 0.2 | 9 568 | 80 | 0.22 | | | | 5 | | 1.6 | 97 | 6 | 5 | 46 | 0 | .30 | 7.1 | | 269 | 0.3 | 7 483 | 30 | 0.16 | | | | · · · | | 3.3 | 140 | 13 | 0 | 140 | 0 | .30 | 7.8 | | 558 | 0.70 | 312 | 20 | <0.10 | | | | ١ | | 3.5 | 130 | 13 | 0 | 160 | 0 | .30 | 7.0 | | 570 | 0.7 | 7 305 | 50 | <0.10 | | | | 2 | | 3.5 | 141 | 15 | 0 | 150 | 0 | .30 | 7.5 | | 594 | 0.8 | 1 334 | 10 | <0.10 | | COLORADO RIVER MAIN STEM # 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | Mi | SAN VALUES | • | | | | | | |------|--------------|--------------|----------------------|--------------|------|--------------|-----|-------|------------|-----|-----|------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 1130 | 1250 | 1150 | 1230 | 1100 | | | 759 | 405 | 529 | | | | ż | 1130 | 1230 | 1160 | 1250 | 1090 | | | 650 | 448 | 538 | | | | 3 | 1130 | 1200 | 1160 | 1300 | 1080 | 1110 | | 602 | 484 | 556 | | | | 4 | 1130 | 1150 | 1130 | 1360 | 1090 | 1090 | | 626 | 449 | 567 | | | | 5 | 1140 | 1150 | 1080 | 1400 | 1110 | 1060 | | 659 | 369 | 589 | | | | , | 1,10 | .,,,, | 1000 | 1100 | 1110 | 1000 | | 0,5,5 | 50) | 507 | | | | 6 | 1140 | 1140 | 1070 | 1390 | 1120 | 1060 | | 688 | 341 | 602 | | | | 7 | 1130 | 1150 | 1060 | 1310 | 1130 | 1080 | | 695 | 329 | 636 | | | | 8 | 1150 | 1100 | 1070 | 1240 | 1150 | 1060 | 880 | 700 | 324 | 675 | | | | 9 | 1150 | 1070 | 1080 | 1190 | 1160 | 1070 | 849 | 705 | 335 | 708 | | | | 10 | 1140 | 1110 | 1130 | 1210 | 1170 | 1140 | 790 | 713 | 338 | 733 | | | | | | | | | | | | | | | | | | 11 | 1130 | 1150 | 1120 | 1220 | 1170 | 1070 | 810 | 715 | 349 | 758 | | | | 12 | 1120 | 1140 | 1120 | 1230 | 1170 | 1060 | 859 | 713 | 359 | 754 | | | | 13 | 1130 | 1100 | 1140 | 1240 | 1170 | 1090 | 857 | 659 | 390 | 740 | | | | 14 | 1130 | 1130 | | 1300 | 1190 | 1110 | 841 | 598 | 410 | 772 | | | | 15 | 1160 | 1130 | | 1370 | | 1120 | 779 | 529 | 464 | 832 | | | | | | | | | | | | | | | | | | 16 | 1100 | 1140 | | 1270 | | | 727 | 493 | 476 | 872 | | | | 17 | 1130 | 1130 | | 1170 | | 110 0 | 690 | 506 | 477 | | | | | 18 | 1150 | 1140 | | 1140 | | 1110 | 670 | | 477 | | | | | 19 | 1160 | 1140 | 1290 | 1140 | | 1100 | 658 | | 481 | | | | | 20 | 1170 | 1160 | 1240 | 1160 | | 1110 | 673 | | 473 | | | | | 21 | 1170 | 1100 | 1200 | 1100 | | | 680 | | 448 | | | | | 22 | | 1190
1170 | 1200
122 0 | 1190 | | | 671 | | 446 | | | | | 23 | 1190
1220 | 1170 | 1260 | 1240
1270 | | | 658 | | 402
481 | | | 1040 | | 24 | 1230 | 1150 | 1250 | 1280 | | | 685 | | 493 | | | 1020 | | 25 | 1240 | 1110 | 1260 | 1300 | | | 722 | 496 | | | | 1020 | | 25 | 1240 | 1110 | 1200 | 1300 | | | [22 | 490 | 470 | | | 1010 | | 26 | 1240 | 1090 | 1310 | 1250 | | | 752 | 475 | 481 | | | 1020 | | 27 | 1250 | 1110 | 1410 | 1260 | | | 786 | 451 | 503 | | | 1030 | | 28 | 1260 | 1100 | 1440 | 1250 | | | 811 | 424 | 558 | | | 1020 | | 29 | 1240 | 1110 | 1330 | 1210 | | | 816 | 397 | 575 | | | 1020 | | 30 | 1240 | 1150 | 1300 | 1150 | | | 808 | 369 | 536 | | | 1010 | | 31 | 1260 | | 1250 | 1110 | | | | 359 | | | | | | | | | 30 | | | | | 557 | | | | | | MEAN | 1170 | 1140 | | 1250 | | | | | 439 | | | | # 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |----------------------------------|--------------------------------------|--|--|---|--------------------------------------|--------------------------------------|--|--|--|--|--|--| | | OCT | DBER | NOVE | EMBER | DE C | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 15.2
15.0
15.0
14.5
14.5 | 11.6
11.4
11.4
11.2
11.0 | 11.7
11.2
11.8
11.6
10.4 | 9.8
10.2
9.9
9.0
8.2 | 1.3
1.3
2.6
2.8
3.0 | .0
.4
1.1
1.8 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0 | 8.3
8.8
6.8 |
5.2
6.4
4.1 | | 6
7
8
9 | 14.7
14.4
14.2
14.0
13.6 | 11.2
11.1
11.4
10.8
10.8 | 10.7
9.9
9.8
9.4
8.3 | 8.8
8.6
7.5
6.9
6.3 | 4.7
5.0
3.8
2.6
3.2 | 2.9
3.3
2.5
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0 | 7.1
6.6
6.0
7.1
5.9 | 4.1
4.6
2.7
3.6
4.4 | | 11
12
13
14
15 | 13.8
13.0
12.1
11.8
13.4 | 10.7
10.4
11.1
9.6
10.9 | 8.5
7.6
7.4
7.1
6.7 | 5.7
5.7
5.4
6.5
5.1 | 3.7
2.3
.9
.0 | 2.3
1.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.2
.3
.3 |
.0
.0
.0 | 4.7
4.6
4.7
4.3
5.2 | 3.1
2.0
1.9
.9
2.3 | | 16
17
18
19
20 | 12.9
12.1
11.7
11.2
10.5 | 10.4
9.1
8.9
8.5
7.8 | 5.0
4.2
2.5
2.1
2.2 | 3.3
2.4
.9
.1 | .0
.0
.4
.9 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | | 4.6
5.2
6.0
7.2
8.6 | 3.2
1.8
2.0
2.8
4.1 | | 21
22
23
24
25 | 9.7
8.9
8.9
9.2
10.8 | 6.9
6.4
6.2
7.5
8.5 | 2.1
2.1
3.3
3.8
2.9 | .4
.5
1.0
1.9 | .3
.0
.0 | .0 | .0
.0
.0 | .0 | | | 9.6
9.6
9.3
9.5
9.3 | 5.3
6.7
6.3
6.7
5.7 | | 26
27
28
29
30
31 | 10.9
11.3
10.2
10.4
10.9 | 8.3
8.6
8.5
8.7
9.4
8.5 | 2.4
2.8
2.4
1.9
1.4 | 1.6
.9
.9
.2
.0 | .0 | .0 | .0 | .0 |

 | | 10.8
10.8
8.7
7.3
6.4
6.7 | 6.7
7.3
6.2
4.1
4.6
4.3 | | MONTH | 15.2 | 6.2 | 11.8 | .0 | 5.0 | .0 | .0 | .0 | | | | | | | API | RIL | MA | ΥY | J | UNE | JU | JLY | AUG | GUST | SEPT | EMBER | | 1
2
3
4
5 | 8.3
9.7
10.7
9.6
11.0 | 4.5
5.0
6.5
8.3
7.4 | 13.4
12.8
12.3
12.7
13.7 | 10.6
9.3
8.8
10.5
11.5 | 12.6
14.4
16.4
17.0
16.4 | 9.8
11.1
13.0
14.2
14.6 | 22.2
20.4
22.0
19.3
19.0 | 16.5
17.1
17.2
17.9
15.8 | 22.2
22.3
24.0
24.1
23.9 | 19.3
19.1
19.8
19.9
19.7 | 22.0
22.5
22.0
21.1
20.8 | 17.4
17.2
17.3
17.0
16.6 | | 6
7
8
9
10 | 12.3
13.3
12.4
10.6
9.8 | 8.0
9.0
9.9
8.0
7.2 | 12.2
11.7
12.0
13.4
14.6 | 10.0
9.0
10.3
10.8
11.4 | 15.1
15.4
15.7
16.1
16.3 | 13.1
12.8
12.9
13.1
13.7 | 22.2

22.0 | 17.2

18.9 | 24.0
23.1
22.9
22.8
22.0 | 20.3
19.8
19.1
18.6
18.2 | 22.0
19.9
22.0
19.9
18.5 | 16.4
16.2
16.1
16.1
16.7 | | 11
12
13
14
15 | 10.8
12.4
13.4
13.6
13.7 | 7.1
8.0
9.5
11.1
11.4 | 15.5
16.3
16.4
16.7
15.6 | 12.1
13.3
13.9
13.9 | 15.4
15.7
15.7
15.9
17.0 | 13.7
12.7
13.7
12.6
13.9 | 21.4
22.6
22.8 | 18.0
18.1
18.7 | 23.1
22.3
22.5
22.5
22.1 | 18.3
19.3
18.6
18.1
18.8 | 16.6
14.5
14.4
14.8
15.7 | 14.6
12.9
12.0
12.6
12.3 | | 16
17
18
19
20 | 12.6
11.3
11.7
12.7
12.9 | 11.2
10.1
8.9
10.3
11.8 | 15.0
14.0
12.6
11.6
11.1 | 12.6
12.4
11.4
10.5
9.4 | 17.4
17.3
17.9
18.6
19.4 | 14.7
14.9
15.2
15.7
16.0 | 23.2
22.9
23.0
23.1
23.3 | 19.1
19.8
18.9
19.0
18.9 | 22.7
22.3
22.7
23.3
22.0 | 19.3
19.4
18.3
18.8
18.8 | 16.6
17.0
16.5
14.6
15.4 | 12.6
13.2
13.9
11.4
11.3 | | 21
22
23
24
25 | 12.1
11.3
11.1
10.8
11.2 | 10.4
9.4
9.8
9.2
9.2 | 11.5
12.5
14.0
14.9
15.4 | 9.1
9.5
10.9
12.3
13.5 | 19.7
19.8
22.2
22.0
20.1 | 16.8
16.4
17.1
17.8
17.6 | 23.5
23.5
22.0
23.6
23.2 | 19.1
19.3
19.8
19.1
19.6 | 21.6
22.7
23.1
23.6
23.5 | 19.0
18.4
18.7
19.2
19.6 | 16.4
17.0
16.7
16.5
16.5 | 13.4
13.9
13.4
13.0
12.9 | | 26
27
28
29
30
31 | 11.1
12.4
13.3
14.5
15.2 | 8.0
8.8
10.5
11.4
12.3 | 15.5
14.5
15.0
14.1
12.4
11.9 | 13.1
12.7
11.9
12.2
11.0
9.2 | 19.8
19.9
19.7

19.4 | 17.5
16.9
18.1

16.7 | 23.5
23.3
23.0
23.7
23.9
23.9 | 19.6
19.7
19.6
19.4
19.3
20.1 | 23.0
22.8
22.2
21.5
22.0
22.0 | 19.6
19.0
18.7
17.9
18.1
17.9 | 15.0
15.5
14.7
13.9
14.6 | 12.9
12.2
12.1
10.7
10.8 | | MONTH | 15.2 | 4.5 | 16.7 | 8.8 | | | | | 24.1 | 17.9 | 22.5 | 10.7 | 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |------------------------------------|--------------------------------------|---|--|---|---| | OCT
08
14
21
28
NOV | 1200
1000
1400
1000 | 2050
2170
1970
1970 | 27
154
38
46 | 149
902
202
245 | 72
95
67
63 | | 05
12
18
25
DEC | 1300
1000
1300
1100 | 2150
2290
1930
1950 | 39
40
25
19 | 226
247
130
100 | 89
79
75
67 | | 02 | 1200
1200 | 1820
1820 | 13
43 | 64
211 | 72
86 | | FEB
26
MAR | 1300 | 2000 | 213 | 1150 | 89 | | 02
09
16
23
30 | 1200
1300
1400
1200
0935 | 1970
1730
1800
1980
2030 | 281
35
34
106
63 | 1490
163
165
567
345 | 91
82
75
84
81 | | 06
13
20
27 | 1300
1300
1300
1010 | 2550
2790
3800
3190 | 80
96
224
96 | 551
723
2300
827 | 79
78
76
81 | | 04
11
18
25
JUN | 1300
1300
1200
1100 | 3850
3440
9980
5960 | 336
87
859
114 | 3490
808
23100
1830 | 90
91
71
75 | | 01
08
15
22
29
JUL | 1100
1300
1300
1300
0940 | 7740
11400
6660
6770
5230 | 146
255
76
47
1950 | 3050
7850
1370
859
27500 | 59
57
57
67
92 | | 06
13
20
27 | 1000
1200
1300
1300 | 4520
3000
20 7 0
2130 | 92
1 7
28
103 | 1120
138
156
592 | 83
67
59
94 | | 03
10
17
24
31
SEP | 1100
1230
0930
0900
1000 | 2400
2250
2210
2210
2130 | 147
40
39
123
48 | 953
243
233
734
276 | 97
88
87
95
89 | | 09
16
22
30 | 1110
1200
1200
1000 | 1750
2290
2010
1920 | 23
131
108
25 | 109
810
586
130 | 87
84
91
83 | ## PLATEAU CREEK BASIN 09105000 PLATEAU CREEK NEAR CAMEO, CO LOCATION.--Lat 39°11'00", long 108°16'02", in SW4SW4 sec.18, T.10 S., R.97 W., Mesa County, Hydrologic Unit 14010005, on left bank 300 ft from State Highway 65, 1.15 mi upstream from mouth and 4 mi northeast of Cameo. DRAINAGE AREA . -- 592 mi2. PERIOD OF RECORD .-- October 1935 to September 1983. October 1985 to current year. Prior to May 1936, monthly discharges only, published in WSP 1313. REVISED RECORDS.--WSP 979: 1942. WSP 2124: Drainage area. WDR-CO-83-2: 1973 (M), 1975 (M). GAGE.--Water-stage recorder. Elevation of gage is 4,840 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 27, 1936, nonrecording gage. REMARKS.--Estimated daily discharges: Dec. 27 to Feb. 20. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 25,000 acres, return flow from irrigated areas, and for power development. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--51 years (water years 1935-83, 1986-88) 191 ft3/s; 138,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,010 ft³/s, June 22, 1983, gage height, 8.51 ft; maximum gage height, 8.59 ft, May 28, 1983; minimum daily discharge, 8.2 ft³/s, Aug. 15, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 820 ft³/s, at 0500 May 19, gage height 4.06 ft; minimum daily, 56 ft³/s, Feb. 6. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV JUL AUG SEP DE C JAN FEB APR MA Y JUN MA R 136 62 95 77 76 77 74 74 79 ġò 10 1 11 11 71 71 260 14 114 72 166 117 ---------TOTAL 153 162 71.3 627 71.9 MEAN 66.6 80.3 MA X MIN AC-FT CAL YR 1987 TOTAL 96665 MEAN 265 MAX 2000 MIN 80 AC-FT 191700 WTR YR 1988 TOTAL 42615 MEAN 116 MAX 627 MIN 56 # 09107000 TAYLOR RIVER AT TAYLOR PARK, CO LOCATION.--Lat 38°51'37", long 108°33'58", in NW4NE4 sec.5, T.14 S., R.82 W., Gunnison County, Hydrologic Unit 14020001, on left bank 0.2 ft upstream from Taylor Park Reservoir waterline, 2.7 mi north of Taylor Park, and 21 mi northeast of Almont. DRAINAGE AREA. -- 128 mi², revised. PERIOD OF RECORD.--June 1929 to Sept. 1934, Oct. 1987 to current year. Records for 1929-1934 provided by Colorado Division of Water Resources, published in WSP 1313. GAGE.--Water-stage recorder. Elevation of gage is 9,340 ft above National Geodetic Vertical Datum of 1929, from topographic map. June 1929 to Sept. 1934 water-stage recorder at different datum at site flooded by waters of Taylor Park Reservoir since 1937. REMARKS.--Estimated daily discharges: Nov. 19-22, 28-30, Dec. 1, 2, 9, 10, 13-18, 28-31, Jan. 1, 11-29, Feb. 1-27, Mar. 12-20. Records good except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--6 years (water years 1930-34, 1988), 90.2 ft^3/s ; 65,350 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 1,020 ft³/s, May 31, 1933, gage height, 2.80 ft, from rating curve extended above 480 ft³/s, site and datum then in use; minimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 447 $\rm ft^3/s$ at 2300 June 6, gage height, 2.91 ft; minimum daily, 32 $\rm ft^3/s$, Feb. 4.
 | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | OCTOBER
S | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 64 | 61 | 40 | 42 | 35 | 51 | 41 | 120 | 192 | 159 | 87 | 46 | | 2 | 61 | 66 | 40 | 43 | 34 | 50 | 45 | 88 | 210 | 143 | 77 | 47 | | 3 | 61 | 64 | 41 | 41 | 34 | 49 | 51 | 81 | 270 | 140 | 72 | 42 | | 4 | 59 | 56 | 41 | 41 | 32 | 49 | 58 | 92 | 330 | 156 | 67 | 39 | | 5 | 58 | 54 | 41 | 41 | 34 | 55 | 60 | 104 | 351 | 138 | 62 | 39 | | 6 | 58 | 61 | 40 | 42 | 36 | 51 | 67 | 106 | 350 | 128 | 61 | 38 | | 7 | 58 | 60 | 42 | 44 | 37 | 47 | 96 | 87 | 349 | 118 | 63 | 38 | | 8 | 58 | 55 | 40 | 43 | 38 | 53 | 88 | 91 | 347 | 111 | 61 | 37 | | 9 | 59 | 49 | 40 | 41 | 39 | 53 | 70 | 84 | 338 | 106 | 54 | 36 | | 10 | 60 | 49 | 40 | 39 | 37 | 51 | 61 | 98 | 330 | 105 | 52 | 38 | | 11 | 59 | 52 | 40 | 40 | 37 | 47 | 69 | 111 | 318 | 130 | 51 | 64 | | 12 | 57 | 45 | 41 | 41 | 38 | 45 | 88 | 146 | 313 | 106 | 51 | 72 | | 13 | 59 | 50 | 40 | 40 | 36 | 42 | 101 | 188 | 279 | 96 | 50 | 80 | | 14 | 63 | 56 | 40 | 40 | 36 | 41 | 97 | 221 | 233 | 103 | 48 | 69 | | 15 | 66 | 4 7 | 39 | 39 | 36 | 41 | 94 | 251 | 230 | 94 | 47 | 60 | | 16 | 64 | 44 | 39 | 37 | 36 | 41 | 94 | 274 | 230 | 88 | 53 | 57 | | 17 | 57 | 47 | 39 | 35 | 35 | 42 | 90 | 300 | 228 | 85 | 67 | 52 | | 18 | 56 | 38 | 40 | 36 | 35 | 42 | 89 | 32 7 | 218 | 79 | 76 | 53 | | 19 | 57 | 38 | 40 | 36 | 35 | 43 | 88 | 268 | 229 | 77 | 58 | 49 | | 20 | 52 | 38 | 46 | 37 | 35 | 44 | 93 | 204 | 237 | 73 | 53 | 47 | | 21 | 52 | 40 | 43 | 37 | 36 | 45 | 101 | 173 | 238 | 67 | 52 | 48 | | 22 | 52 | 43 | 42 | 38 | 38 | 46 | 79 | 159 | 223 | 65 | 60 | 50 | | 23 | 53 | 46 | 44 | 38 | 37 | 47 | 73 | 159 | 205 | 62 | 53 | 48 | | 24 | 61 | 45 | 42 | 38 | 39 | 46 | 73 | 190 | 213 | 61 | 48 | 46 | | 25 | 7 3 | 45 | 44 | 37 | 40 | 44 | 68 | 218 | 199 | 60 | 46 | 44 | | 26
27
28
29
30
31 | 64
58
56
60
65 | 44
43
42
41
42 | 46
43
41
40
42
42 | 36
37
38
38
37
36 | 43
45
49
 | 46
55
58
46
45
42 | 65
71
78
82
102 | 244
257
262
295
286
216 | 185
177
200
253
188 | 64
80
69
82
99
119 | 45
46
48
46
45 | 42
42
40
41 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1844
59.5
73
52
3660 | 1461
48.7
66
38
2900 | 1278
41.2
46
39
2530 | 1208
39.0
44
35
2400 | 1091
37.6
49
32
2160 | 1457
47.0
58
41
2890 | 2332
77.7
102
41
4630 | 5700
184
327
81
11310 | 7663
255
351
177
15200 | 3063
98.8
159
60 | 1744
56.3
87
45
3460 | 1446
48.2
80
36
2870 | WTR YR 1988 TOTAL 30287 MEAN 82.8 MAX 351 MIN 32 AC-FT 60070 ## 09107500 TEXAS CREEK AT TAYLOR PARK, CO LOCATION.--Lat 38°50'51", long 106°33'13", in SE\nw\dagged sec.9, T.14 S., R.82 W., Gunnison County, Hydrologic Unit 14020001, on right bank 150 ft upstream from bridge on county road 742, 1.8 mi north of Taylor Park, and 20 mi northeast of Almont. DRAINAGE AREA . -- 40.4 mi2, revised. PERIOD OF RECORD.--June 1929 to Sept. 1934, Sept. 1987-Oct. 1988. Records for 1929-1934 provided by Colorado Division of Water Resources, published in WSP 1313. GAGE.--Water-stage recorder. Datum of gage is 9,380 ft above National Geodetic Vertical Datum of 1929, from topographic map. June 1929 to Sept. 1934 water-stage recorder at different datum and site flooded by waters of Taylor Park Reservoir since 1937. REMARKS.--Estimated daily discharges: Nov. 15-Feb. 26. Records fair except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--6 years (water years 1930-34, 1988), 37.4 ft3/s; 27,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 353 ft³/s, June 15, 1929; minimum discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 212 ft³/s at 0100 June 7, gage height, 3.53 ft; minimum daily, 4.0 ft³/s, Feb. 13-26. | | | DISCHARGE | E, CUBIC | FEET PER | | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
13
12
12
12 | 14
15
14
12
12 | 7.0
7.0
8.0
9.0 | 10
10
10
10
10 | 9.0
9.0
9.0
9.0 | 7.1
7.3
6.9
6.8
6.5 | 7.9
8.8
10
12
11 | 36
25
21
21
22 | 64
80
125
159
159 | 81
62
57
54
57 | 43
61
43
33
29 | 20
21
19
17
16 | | 6
7
8
9
10 | 12
12
12
12
12 | 15
13
11
11 | 12
12
12
12
12 | 10
10
10
10
10 | 8.0
7.0
6.0
6.0
5.0 | 7.0
7.2
6.7
6.8
6.8 | 14
20
20
15
14 | 27
21
21
20
21 | 151
169
155
150
154 | 51
45
45
41
42 | 28
27
25
24
21 | 15
15
14
12
13 | | 11
12
13
14
15 | 12
12
13
17
18 | 14
11
13
13 | 11
11
11
11 | 10
10
10
10
10 | 5.0
5.0
4.0
4.0 | 7.1
6.6
6.8
6.3
6.9 | 16
21
25
23
24 | 23
39
60
86
106 | 147
126
114
87
94 | 46
40
36
34
33 | 20
23
21
18
17 | 24
24
24
23
22 | | 16
17
18
19
20 | 17
13
13
12
9.8 | 10
9.0
8.0
8.0
8.0 | 11
11
11
11 | 10
10
10
10
10 | 4.0
4.0
4.0
4.0 | 6.8
6.5
6.3
6.5 | 25
25
23
25
22 | 117
118
104
107
80 | 98
99
93
102
106 | 33
31
29
28
26 | 20
42
35
28
24 | 20
18
17
16
15 | | 21
22
23
24
25 | 9.0
10
11
13
15 | 7.0
7.0
7.0
7.0
7.0 | 11
11
11
11
10 | 9.0
9.0
9.0
9.0 | 4.0
4.0
4.0
4.0 | 7.1
7.4
7.7
7.4
7.2 | 24
20
17
17
16 | 60
47
42
56
74 | 108
101
109
105
96 | 24
23
21
21
20 | 23
25
22
21
19 | 15
15
15
15 | | 26
27
28
29
30
31 | 14
12
12
14
15 | 7.0
7.0
7.0
7.0
7.0 | 10
10
10
10
10 | 9.0
9.0
9.0
9.0
9.0 | 4.0
4.5
7.2
7.0 | 8.2
10
11
6.8
8.2
6.4 | 15
15
17
16
24 | 70
79
100
126
121
76 | 103
91
80
152
104 | 22
39
34
36
34
52 | 20
28
26
22
21
20 | 14
14
13
12
11 | | TOTAL
MEAN
MAX
MIN
AC-FT | 401.8
13.0
18
9.0
797 | 303.0
10.1
15
7.0
601 | 324.0
10.5
12
7.0
643 | 299.0
9.65
10
9.0
593 | 160.7
5.54
9.0
4.0
319 | 223.0
7.19
11
6.3
442 | 542.7
18.1
25
7.9
1080 | 1926
62.1
126
20
3820 | 3481
116
169
64
6900 | 1197
38.6
81
20
2370 | 829
26.7
61
17
1640 | 504
16.8
24
11
1000 | WTR YR 1988 TOTAL 10191.2 MEAN 27.8 MAX 169 MIN 4.0 AC-FT 20210 ## 09108500 TAYLOR PARK RESERVOIR AT TAYLOR PARK, CO LOCATION.--Lat 38°49'07", long 106°36'24", Gunnison County, Hydrologic Unit 14020001, at dam on Taylor River just downstream from Taylor Park, 16 mi northeast of Almont. DRAINAGE AREA . - - 254 mi2. PERIOD OF RECORD. -- October 1937 to current year. Prior to October 1938, published in WSP 1313. REVISED RECORDS.-- WSP 1089: 1940(M), 1942(M), 1945-46. WSP 1924: Drainage area. GAGE.--Nonrecording gage read once daily. Datum of gage is 9,187 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earth and rockfill dam. Dam completed by U. S. Bureau of Reclamation in September 1937. Capacity of reservoir, 106,200 acre-ft between elevations 9,187 ft, bottom of outlet gates, and 9,330 ft, crest of spillway. No dead storage. Water used for irrigation in Uncompangre Valley. Figures given are usable contents. COOPERATION. -- Records provided by Uncompangre Valley Water Users Association. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 111,000 acre-ft, July 1, 1957, elevation, 9,332.35 ft; minimum after first filling, 8,780 acre-ft, Oct. 19-20, 1956, elevation, 9,240.70 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 102,600 acre-ft, July 1-2, elevation, 9,330.10 ft; minimum contents, 74,900 acre-ft, Dec. 23 to Jan. 31, elevation, 9,313.20 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 1800, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Elevation | Contents (acre-feet) | Change in contents (acre-feet) | |--
--|---|---| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 9,316.80
9,314.40
9,313.40
9,313.20 | 81,000
76,900
75,200
74,900 | -4,100
-1,700
-300 | | CAL YR 1987 | - | - | -1,800 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 9,313.20
9,313.30
9,316.10
9,317.20
9,327.70
9,323.90
9,320.20
9,316.40 | 74,900
75,000
75,000
79,800
81,700
101,400
94,000
87,100
80,300 | 0
+100
0
+4,800
+1,900
+19,700
-7,400
-6,900
-6,800 | | WTR YR 1988 | - | - | - 700 | ## 09109000 TAYLOR RIVER BELOW TAYLOR PARK RESERVOIR, CO LOCATION.--Lat 38°49'06", long 106°36'31", Gunnison County, Hydrologic Unit 14020001, on left bank 1,000 ft downstream from Taylor Park Reservoir Dam, 3.4 mi upstream from Lottis Creek, and 17 mi northeast of Almont. DRAINAGE AREA . -- 254 mi2. PERIOD OF RECORD. -- June 1929 to September 1934 (monthly discharges only, published in WSP 1313), October 1938 to current year. REVISED RECORDS. -- WSP 1924: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 9,169.67 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Nov. 11, 1952, at site 1,600 ft downstream, at datum 1.00 ft, lower. Oct. 15, 1946, to May 4, 1952, supplementary nonrecording gage just downstream from reservoir outlet at different sites and datums used during winter months. REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 28. Records good, except for estimated daily discharges, which are fair. Flow regulated by Taylor Park Reservoir (station 09108500) since 1937. One small diversion for irrigation from Willow Creek upstream from reservoir. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--5 years (water years 1930-34), 156 $\rm ft^3/s$; 113,000 acre-ft/yr: 50 years (water years 1939-88), 199 $\rm ft^3/s$; 144,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,270 ft³/s, July 1, 1957, gage height, 7.56 ft; no flow May 1 to July 3, 1940, May 7-22, 1942, May 5-21, 1943. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 325 ft³/s at 1900 Aug. 10, gage height, 4.15 ft; minimum daily, 53 ft³/s, Sept. 27, 28. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 75 75 75 75 75 75 75 258 251 182 75 75 75 75 75 75 75 75 18 75 75 75 75 75 75 23 136 75 75 75 75 75 53 76 157 161 75 178 TOTAL 75.0 75 75.0 75 75.0 75.0 76.5 162 264 265 254 MEAN MA X MIN AC-FT AC-FT 172600 CAL YR 1987 WTR YR 1988 TOTAL 87023 TOTAL 55841 MEAN 238 MAX 507 MIN 75 MEAN 153 MAX 321 MIN 53 AC-FT 110800 #### 09110000 TAYLOR RIVER AT ALMONT, CO LOCATION.--Lat 38°39'52", long 106°50'41", in NW4SE4 sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 15 ft downstream from bridge on State Highway 306, and 800 ft upstream from confluence with East River. DRAINAGE AREA . - - 477 mi². PERIOD OF RECORD.--July 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1213: 1911. WSP 1924: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,010.76 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 16, 1922, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 4. Records good except for estimated daily discharges, which are poor. Flow partly regulated since September 1937 by Taylor Park Reservoir (station 09108500), 24 mi upstream from station. Diversions for irrigation of about 360 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 78 years, 339 ft3/s; 245,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 3,760 ft³/s, June 9, 1920, gage height, 5.00 ft, from rating curve extended above 2,300 ft³/s; maximum gage height, 5.32 ft, July 1, 1957; minimum discharge observed before storage began in Taylor Park Reservoir, 50 ft³/s for several days in August 1913, gage height, 1.2 ft; minimum daily discharge, subsequent to completion of Taylor Park Dam, 24 ft³/s, Mar. 12, 1938. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 602 $\rm ft^3/s$ at 1730 July 30, gage height, 2.64 ft; minimum daily, 120 $\rm ft^3/s$, Nov. 30 to Feb. 20. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 331 | 190 | 120 | 120 | 120 | 140 | 140 | 289 | 314 | 322 | 379 | 321 | | 2 | 336 | 197 | 120 | 120 | 120 | 140 | 140 | 310 | 311 | 380 | 359 | 323 | | 3 | 335 | 194 | 120 | 120 | 120 | 140 | 140 | 349 | 339 | 391 | 352 | 322 | | 4 | 335 | 190 | 120 | 120 | 120 | 140 | 140 | 364 | 381 | 412 | 335 | 319 | | 5 | 335 | 186 | 120 | 120 | 120 | 140 | 140 | 364 | 449 | 409 | 336 | 319 | | 6 | 335 | 193 | 120 | 120 | 120 | 140 | 146 | 367 | 435 | 390 | 342 | 315 | | 7 | 310 | 193 | 120 | 120 | 120 | 140 | 166 | 368 | 426 | 377 | 347 | 315 | | 8 | 270 | 187 | 120 | 120 | 120 | 140 | 185 | 368 | 411 | 372 | 344 | 314 | | 9 | 224 | 185 | 120 | 120 | 120 | 140 | 170 | 372 | 399 | 372 | 339 | 311 | | 10 | 200 | 185 | 120 | 120 | 120 | 140 | 164 | 372 | 396 | 371 | 331 | 315 | | 11 | 169 | 186 | 120 | 120 | 120 | 140 | 168 | 379 | 393 | 370 | 338 | 336 | | 12 | 168 | 182 | 120 | 120 | 120 | 140 | 189 | 394 | 393 | 361 | 328 | 335 | | 13 | 172 | 184 | 120 | 120 | 120 | 140 | 200 | 408 | 371 | 355 | 330 | 352 | | 14 | 186 | 188 | 120 | 120 | 120 | 140 | 194 | 410 | 348 | 351 | 323 | 335 | | 15 | 178 | 183 | 120 | 120 | 120 | 140 | 190 | 427 | 330 | 351 | 324 | 327 | | 16 | 196 | 177 | 120 | 120 | 120 | 140 | 194 | 436 | 325 | 351 | 331 | 324 | | 17 | 196 | 180 | 120 | 120 | 120 | 140 | 193 | 451 | 318 | 351 | 357 | 319 | | 18 | 192 | 180 | 120 | 120 | 120 | 140 | 185 | 509 | 316 | 349 | 359 | 314 | | 19 | 187 | 180 | 120 | 120 | 120 | 140 | 196 | 514 | 311 | 336 | 339 | 311 | | 20 | 186 | 180 | 120 | 120 | 120 | 140 | 191 | 477 | 291 | 327 | 330 | 311 | | 21 | 170 | 180 | 120 | 120 | 130 | 140 | 196 | 446 | 289 | 328 | 327 | 311 | | 22 | 183 | 180 | 120 | 120 | 130 | 140 | 187 | 437 | 286 | 328 | 331 | 313 | | 23 | 184 | 180 | 120 | 120 | 130 | 140 | 187 | 423 | 282 | 322 | 323 | 314 | | 24 | 187 | 180 | 120 | 120 | 130 | 140 | 183 | 362 | 277 | 319 | 311 | 281 | | 25 | 194 | 180 | 120 | 120 | 130 | 140 | 183 | 356 | 278 | 319 | 317 | 231 | | 26
27
28
29
30
31 | 188
183
183
183
143
186 | 180
180
180
150
120 | 120
120
120
120
120
120 | 120
120
120
120
120
120 | 130
130
130
130 | 140
140
140
140
140
140 | 182
184
190
184
222 | 364
360
342
354
367
336 | 281
274
287
343
332 | 325
343
342
349
357
361 | 321
333
331
327
319
319 | 139
132
130
157
229 | | TOTAL | 6825 | 5430 | 3720 | 3720 | 3570 | 4340 | 5329 | 12075 | 10186 | 10991 | 10382 | 8675 | | MEAN | 220 | 181 | 120 | 120 | 123 | 140 | 178 | 390 | 340 | 355 | 335 | 289 | | MAX | 336 | 197 | 120 | 120 | 130 | 140 | 222 | 514 | 449 | 412 | 379 | 352 | | MIN | 143 | 120 | 120 | 120 | 120 | 140 | 140 | 289 | 274 | 319 | 311 | 130 | | AC-FT | 13540 | 10770 | 7380 | 7380 | 7080 | 8610 | 10570 | 23950 | 20200 | 21800 | 20590 | 1 7 210 | CAL YR 1987 TOTAL 135733 MEAN 372 MAX 1120 MIN 120 AC-FT 269200 WTR YR 1988 TOTAL 85243 MEAN 233 MAX 514 MIN 120 AC-FT 169100 155 LOCATION.--Lat 38°39'52", long 106°50'51", in NWdSE4 sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 200 ft upstream from bridge on State Highway 135, and 400 ft upstream from confluence with Taylor River. DRAINAGE AREA . - - 289 mi². PERIOD OF RECORD.--April to October 1905, July 1910 to September 1922, October 1934 to current year. Monthly discharges only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1313: 1911. WSP 1733: 1952. WSP 1924: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,006.29 ft above National Geodetic Vertical Datum of 1929. Apr. 16 to Sept. 30, 1905, and July 27, 1910, to Apr. 30, 1922, nonrecording gages at bridge 200 ft downstream, at different datums. Oct. 1, 1934, to Sept. 22, 1954, water-stage recorder at present site at datum 2.00 ft, higher. REMARKS.--Estimated daily discharges: Dec.15 to Feb. 3, and Feb. 5-22. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 7,400 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--66 years (water years 1911-22, 1935-88), 341 ft3/s; 247,100 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 6,500 ft³/s, June 15, 1921, gage height, 6.6 ft, site and datum then in use, from rating curve extended above 3,000 ft³/s; minimum daily, 19 ft³/s, Aug. 13, 1913. EXTREMES
FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|------------------|------|------|----------------------|---------------------| | June 6 | 0500 | *1,430 | *5.23 | | | | | Minimum daily, 51 ft³/s, Sept. 10. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TQ | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--|----------------------------------|-----------------------------------|-----------------------------------|--|--------------------------------------|--|--|-----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 79
79
79
79
83 | 85
85
85
85
84 | 76
74
69
66
73 | 70
70
70
70
70 | 70
70
70
69
70 | 63
64
64
61
59 | 67
84
95
106
107 | 404
332
284
289
2 9 2 | 703
679
836
1050
1280 | 461
406
385
368
351 | 184
176
159
152
148 | 109
105
100
96
91 | | 6
7
8
9 | 81
79
76
66
64 | 88
96
94
89
86 | 67
64
68
62
70 | 70
70
70
70
7 0 | 70
70
70
70
70 | 62
63
61
62
62 | 107
132
178
181
176 | 319
293
283
258
258 | 1340
1300
1210
1140
1140 | 354
325
274
221
217 | 148
150
142
121
112 | 88
83
79
75
51 | | 11
12
13
14
15 | 64
64
63
71
75 | 90
87
85
94
82 | 69
58
57
57
58 | 70
70
70
70
70 | 70
70
70
68
68 | 60
58
61
55
61 | 184
223
295
363
386 | 286
371
543
691
860 | 1100
1010
935
766
727 | 221
214
206
200
189 | 106
102
127
147
127 | 63
107
168
133
115 | | 16
17
18
19
20 | 72
69
67
67
67 | 75
84
70
92
105 | 58
58
60
60
62 | 70
70
70
7 0
70 | 68
66
66
66 | 57
53
54
55
55 | 390
379
312
299
305 | 965
1030
1150
1080
831 | 725
718
700
734
730 | 181
178
171
164
153 | 130
140
132
120
117 | 105
105
102
98
84 | | 21
22
23
24
25 | 64
65
67
67
79 | 93
88
91
90
79 | 64
66
68
70
70 | 70
70
70
70
70 | 64
64
63
64
63 | 56
59
64
66
65 | 351
308
270
250
235 | 659
556
529
616
778 | 764
747
648
660
631 | 144
141
139
141
142 | 117
128
121
115
110 | 85
92
88
83
81 | | 26
27
28
29
30
31 | 84
78
75
73
82
85 | 88
80
67
81
83 | 70
70
70
70
70
70 | 70
70
70
70
70
70 | 64
67
65
64
 | 71
85
106
79
92
77 | 213
205
234
243
330 | 881
977
934
1030
1050
815 | 623
563
746
690
535 | 142
146
144
148
182
192 | 114
127
126
119
118
114 | 79
73
74
75
78 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2263
73.0
85
63
4490 | 2581
86.0
105
67
5120 | 2044
65.9
76
57
4050 | 2170
70.0
70
70
70
4300 | 1955
67.4
70
63
3880 | 2010
64.8
106
53
3990 | 7008
234
390
67
13900 | 19644
634
1150
258
38960 | 25430
848
1340
535
50440 | 6900
223
461
139
13690 | 4049
131
184
102
8030 | 2765
92.2
168
51
5480 | CAL YR 1987 TOTAL 110914 MEAN 304 MAX 1710 MIN 57 AC-FT 220000 WTR YR 1988 TOTAL 78819 MEAN 215 MAX 1340 MIN 51 AC-FT 156300 ## 09114500 GUNNISON RIVER NEAR GUNNISON, CO LOCATION.--Lat 38°32'31", long 106°56'57", in NW1NW1 sec.2, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020002, on right bank 0.7 mi downstream from Antelope Creek and 1.2 mi west of Gunnison. DRAINAGE AREA .-- 1.012 mi2. PERIOD OF RECORD.--October 1910 to December 1928, October 1944 to current year. Monthly discharges only for some periods, published in WSP 1313. REVISED RECORDS .-- WSP 1313: 1911, 1916. GAGE.--Water-stage recorder. Elevation of gage is 7,655 ft above National Geodetic Vertical Datum of 1929, from topographic map. Nov. 25, 1910 to Dec. 31, 1928, nonrecording gages (supplementary water-stage recorder Apr. 28, 1916 to June 17, 1918) at bridge about 0.6 mi downstream at various datums. Oct. 1, 1944 to July 28, 1970, water-stage recorder at sites 0.4 mi upstream at different datum. REMARKS.--Estimated daily discharges: Nov. 19 to Dec. 12, Dec. 16 to Mar. 20. Records good except for estimated daily discharges, which are poor. Flow regulated by Taylor Park Reservoir (station 09108500), 37 mi upstream from station. Diversions for irrigation of about 22,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--62 years (water years 1911-28, 1945-88), 770 ft³/s; 557,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 11,400 ft³/s, June 13, 1918, gage height, 4.05 ft, site and datum then in use, from rating curve extended above 5,000 ft³/s; minimum daily, 80 ft³/s, Dec. 27, 1962. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,430 $\rm ft^3/s$ at 0800 June 6, gage height, 2.88 ft; minimum daily, 170 $\rm ft^3/s$, Feb. 10. DISCHARGE. CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | MEAN VALUE | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|------------------------------|--|---------------------------------|--|--------------------------------------|--|--|---------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 463 | 333 | 260 | 230 | 220 | 270 | 272 | 808 | 1400 | 1070 | 674 | 451 | | 2 | 467 | 347 | 260 | 230 | 220 | 280 | 307 | 753 | 1370 | 1030 | 659 | 438 | | 3 | 468 | 347 | 260 | 240 | 220 | 270 | 334 | 736 | 1500 | 1000 | 624 | 440 | | 4 | 468 | 340 | 260 | 230 | 220 | 260 | 366 | 768 | 1740 | 989 | 583 | 431 | | 5 | 475 | 336 | 260 | 220 | 220 | 240 | 379 | 763 | 2120 | 961 | 568 | 431 | | 6 | 475 | 352 | 260 | 220 | 220 | 250 | 369 | 779 | 2260 | 954 | 558 | 431 | | 7 | 457 | 375 | 260 | 230 | 220 | 260 | 442 | 738 | 2190 | 885 | 559 | 403 | | 8 | 415 | 373 | 260 | 230 | 200 | 230 | 511 | 726 | 2050 | 822 | 551 | 368 | | 9 | 356 | 361 | 260 | 230 | 190 | 240 | 480 | 703 | 1910 | 757 | 530 | 366 | | 10 | 321 | 345 | 260 | 230 | 170 | 250 | 460 | 670 | 1930 | 7 59 | 507 | 346 | | 11 | 282 | 356 | 280 | 240 | 200 | 240 | 450 | 667 | 1890 | 749 | 490 | 383 | | 12 | 272 | 351 | 292 | 240 | 210 | 230 | 450 | 730 | 1820 | 736 | 475 | 405 | | 13 | 274 | 354 | 279 | 230 | 210 | 230 | 540 | 894 | 1680 | 696 | 479 | 488 | | 14 | 312 | 368 | 261 | 220 | 200 | 288 | 680 | 1060 | 1500 | 672 | 497 | 437 | | 15 | 307 | 362 | 219 | 220 | 210 | 336 | 720 | 1240 | 1390 | 665 | 490 | 413 | | 16 | 315 | 335 | 220 | 220 | 210 | 307 | 620 | 1420 | 1360 | 657 | 485 | 401 | | 17 | 326 | 353 | 220 | 210 | 210 | 264 | 540 | 1540 | 1330 | 669 | 519 | 396 | | 18 | 325 | 366 | 230 | 210 | 200 | 243 | 560 | 1980 | 1320 | 649 | 508 | 392 | | 19 | 311 | 382 | 240 | 210 | 210 | 252 | 654 | 1860 | 1330 | 625 | 493 | 373 | | 20 | 307 | 402 | 240 | 210 | 210 | 277 | 667 | 1600 | 1320 | 616 | 476 | 346 | | 21 | 295 | 398 | 240 | 220 | 210 | 214 | 737 | 1410 | 1330 | 602 | 469 | 336 | | 22 | 299 | 394 | 230 | 220 | 210 | 222 | 674 | 1310 | 1320 | 598 | 472 | 353 | | 23 | 305 | 387 | 240 | 220 | 220 | 233 | 618 | 1250 | 1230 | 592 | 470 | 355 | | 24 | 305 | 390 | 240 | 220 | 200 | 240 | 580 | 1210 | 1210 | 579 | 453 | 358 | | 25 | 333 | 367 | 240 | 210 | 230 | 248 | 557 | 1320 | 1190 | 576 | 427 | 299 | | 26
27
28
29
30
31 | 338
323
317
319
280
310 | 374
366
362
320
280 | 230
220
220
220
230
230 | 210
220
220
220
210
220 | 240
250
255
260
 | 282
367
398
324
343
318 | 519
505
535
537
640 | 1440
1580
1560
1700
1770
1540 | 1160
1150
1320
1510
1190 | 594
637
639
644
663
720 | 445
474
475
469
458
452 | 240
212
212
227
311 | | TOTAL | 10820 | 10776 | 7621 | 6890 | 6245 | 8406 | 15703 | 36525 | 46020 | 22805 | 15789 | 11042 | | MEAN | 349 | 359 | 246 | 222 | 215 | 271 | 523 | 1178 | 1534 | 736 | 509 | 368 | | MAX | 475 | 402 | 292 | 240 | 260 | 398 | 737 | 1980 | 2260 | 1070 | 674 | 488 | | MIN | 272 | 280 | 219 | 210 | 170 | 214 | 272 | 667 | 1150 | 576 | 427 | 212 | | AC-FT | 21460 | 21370 | 15120 | 13670 | 12390 | 16670 | 31150 | 72450 | 91280 | 45230 | 31320 | 21900 | CAL YR 1987 TOTAL 289358 MEAN 793 MAX 3150 MIN 219 AC-FT 573900 WTR YR 1988 TOTAL 198642 MEAN 543 MAX 2260 MIN 170 AC-FT 394000 157 ## 09118450 COCHETOPA CREEK BELOW ROCK CREEK, NEAR PARLIN, CO LOCATION.--Lat 38°20'08", long 106°46'18", in SWHNEL sec.17, T.47 N., R.2 E. Saguache County,
Hydrologic Unit 14020003, on left bank 0.75 mi downstream from Rock Creek and 12 mi southeast of Parlin. DRAINAGE AREA . - - 334 mi2. PERIOD OF RECORD. -- October 1981 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,470 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 6 to Jan. 28, and Mar. 1 to Apr. 8. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of hay meadows upstream from station. Transmountain diversion by Tarbell ditch exports water upstream from station to Saguache Creek, since 1913. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 7 years, 61.1 ft3/s; 44,270 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,120 $\rm ft^3/s$, May 23, 1984, gage height, 4.49 ft; minimum daily, 8.4 $\rm ft^3/s$, Feb. 7, 1982. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 300 $\rm ft^3/s$ at 2100 June 28, gage height, 3.25 ft; minimum daily, 16 $\rm ft^3/s$, May 14. | | | DIDOMINOL | , GODIO | . DDI TDN C | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | MEAN VALUE | | 1,0, 10 | 551 151.155 N | 1,550 | | | |--------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|---|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 41
38
37
37
37 | 35
35
31
33
34 | 24
24
24
24
23 | 25
25
25
25
25 | 26
26
27
24
25 | 37
34
32
31
30 | 30
32
33
34
35 | 32
32
30
29
29 | 27
27
26
25
29 | 41
37
33
32
34 | 48
37
31
28
27 | 52
53
49
46
44 | | 6
7
8
9
10 | 37
36
36
36
36 | 28
27
25
26
27 | 23
23
23
23
22 | 25
25
25
25
25 | 25
26
26
26
26 | 30
30
29
28
28 | 36
36
36
46
40 | 31
29
28
28
28 | 41
35
33
35
41 | 33
31
28
29
31 | 38
51
46
43
37 | 44
42
39
39
39 | | 11
12
13
14
15 | 34
34
34
37
36 | 27
27
27
27
27 | 22
22
22
22
22 | 25
25
25
25
25 | 27
29
27
26
31 | 27
26
25
24
24 | 39
45
47
45
46 | 27
21
21
16
18 | 47
50
49
46
35 | 37
40
36
36
37 | 34
33
34
33
33 | 42
43
43
43 | | 16
17
18
19
20 | 35
33
33
32
31 | 27
27
27
27
27 | 22
22
22
22
22 | 25
25
25
25
25 | 31
30
30
31 | 24
24
24
27
29 | 44
41
42
48
44 | 17
19
21
23
30 | 33
31
26
30
29 | 39
37
34
30
27 | 37
46
45
42
51 | 40
39
36
33
33 | | 21
22
23
24
25 | 31
32
33
35
36 | 27
27
26
25
25 | 23
23
23
23
23 | 25
25
25
25
25 | 31
31
31
30
30 | 35
42
41
38
35 | 42
38
37
39
36 | 27
24
20
18
21 | 30
28
45
46
52 | 27
26
25
25
26 | 53
59
54
51
49 | 31
33
34
33
32 | | 26
27
28
29
30
31 | 35
35
34
38
37
34 | 25
25
25
25
24 | 23
24
25
25
25
25 | 25
25
25
26
25
25 | 30
30
32
36 | 37
41
39
37
34
31 | 37
36
35
34
34 | 23
24
27
28
28
29 | 42
46
98
76
50 | 29
32
34
45
42 | 46
56
59
55
52
51 | 30
30
30
29
30 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1090
35.2
41
31
2160 | 825
27.5
35
24
1640 | 715
23.1
25
22
1420 | 776
25.0
26
25
1540 | 831
28.7
36
24
1650 | 973
31.4
42
24
1930 | 1167
38.9
48
30
2310 | 778
25.1
32
16
1540 | 1208
40.3
98
25
2400 | 1035
33.4
45
25
2050 | 1359
43.8
59
27
2700 | 1153
38.4
53
29
2290 | CAL YR 1987 TOTAL 24073 MEAN 66.0 MAX 270 MIN 20 AC-FT 47750 WTR YR 1988 TOTAL 11910 MEAN 32.5 MAX 98 MIN 16 AC-FT 23620 #### 09119000 TOMICHI CREEK AT GUNNISON, CO LOCATION.--Lat 38°31'18", long 106°56'25", in NE\\$SW\\\\\\ sec.11, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020003, on right bank 300 ft downstream from highway bridge, 1.8 mi southwest of Post Office in Gunnison, and 2.0 mi upstream from mouth. DRAINAGE AREA . -- 1.061 mi2 PERIOD OF RECORD.--November and December 1910 (gage heights and discharge measurements only), October 1937 to current year. Monthly discharges only for some periods, published in WSP 1313. Published as "near Gunnison" 1910. REVISED RECORDS.--WSP 2124: Drainage area. WDR CO-86-2: 1985. GAGE.--Water-stage recorder. Datum of gage is 7,628.58 ft above National Geodetic Vertical Datum of 1929. Nov. 25 to Dec. 24, 1910, nonrecording gage 300 ft upstream at different datum. Apr. 20, 1938, to Oct. 2, 1940, water-stage recorder at present site at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 10 and May 10-17. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 24,000 acres upstream from station. Water diverted upstream from station by Larkspur ditch to Arkansas River basin since 1935 and by Tarbell ditch to Rio Grande basin since 1914. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--51 years (water years 1938-88), 177 ft3/s; 128,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,620 ft³/s, May 23, 1984, gage height, 5.49 ft; minimum daily, 2.6 ft³/s, Sept. 30, 1977. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 319 $\rm ft^3/s$ at 1300 June 12, gage height, 2.24 ft; minimum daily, 42 $\rm ft^3/s$, May 14. | | | DISCHARGE, | COBIC | reel ren , | | MEAN VALUE | | 1907 10 | nagrai 1ac | 1930 | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|------------------------------------|--|------------------------------------|---------------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 79
79
79
76
73 | 120
127
129
127
122 | 120
120
120
120
120 | 100
100
100
100
98 | 80
80
78
72
88 | 140
130
120
117
115 | 140
150
160
170
180 | 122
116
99
83
82 | 177
168
168
180
216 | 176
152
142
130
122 | 227
209
170
151
138 | 114
114
112
104
97 | | 6
7
8
9
10 | 72
73
74
75
72 | 128
135
132
127
124 | 118
115
115
115
115 | 98
98
98
98 | 86
88
92
86
80 | 135
125
104
110
120 | 190
210
230
210
200 | 79
78
73
67
64 | 262
291
265
239
224 | 127
116
97
101
97 | 140
157
157
146
132 | 85
80
71
67
69 | | 11
12
13
14
15 | 71
71
76
86
93 | 129
133
127
139
144 | 115
115
115
115
114 | 96
96
96
94 | 80
80
82
82 | 110
100
98
96
96 | 190
200
230
260
270 | 58
53
48
42
46 | 254
304
278
258
228 | 108
104
83
87
84 | 120
108
111
105
90 | 86
90
96
104
96 | | 16
17
18
19
20 | 97
96
98
99
101 | 130
120
110
110
130 | 113
112
111
110
110 | 94
94
92
92 | 82
82
82
82
82 | 96
96
98
100
110 | 260
230
220
210
197 | 43
60
80
139
215 | 202
183
168
167
166 | 87
95
115
127
117 | 94
135
136
127
118 | 91
88
86
78
75 | | 21
22
23
24
25 | 101
98
101
105
114 | 130
128
127
126
125 | 110
109
108
107
106 | 92
90
90
90 | 84
86
88
90
94 | 145
180
170
160
150 | 192
192
178
166
159 | 204
171
153
127
113 | 158
153
154
175
169 | 97
89
83
80
85 | 127
143
142
129
120 | 75
78
78
77
74 | | 26
27
28
29
30
31 | 118
116
114
112
121
120 | 125
123
122
121
120 | 105
104
103
102
100 | 88
86
84
82
82 | 100
110
115
120
 | 140
190
180
170
160 | 146
142
135
130
132 | 112
123
136
154
167
180 | 166
167
201
228 | 90
107
111
120
141
163 | 116
124
137
127
118
114 | 73
71
70
68
69 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2860
92.3
121
71
5670 | 3790
126
144
110
7520 | 3462
112
120
100
6870 | 2884
93.0
100
82
5720 | 2531
87.3
120
72
5020 | 4011
129
190
96
7960 |
5679
189
270
130
11260 | 3287
106
215
42
6520 | 6135
204
304
153
12170 | 3433
111
176
80
6810 | 4168
134
227
90
8270 | 2536
84.5
114
67
5030 | CAL YR 1987 TOTAL 93139 MEAN 255 MAX 1420 MIN 71 AC-FT 184700 WTR YR 1988 TOTAL 44776 MEAN 122 MAX 304 MIN 42 AC-FT 88810 #### 09124500 LAKE FORK AT GATEVIEW, CO LOCATION.--Lat 38°17'56", long 107°13'46", in SE4NE4 sec.29, T.47 N., R.3 W., Gunnison County, Hydrologic Unit 14020002, on left bank at old village of Gateview, 25 ft downstream from private bridge, 0.2 mi upstream from Indian Creek, and 6.3 mi upstream from waterline of Blue Mesa Reservoir, at elevation 7,519 ft. DRAINAGE AREA . - - 334 mi². PERIOD OF RECORD.--October 1937 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7,827.66 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1938, at datum 2.00 ft, higher, and Oct. 1, 1938, to Sept. 30, 1945, at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Nov. 19 to Apr. 6. Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,600 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 51 years, 241 ft3/s, 174,600 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,720 ft³/s, July 10, 1983, gage height, 4.18 ft; minimum daily, 22 ft³/s, Jan. 21, 1976. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,400 ft3/s, and maximum (*): | Date | | Time | Discharge
(ft³/s) | Gage height
(ft) | |------|---|------|----------------------|---------------------| | June | 5 | 0300 | *1,360 | *2.82 | Minimum daily, 36 ft3/s, Feb. 4. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV JUL AUG SEP DEC JAN FEB MAR APR MA Y JUN 62 71 52 518 62 52 67 86 10 52 52 148 69 64 52 52 qq 54 иR 61 23 56 74 131 50 108 ___ ---TOTAL. MEAN 64.5 57.7 51.3 48.2 44.5 66 62.8 87.1 113 1220 624 MIN AC-FT CAL YR 1987 TOTAL 101034 MEAN 277 MAX 1700 MIN 45 AC-FT 200400 WTR YR 1988 TOTAL 64408 MEAN 176 MAX 1220 MIN 36 AC-FT 127800 #### 09125800 SILVER JACK RESERVOIR NEAR CIMARRON, CO LOCATION.--Lat 38°13'58", long 107°32'28", in T.46 N., R. 6 W., Gunnison County, Hydrologic Unit 14020002, in gate house of Silver Jack Dam on Cimarron River, 14.5 mi south of Cimarron, Co. DRAINAGE AREA. -- 59 mi2 PERIOD OF RECORD. -- October 1987 to September 1988. GAGE. -- Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in December 1970; dam completed December 1971. Capacity, 13,520 acre-ft, 1971 survey, between elevation 8,800.0 ft, streambed at dam, and 8,925.6 ft, crest of spillway. Dead storage below elevation 8,836.0, 520 acre-ft. Figures given are live contents. COOPERATION. -- Capacity tables provided by U.S. Bureau of Reclamation. EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,400 acre-ft, June 7; elevation, 8,926.95 ft; minimum contents, 2,470 acre-ft, Mar. 20, 21, elevation, 8,871.06 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400 WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | | ntents Change in contents re-feet) (acre-feet) | |--|---|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | *8,885.00
8,877.50
8,875.97
8,875.10 | 4,250 3,220 -1,030 3,040 -180 2,930 -110 | | CAL YR 1987 | - | | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 8,926.10 | 2,760 -170 2,570 -190 2,580 +10 4,170 +1,590 11,250 +7,080 13,150 +1,900 10,320 -2,830 6,390 -3,930 4,820 -1,570 | | WTR YR 1988 | - | +570 | ^{*}Estimated by interpolation from USGS readings. #### 09126000 CIMARRON RIVER NEAR CIMARRON. CO LOCATION.--Lat 38°15'36", long 107°32'43", in NW4NE4 sec.8, T.46 N., R.6 W., Gunnison County, Hydrologic Unit 14020002, on right bank 100 ft upstream from Forest Service bridge, 0.6 mi upstream from headgate on Cimarron ditch, 2.1 mi downstream from Silver Jack Dam, and 13 mi south of Cimarron. DRAINAGE AREA .-- 66.6 mi². PERIOD OF RECORD.--October 1954 to current year. Prior to October 1965, published as Cimarron Creek near Cimarron. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,631.48 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 12, 1972, at site 0.2 mi downstream at different datum. REMARKS.--Estimated daily discharges: Nov. 18 to Apr. 6. Records good except for estimated daily discharges, which are poor. Diversion upstream from station through Owl Creek ditch into Uncompangre River basin. Flow regulated by Silver Jack Dam, 2.1 mi upstream since Dec. 23, 1970, total capacity, 13,520 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--16 years (water years 1955-70), 88.6 ft³/s; 64,190 acre-ft/yr, prior to completion of Silver Jack Dam: 18 years (water years 1971-88), 99.4 ft³/s; 72,020 acre-ft/yr, subsequent to completion of Silver Jack Dam. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,790 ft³/s, June 28, 1957, gage height, 8.32 ft, site and datum then in use; no flow Dec. 24, 1970, to Jan. 9, 1971 (result of storage in Silver Jack Dam); minimum daily prior to construction of Silver Jack Dam, 8.0 ft³/s, Dec. 27-28, 1962, Jan. 13, 1963; minimum daily, 4.4 ft³/s, Apr. 20-21, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 600 ft^3/s at 2230 June 6, gage height, 4.50 ft, minimum daily, 9.0 ft^3/s , Dec. 2. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | , 00210 | | , | MEAN VALU | ES | 1,01 10 | | , | | | |--------------------------------------|----------------------------------|---------------------------------|------------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------------------------|-----------------------------------|-----------------------------------|--|-------------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 31
32
32
32
31 | 29
29
27
26
26 | 10
9.0
12
16
19 | 17
16
16
17
18 | 19
19
19
18
16 | 16
16
16
16
16 | 22
22
22
22
24 | 28
26
26
27
28 | 99
110
118
120
226 | 198
176
157
158
162 | 109
107
107
107
106 | 95
95
94
93
91 | | 6
7
8
9
10 | 31
31
29
29
29 | 27
26
26
26
27 | 20
20
20
19
19 | 20
20
20
20
20 | 14
14
14
14
15 | 15
15
15
15 | 24
25
24
24
23 | 27
26
26
26
26 | 519
527
499
494
483 | 152
134
118
111
113 | 106
106
92
82
82 | 87
86
86
85
88 | | 11
12
13
14
15 | 29
41
52
53
45 | 27
25
24
24
23 | 19
19
18
16
13 | 18
18
17
17 | 15
16
16
17 | 15
15
15
15 | 24
26
27
27
31 | 25
40
59
58
58 | 448
416
365
270
273 | 114
113
113
105
98 | 82
82
80
80
80 | 86
79
72
71
70 | | 16
17
18
19
20 | 36
36
36
34
34 | 23
22
20
19
18 | 12
11
12
15
19 | 18
18
19
19 | 17
18
18
17 | 16
16
16
16
16 | 28
26
26
26
27 | 59
62
64
66
70 | 245
276
256
267
323 | 98
98
103
106
106 | 81
81
81
82
82 | 69
69
68
33
18 | | 21
22
23
24
25 | 36
33
30
30
36 | 18
18
18
18 | 20
20
20
21
21 | 19
20
20
20
20 | 16
16
16
16 | 18
18
18
18 | 26
25
24
23
23 | 67
65
74
81
81 | 341
331
332
332
293 | 107
108
108
108
109 | 82
90
94
94
98 | 18
18
18
18 | | 26
27
28
29
30
31 | 31
30
29
29
29 | 18
18
17
15
12 | 21
21
21
20
20
18 | 21
21
21
20
20
20 | 16
16
16
16
 | 20
20
20
20
20
20 | 23
25
25
27
29 | 92
97
97
98
99
100 | 281
238
244
230
215 | 112
110
110
110
111
110 | 101
102
100
97
95
95 | 19
19
19
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1045
33.7
53
29
2070 | 664
22.1
29
12
1320 | 541.0
17.5
21
9.0
1070 | 587
18.9
21
16
1160 | 474
16.3
19
14
940 | 520
16.8
20
15
1030 | 750
25.0
31
22
1490 | 1778
57.4
100
25
3530 | 9171
306
527
99
18190 | 3736
121
198
98
7410 | 2863
92.4
109
80
5680 | 1720
57·3
95
18
3410 | CAL YR 1987 TOTAL 38266.0 MEAN 105 MAX 667 MIN 9.0 AC-FT 75900 WTR YR 1988 TOTAL 23849.0 MEAN 65.2 MAX 527 MIN 9.0 AC-FT 47300 ## 09128000 GUNNISON RIVER BELOW GUNNISON TUNNEL, CO LOCATION.--Lat 38°31'45", long 107°38'54", in NE4NW4 sec.10, T.49 N., R.7 W., Montrose County, Hydrologic Unit 14020002, on left bank 0.4 mi downstream from east portal of Gunnison tunnel, 4.7 mi
downstream from Crystal Creek, and 12 mi northeast of Montrose. DRAINAGE AREA. -- 3.965 mi². PERIOD OF RECORD.--October 1903 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at east portal of Gunnison tunnel" 1905-6 and as "at River portal" 1907-11. REVISED RECORDS.--WSP 1313: 1906(M). WSP 1733: 1918-19, 1948. WSP 2124: Drainage area. WDR CO-77-2: 1926, GAGE.--Water-stage recorder. Datum of gage is 6,526.06 ft above National Geodetic Vertical Datum of 1929. Apr. 9, 1905, to Aug, 20, 1915, nonrecording gage at site 300 ft upstream from diversion dam at east portal of Gunnison tunnel, at different datum. Aug. 21, 1915, to Jan. 19, 1943, nonrecording gage at site 500 ft downstream from diversion dam at east portal of Gunnison tunnel, at different datum. Jan. 20, 1943, to Sept. 30, 1956, water-stage recorder at present site at datum 1.0 ft, higher. REMARKS.--Estimated daily discharges: Oct. 1-7. Records good. Natural flow of stream affected by transmountain diversions, transbasin diversion through Gunnison tunnel for irrigation of about 75,000 acres in Uncompandere Valley (see table below for figures of diversion), Taylor Park Reservoir (station 09108500), Blue Mesa Reservoir (station 09124600), Morrow Point Reservoir (station 09125400), Crystal Reservoir (station 09127600), diversions for irrigation of about 63,000 acres, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. COOPERATION. -- Diversions, in acre-feet, through Gunnison tunnel; provided by Uncompangre Valley Water Users Association. AVERAGE DISCHARGE.--85 years, 1,396 ft3/s; 1,011,000 acre-ft/yr, unadjusted. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 19,000 ft³/s, June 15, 1921, gage height, about 15.8 ft, present datum, from rating curve extended above 14,000 ft³/s; no flow Sept. 25-26, 1936, Oct. 8, 1949, Sept. 5-6, 15-16, 1950. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,920 ft³/s at 1500 Jan. 22, gage height, 4.57 ft; minimum daily, 336 ft³/s, May 13. | | | DID OHR ROD, | CODIC | I EEL I EN | SECOND, | MEAN VALU | ES | 1901 10 | DEI TERMER | 1900 | | | |--------|-------|--------------|-------|------------|---------|-----------|--------------|---------|------------|-------|-------|-------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 870 | 1370 | 1510 | 1580 | 1570 | 1400 | 1540 | 430 | 359 | 360 | 346 | 599 | | 2 | 870 | 1490 | 1530 | 1570 | 1580 | 1520 | 1550 | 514 | 361 | 350 | 341 | 578 | | 2
3 | 910 | 1430 | 1520 | 1560 | 1580 | 1760 | 1540 | 577 | 354 | 347 | 345 | 581 | | 4 | 960 | 1510 | 1520 | 1560 | 1560 | 1760 | 1510 | 587 | 346 | 344 | 343 | 584 | | 5 | 960 | 1520 | 1530 | 1570 | 1570 | 1760 | 938 | 639 | 349 | 346 | 344 | 588 | | 6 | 960 | 1510 | 1520 | 1580 | 1570 | 1760 | 847 | 563 | 352 | 347 | 345 | 585 | | 7 | 960 | 1510 | 1560 | 1580 | 1570 | 1750 | 855 | 519 | 348 | 346 | 346 | 582 | | 8 | 964 | 1520 | 1590 | 1570 | 1570 | 1750 | 854 | 406 | 340 | 344 | 352 | 586 | | 9 | 960 | 1520 | 1600 | 1540 | 1570 | 1740 | 846 | 349 | 349 | 348 | 340 | 453 | | 10 | 950 | 1510 | 1580 | 1540 | 1570 | 1740 | 859 | 345 | 345 | 348 | 345 | 344 | | 11 | 944 | 1510 | 1590 | 1590 | 1570 | 1580 | 1210 | 349 | 349 | 353 | 349 | 348 | | 12 | 938 | 1500 | 1590 | 1570 | 1560 | 1150 | 696 | 379 | 346 | 358 | 363 | 374 | | 13 | 938 | 1500 | 1590 | 1570 | 1530 | 1560 | 529 | 336 | 347 | 356 | 355 | 477 | | 14 | 937 | 1510 | 1590 | 1570 | 1530 | 1720 | 633 | 339 | 356 | 349 | 349 | 505 | | 15 | 940 | 1510 | 1590 | 1580 | 1550 | 1700 | 689 | 347 | 355 | 349 | 413 | 537 | | 16 | 936 | 1500 | 1570 | 1630 | 1570 | 1720 | 683 | 347 | 362 | 359 | 526 | 523 | | 17 | 928 | 1510 | 1590 | 1730 | 1570 | 1740 | 671 | 345 | 346 | 360 | 531 | 544 | | 18 | 925 | 1510 | 1570 | 1740 | 1580 | 1510 | 586 | 343 | 355 | 362 | 535 | 553 | | 19 | 923 | 1510 | 1530 | 1360 | 1580 | 1470 | 475 | 345 | 354 | 354 | 447 | 582 | | 20 | 936 | 1510 | 1550 | 529 | 1600 | 1470 | 466 | 340 | 355 | 361 | 372 | 598 | | 21 | 922 | 1510 | 1560 | 855 | 1730 | 1480 | 448 | 351 | 354 | 361 | 383 | 640 | | 22 | 912 | 1510 | 1570 | 1890 | 1710 | 1470 | 572 | 363 | 350 | 357 | 378 | 662 | | 23 | 916 | 1510 | 1570 | 1750 | 1610 | 1470 | 629 | 356 | 354 | 360 | 390 | 653 | | 24 | 904 | 1510 | 1560 | 1670 | 1720 | 1470 | 638 | 350 | 357 | 362 | 387 | 654 | | 25 | 918 | 1500 | 1560 | 1730 | 1720 | 1480 | 629 | 354 | 359 | 366 | 395 | 662 | | 26 | 966 | 1510 | 1570 | 1640 | 1720 | 1630 | 609 | 350 | 360 | 371 | 397 | 664 | | 27 | 1110 | 1510 | 1570 | 1570 | 1740 | 1740 | 604 | 355 | 359 | 364 | 422 | 702 | | 28 | 1150 | 1510 | 1570 | 1560 | 1730 | 1690 | 581 | 361 | 361 | 363 | 444 | 722 | | 29 | 1240 | 1510 | 1570 | 1560 | 1720 | 1580 | 5 7 9 | 352 | 360 | 356 | 443 | 714 | | 30 | 1300 | 1510 | 1570 | 1580 | | 1540 | 5 7 0 | 359 | 359 | 349 | 439 | 627 | | 31 | 1280 | | 1570 | 1580 | | 1510 | | 353 | | 342 | 494 | | | TOTAL | 30327 | 45050 | 48460 | 47904 | 46750 | 49620 | 23836 | 12303 | 10601 | 10992 | 12259 | 17221 | | MEAN | 978 | 1502 | 1563 | 1545 | 1612 | 1601 | 795 | 397 | 353 | 355 | 395 | 574 | | MA X | 1300 | 1520 | 1600 | 1890 | 1740 | 1760 | 1550 | 639 | 362 | 371 | 535 | 722 | | MIN | 870 | 1370 | 1510 | 529 | 1530 | 1150 | 448 | 336 | 340 | 342 | 340 | 344 | | AC-FT | 60150 | 89360 | 96120 | 95020 | 92730 | 98420 | 47280 | 24400 | 21030 | 21800 | 24320 | 34160 | | a | 41500 | 0 | 0 | 0 | 0 | 0 | 43200 | 65600 | 63900 | 68900 | 70700 | 45300 | | | | | | | | | | | | | | | CAL YR 1987 TOTAL 524303 MEAN 1436 MAX 2500 MIN 568 AC-FT 1040000 WTR YR 1988 TOTAL 355323 MEAN 971 MAX 1890 MIN 336 AC-FT 704800 a-Diversions, in acre-feet, through Gunnison Tunnel, provided by Uncompangre Valley Water Users Association. ## 09128500 SMITH FORK NEAR CRAWFORD, CO LOCATION.--Lat 38°43'40", long 107°30'22", in SW4SE4 sec.24, T.15 S., R.91 W., Delta County, Hydrologic Unit 14020002, on left bank 20 ft upstream from Forest Service bridge, 0.4 mi upstream from Second Creek, 6 mi northeast of Crawford, and 6.5 mi upstream from Iron Creek. DRAINAGE AREA .-- 42.8 mi². PERIOD OF RECORD.--October 1935 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1313: 1941. WDR CO 83-2: Drainage area. WDR CO 85-2: 1984, 1984 (M). GAGE.--Water-stage recorder. Elevation of gage is 7,091 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 16, 1938, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Nov. 17-19, 23, 25, Nov. 28 to Dec. 10, 12, Dec. 13 to Jan. 15, Jan. 19-22, Feb. 3-27, 29, Mar. 2 to Apr. 7, and Apr. 10-15. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of a few small hay meadows upstream from station. Saddle Mountain ditch diverts water upstream from station for irrigation of about 800 acres downstream. One small ditch diverts water from Virginia Creek to Iron Creek drainage. Head and Ferrier ditch imports water from Curecanti Creek drainage. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 53 years, 42.6 ft 3/s; 30,860 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,410 ft³/s, May 15, 1984, gage height, 8.28 ft, but may have been higher during period of indefinite stage-discharge relationship, May 16-21, 1984; minimum daily discharge, 1.8 ft³/s, July 30-31, Aug. 1, 1963, Sept. 5-6, 1978. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 260 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | May 15 | 0200 | *187 | *2.71 | | | | | Minimum daily, 2.5 ft³/s, Aug. 7. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | OCTOBER
S | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|--|--|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------------|-----------------------------------|------------------------------------|--|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.6
4.9
7.7
8.4
8.8 | 12
14
14
13
12 | 9.0
8.8
9.4
9.0
8.6 | 8.2
7.8
6.8
7.2
7.8 | 7.7
7.7
7.7
7.0
7.2 | 14
14
14
12
10 | 17
19
20
22
24 | 105
99
92
90
93 | 79
71
75
94
109 | 30
29
31
32
31 | 7.5
6.1
4.9
4.0
3.1 | 8.1
7.7
7.4
7.0
7.4 | | 6
7
8
9
10 | 8.8
8.4
9.2
9.7
9.7 | 15
15
13
13 | 8.8
8.2
8.2
8.2
8.2 | 8.0
8.2
8.2
8.2
8.0 | 8.2
8.4
9.2
8.4
9.0 | 11
12
9.5
12
11 | 32
42
52
52
62 | 102
97
92
85
88 | 112
105
94
85
82 | 28
24
21
19
17 | 2.7
2.5
3.1
4.3
4.2 | 7.0
7.0
5.9
5.4
7.3 | | 11
12
13
14
15 | 9.7
9.7
12
13
13 | 13
12
12
12
12 | 7.7
7.6
7.0
6.4
6.2 | 7.8
8.0
7.4
6.4
7.4 | 8.8
8.6
8.8
8.8 | 9.0
9.5
8.5
10
9.5 | 64
70
78
82
86 | 98
111
138
161
171 | 80
72
67
63
63 | 15
13
12
11
10 |
3.8
4.6
4.4
3.8
4.1 | 12
17
17
16
14 | | 16
17
18
19
20 | 12
11
9.7
11 | 11
11
10
11
13 | 5.8
6.4
7.8
7.8
8.2 | 8.5
8.1
7.7
7.4
5.6 | 9.2
8.6
7.8
8.8 | 9.0
8.5
9.0
9.5 | 90
83
73
69
69 | 165
160
160
155
131 | 65
63
59
56
54 | 9.5
9.0
8.4
12
21 | 5.7
5.6
4.9
4.1
3.8 | 13
12
11
12
12 | | 21
22
23
24
25 | 8.8
9.3
9.7
11
16 | 13
11
10
10
9.4 | 7.8
7.2
8.2
8.8
8.4 | 7.6
8.2
8.8
8.8
9.3 | 9.6
11
12
13
14 | 13
17
17
18
16 | 73
73
69
68
66 | 104
89
84
90
97 | 51
46
43
41
38 | 21
20
18
18
18 | 4.6
7.3
8.1
7.7
7.4 | 12
12
12
12
12
9.3 | | 26
27
28
29
30
31 | 13
12
11
11
12
12 | 9.8
11
10
9.4
9.4 | 8.0
7.8
8.2
8.4
8.2
8.6 | 9.3
9.3
8.8
8.4
8.4
7.7 | 14
13
12
13
 | 18
23
28
22
22
20 | 64
64
67
74
89 | 101
106
108
117
117
94 | 34
32
35
36
34 | 16
16
16
15
14
7.9 | 7.0
8.8
8.3
8.1
7.7
8.1 | 9.3
9.7
10
10 | | TOTAL
MEAN
MAX
MIN
AC-FT | 316.1
10.2
16
3.6
627 | 354.0
11.8
15
9.4
702 | 246.9
7.96
9.4
5.8
490 | 247.3
7.98
9.3
5.6
491 | 280.1
9.66
14
7.0
556 | 426.0
13.7
28
8.5
845 | 1813
60.4
90
17
3600 | 3500
113
171
84
6940 | 1938
64.6
112
32
3840 | 562.8
18.2
32
7.9
1120 | 170.3
5.49
8.8
2.5
338 | 312.5
10.4
17
5.4
620 | CAL YR 1987 TOTAL 17446.9 MEAN 47.8 MAX 351 MIN 1.7 AC-FT 34610 WTR YR 1988 TOTAL 10167.0 MEAN 27.8 MAX 171 MIN 2.5 AC-FT 20170 # 09131495 PAONIA RESERVOIR NEAR BARDINE, CO LOCATION.--Lat 38°56'39", long 107°21'06", in NE4 sec.8, T.13 S., R.89 W., Gunnison County, Hydrologic Unit 14020004, in gate house of Paonia Dam on Muddy Creek, 16 mi east of Paonia. DRATNAGE AREA .-- 246 mi PERIOD OF RECORD.--December 1961 to current year. Monthend active contents provided by U.S. Bureau of Reclamation from December 1961 to September 1987. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in December 1961; dam completed January 1962. Capacity 20,950 acre-ft, 1966 survey, between elevation 6,290.0 ft streambed at dam, and 6,447.5 ft, crest of spillway. Dead storage below elevation 6,358.0 ft, 2,440 acre-ft. Inactive storage below elevation 6,360.0 ft, 2,620 acre-ft. Figures published prior to 1988 water year are active contents; figures given beginning 1988 water year are live contents. COOPERATION. -- Capacity tables provided by U.S. Bureau of Reclamation. EXTREMES FOR CURRENT YEAR.--Maximum contents, 18,900 acre-ft, July 7, elevation, 6,448.82 ft; minimum contents, 2,550 acre-ft, Sept. 10-12, elevation, 6,380.71 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400 WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Conten
Elevation (acre-f | | |--|---|--| | Sept. 30 | 6,368.91 1,0
6,385.39 3,2
6,392.67 4,4
6,397.75 5,3 | 30 +2,160
00 +1,170
00 +900 | | CAL YR 1987 | | -1,970 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 6,401.60 6,0
6,404.25 6,6
6,389.60 3,8
6,386.43 3,3
6,447.40 18,4
6,447.81 18,6
6,434.20 14,3
6,395.61 4,9
6,386.92 3,4 | +550
90 -2,710
90 -500
80 +15,090
10 +110
00 -4,310
-9,390 | | WTR YR 1988 | | +2,390 | #### 09132500 NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO LOCATION.--Lat 38°55'33", long 107°26'01", in SEASWA sec.10, T.13 S., R.90 W., Gunnison County, Hydrologic Unit 14020004, on left bank 2.3 mi east of Somerset and 4.8 mi upstream from Hubbard Creek. DRAINAGE AREA. -- 526 mi². PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, October 1977 to September 1982. Sediment data available, November 1978 to September 1982. REVISED RECORDS.--WSP 2124: Drainage area. WDR CO-77-2: 1976. GAGE.--Water-stage recorder. Elevation of gage is 6,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1,1982, at various sites 0.8 mi downstream, at different datums. See WDR CO-81-2, for history of changes. REMARKS.--Estimated daily discharges: Dec. 14 to Mar. 14. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by small diversions for irrigation in nearby drainage areas, irrigation of about 3,000 acres upstream from station, storage in Overland Reservoir, capacity, 6,280 acreft, and storage in Paonia Reservoir, capacity, 18,300 acre-ft, since February 1962. AVERAGE DISCHARGE. -- 55 years, 461 ft 3/s; 334,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,220 ft³/s, May 24, 1984, gage height, 8.20 ft, from outside high-water mark; minimum daily, 17 ft³/s, Nov. 10, 1950. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,690 $\rm ft^3/s$ at 0130 June 6, gage height, 4.48 ft; minimum daily, 49 $\rm ft^3/s$, Dec. 15. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 117 274 72 72 8 70 72 74 72 80 172 832 78 75 72 Ŕ٥ 68 733 74 827 83 63 27 72 31 95 86 _---___ ---------TOTAL. 87.9 67.5 77.7 92 468 MEAN 75.9 79.6 MA X MTN AC-FT CAL YR 1987 TOTAL 169772 MEAN 465 MAX 2610 MIN 49 AC-FT 336700 WTR YR 1988 TOTAL 113200 MEAN 309 MAX 1560 MIN 49 AC-FT 224500 #### 09134000 MINNESOTA CREEK NEAR PAONIA, CO LOCATION.--Lat 38°52'12", long 107°30'13", in SE4NE4 of sec.1, T. 14 S., R. 91 W., Delta County, Hydrologic Unit 14020004, on right bank .25 mi downstream from South Fork, 6 mi upstream from mouth, and 4.5 mi east of Paonia. DRAINAGE AREA . - - 41.3 mi2. PERIOD OF RECORD. -- April 1936 to September 1947, October 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1936 to October 1941, staff gages at different datums. October 1941 to September 1947, water-stage recorder at different datum. December 1985 to present, water-stage recorder, datum lowered 2.0 ft. REMARKS.--Estimated daily discharges: Dec. 14-16, 21, Jan. 1-7, 12-14, 20, Feb. 5, 15, 18, and Mar. 14. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by two small storage reservoirs, one of which obtains water from the East Muddy Creek Basin. Small trans-basin diversion from Coal Creek into Minnesota Creek. Diversions upstream from station for irrigation of about 100 acres. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--14 years (water years 1936-47, 1986-88), 24.9 ft³/s; 18,040 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 356 ft³/s, July 10, 1936 (gage height, 3.00 ft, site and datum then in use); minimum daily, 2.7 ft³/s, Nov. 18, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 66 $\rm ft^3/s$ at 0500 June 9, gage height, 1.83 ft; minimum daily, 2.7 $\rm ft^3/s$, Nov. 18. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|------------------------------------|--|------------------------------------|-----------------------------------|--|-----------------------------------|----------------------------------|----------------------------------|---------------------------------|--------------------------------|-----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.9
3.5
3.4
3.5
3.3 | 6.5
8.3
6.5
5.9
5.7 | 5.2
4.9
4.8
4.7
5.1 | 3.5
3.4
3.3
3.4
3.5 | 3.2
3.2
3.3
3.2
3.3 | 4.1
4.1
3.8
3.5
3.4 | 4.4
5.1
6.7
7.4
8.0 | 23
23
21
20
20 | 30
27
28
34
47 | 31
29
29
28
28 | 16
15
16
18
17 | 11
11
11
10
6.8 | | 6
7
8
9
10 | 3.3
3.3
3.3
3.3 | 8.9
7.5
6.7
6.0
5.8 | 5.0
4.9
4.5
4.4
4.7 | 3.5
3.6
3.6
3.6 | 3.6
3.8
3.3
3.2
3.0 | 3.4
3.6
3.3
4.0
3.6 | 9.1
12
13
12
10 | 22
20
15
14
15 | 54
52
52
62
57 | 27
26
24
23
24 | 17
17
16
13 | 4.0
3.8
3.7
3.6
4.2 | | 11
12
13
14
15 | 3.3
3.3
4.4
5.2
5.1 | 5.8
5.5
5.9
5.5 | 4.7
3.6
3.6
3.7
3.4 | 3.6
3.4
3.3
3.5
3.5 | 3.0
3.2
3.0
2.9 | 3.2
3.6
3.2
4.3 | 11
12
14
16
22 | 19
29
39
48
49 | 52
47
45
40
43 | 26
25
24
24
23 | 13
13
13
13 | 7.3
9.6
8.4
6.0
5.2 | | 16
17
18
19
20 | 4.7
4.6
4.6
4.9
5.0 | 4.7
4.2
2.7
4.9
5.3 | 3.6
4.6
4.4
4.3
4.2 | 3.5
3.5
3.4
3.2
3.2 | 3.3
3.6
3.2
4.0
3.4 |
3.2
3.0
3.2
3.3
3.4 | 21
20
17
17
17 | 48
50
55
57
50 | 45
46
45
44 | 23
23
23
26
21 | 16
18
17
16
15 | 4.9
4.6
4.2
4.1 | | 21
22
23
24
25 | 4.8
4.6
4.7
5.0
7.8 | 5.5
5.4
5.2
4.8
5.1 | 3.9
4.0
4.0
4.0
3.9 | 3.3
3.5
3.3
3.2
3.3 | 3.6
3.3
3.4
3.6
3.7 | 4.7
5.7
5.8
5.8 | 20
21
21
19
18 | 44
40
36
34
34 | 40
33
29
31
36 | 21
20
19
19
18 | 14
17
20
14
14 | 4.8
4.3
4.1
3.9
3.8 | | 26
27
28
29
30
31 | 5.8
5.4
5.3
5.8
5.8 | 5.2
4.8
5.6
5.0
4.9 | 3.8
3.7
3.7
3.7
3.7
3.6 | 3.3
3.3
3.2
3.3
3.2 | 3.4
3.3
4.0
3.9 | 7.2
9.6
8.3
5.4
5.6
5.2 | 17
17
17
18
21 | 36
39
40
42
43
35 | 35
34
33
34
33 | 18
17
16
16
16 | 14
15
13
13
12 | 3.8
4.0
4.0
4.1
4.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 140.7
4.54
7.8
3.3
279 | 169.3
5.64
8.9
2.7
336 | 130.3
4.20
5.2
3.4
258 | 105.3
3.40
3.6
3.2
209 | 97.9
3.38
4.0
2.9
194 | 139.5
4.50
9.6
3.0
277 | 443.7
14.8
22
4.4
880 | 1060
34.2
57
14
2100 | 1233
41.1
62
27
2450 | 703
22.7
31
16
1390 | 463
14.9
20
12
918 | 168.6
5.62
11
3.6
334 | CAL YR 1987 TOTAL 9604.0 MEAN 26.3 MAX 151 MIN 2.7 AC-FT 19050 WTR YR 1988 TOTAL 4854.3 MEAN 13.3 MAX 62 MIN 2.7 AC-FT 9630 ## 09135900 LEROUX CREEK AT HOTCHKISS, CO LOCATION.--Lat 38°47'53", long 107°43'53", in NW4NE4 sec.36, T.14 S., R.9 3 W., Delta County, Hydrologic Unit 14020004, on left bank at upstream side of culvert, 0.3 mi west of Hotchkiss city limits, and 0.5 mi upstream from mouth. DRAINAGE AREA. -- 66.7 mi². PERIOD OF RECORD. -- June 1976 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,315 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Jan. 18, 23-25, 31, Feb. 1-9, 12-13, 16, 21-25, May 11-26, June 13, and July 14 to Aug. 11. Records fair except for estimated daily discharges, which are poor. Natural flow of stream is affected by diversions upstream from station for irrigation and by return flow from irrigated area upstream from station. Mostly return flow after June. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 12 years, 34.8 ft3/s; 25,210 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,880 ft³/s, June 7, 1984, gage height, 11.82 ft; minimum daily, 0.55 ft³/s, July 10, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 217 $\rm ft^3/s$ at 1000 Apr. 15, gage height, 4.62 ft; minimum daily, 2.0 $\rm ft^3/s$, May 9-10. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISONANGE | , 00510 | I DDI I DI | , DB00112, | MEAN VALUE | S | 1907 10 0 | BI IBIDBI | 1,00 | | | |--------------------------------------|-----------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------------|--|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.0
7.5
7.9
8.3
7.9 | 12
12
11
11 | 11
11
10
10
12 | 6.2
5.9
5.9
6.6
7.1 | 7.5
7.1
6.6
6.6
6.6 | 7.7
7.5
7.1
6.2
5.9 | 3.0
2.7
2.7
2.6
2.5 | 3.2
3.1
3.1
2.9
2.9 | 3.7
3.7
3.7
4.0
4.2 | 4.0
4.0
3.8
3.7
4.0 | 4.3
4.3
4.3
4.5 | 9.4
9.6
9.6
10 | | 6
7
8
9
10 | 8.3
8.3
7.9
7.9 | 13
13
12
11
11 | 11
10
9.6
9.6
9.6 | 7.5
8.3
8.1
8.3
7.5 | 7.1
7.1
6.6
6.6
6.6 | 5.9
5.6
5.6
6.2 | 2.5
4.2
11
6.2
5.4 | 2.6
2.5
2.2
2.0
2.0 | 4.5
4.0
4.1
4.5 | 4.2
4.1
4.0
3.7
3.7 | 4.7
4.5
4.3
4.7 | 11
11
11
12
11 | | 11
12
13
14
15 | 7.9
8.3
7.7
7.5
7.5 | 10
10
10
10
10 | 9.2
9.2
9.2
8.4
8.6 | 7.5
7.5
6.0
5.4
6.6 | 6.6
7.1
7.5
7.1
7.1 | 6.1
5.4
5.6
5.6 | 5.4
13
47
79
187 | 2.2
2.8
3.3
3.9
4.4 | 4.8
4.8
4.8
4.8 | 3.5
3.2
3.1
2.9
3.3 | 5.5
6.6
7.1
7.1
6.4 | 11
13
12
10
8.0 | | 16
17
18
19
20 | 7.9
8.3
8.3
8.3 | 10
10
10
11
12 | 7.5
7.9
7.9
7.9
7.9 | 6.6
6.6
6.6
4.8 | 7.1
6.6
6.6
6.6
7.1 | 5.6
5.4
5.1
5.4 | 79
54
9.1
8.4
6.9 | 4.9
5.0
4.7
4.9
4.1 | 4.5
4.2
4.4
4.5
4.8 | 3.3
3.5
3.7
3.9 | 5.9
6.2
6.2
6.2 | 8.3
8.3
8.3
7.9 | | 21
22
23
24
25 | 11
8.4
8.3
8.3
8.3 | 11
11
11
10
10 | 7.5
7.5
7.5
7.5
7.1 | 6.2
5.1
6.6
6.6
6.6 | 7.1
7.1
7.1
7.1
7.9 | 5.6
5.5
5.1
5.4
4.8 | 3.4
3.7
3.7
3.4 | 3.5
2.8
2.6
2.6
3.1 | 4.8
4.8
4.8
4.3 | 4.1
4.3
4.3
4.3 | 6.6
9.2
8.8
9.0
8.4 | 8.3
8.8
9.6
10 | | 26
27
28
29
30
31 | 7.9
7.9
10
13
14 | 11
11
12
12
11 | 7.1
7.3
7.1
7.5
7.5 | 6.6
6.6
6.6
7.5
7.9 | 8.3
7.9
9.6
8.4 | 4.3
4.8
8.7
5.4
4.0
3.2 | 3.1
3.1
3.2
3.2 | 3.4
3.7
3.2
3.3
3.7 | 4.0
4.0
3.6
3.7 | 4.2
4.4
4.3
4.2
4.2 | 8.3
8.8
8.8
9.2
9.2 | 10
9.6
9.2
9.2
9.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 270.7
8.73
14
7.0
537 | 329
11.0
13
10
653 | 268.6
8.66
12
7.1
533 | 208.5
6.73
8.3
4.8
414 | 208.3
7.18
9.6
6.6
413 | 175.4
5.66
8.7
3.2
348 | 564.9
18.8
187
2.5
1120 | 102.0
3.29
5.0
2.0
202 | 128.6
4.29
4.8
3.6
255 | 119.8
3.86
4.4
2.9
238 | 203.3
6.56
9.2
4.3
403 | 295.2
9.84
13
7.9
586 | CAL YR 1987 TOTAL 13481.6 MEAN 36.9 MAX 368 MIN 1.9 AC-FT 26740 WTR YR 1988 TOTAL 2874.3 MEAN 7.85 MAX 187 MIN 2.0 AC-FT 5700 ## 09143000 SURFACE CREEK NEAR CEDAREDGE, CO LOCATION.--Lat 38°59'05", long 107°51'13", in NW4NW4 sec.25, T.12 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank 5 ft downstream from private bridge, 1.4 mi downstream from Caesar Creek, and 7.0 mi northeast of Cedaredge. DRAINAGE AREA . - - 27.4 mi2. PERIOD OF RECORD.--July 1939 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WDR CO-83-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,261 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 10, 15-21, Jan. 15 to Feb. 29, Mar. 5-6, 8-9, 12-14, and July 5-7. Records good except for estimated daily discharges, which are poor. Flow regulated by many small reservoirs. Some water imported from Leon Lake in Plateau Creek drainage. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 49 years, 43.4 ft3/s; 31,440 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 824 ft³/s, June 7, 1984, gage height, 3.67 ft, from rating curve extended above 310 ft³/s; maximum gage height, 5.10 ft, Apr. 13, 1958 (ice jam); minimum daily discharge, 0.80 ft³/s, Jan. 15, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 171 ft³/s at 1900 May 14, gage height, 2.22 ft; minimum daily, 4.5 ft³/s Nov. 19-20. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | 2, 00220 | | | EAN VALUE | ES | 1,01 10 2. | | ., | | | |--------------------------------------|--------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|--|----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 21
21
16
16
17 | 12
13
7.7
7.0
6.7 | 5.1
5.2
5.4
5.4
5.5 | 5.0
5.0
5.0
5.1 | 5.0
4.8
4.8
5.0 | 5.8
5.7
6.0
5.7
5.3 | 8.5
8.1
8.0
8.2
8.6 | 70
47
41
47
63 | 114
118
130
151
159 | 63
57
54
58
58 | 70
80
78
69
72 | 37
35
21
19 | | 6
7
8
9
10 | 21
21
19
19
17 | 8.4
7.7
7.2
6.4
6.4 | 5.4
5.3
5.2
5.2 | 5.1
5.0
5.0
5.1 | 5.2
5.4
5.3
5.7 | 5.5
5.5
5.6
5.7 | 13
24
33
31
30 | 64
50
46
50
72 | 155
148
141
131
127 | 58
57
57
58
56 | 85
81
77
78
77 | 20
20
21
20
20 | | 11
12
13
14
15 | 17
17
23
24
19 | 6.3
5.8
6.1
5.8
5.9 | 5.3
5.1
5.0
5.0 | 5.2
5.1
5.1
5.0 | 5.5
5.0
5.2
5.2 | 6.0
5.7
5.9
5.7
5.5 | 35
53
65
67
80 | 95
113
123
132
133 | 124
116
110
103
96 |
56
82
85
92
88 | 64
65
56
53
52 | 22
29
20
13
9.2 | | 16
17
18
19
20 | 17
12
11
11 | 6.0
5.6
5.8
4.5
4.5 | 5.0
5.1
5.1
5.1 | 4.9
4.8
4.8
4.9
5.0 | 5.1
5.2
5.0
5.0 | 5.4
5.5
5.5
5.4
5.6 | 65
55
38
38
47 | 131
129
149
134
107 | 95
89
81
76
72 | 76
73
72
72
72 | 45
44
37
35
52 | 9.6
9.6
9.0
7.2
6.7 | | 21
22
23
24
25 | 11
8.3
8.0
9.0 | 5.4
5.8
5.6
5.4
5.7 | 5.0
5.1
4.9
5.0
5.0 | 5.0
5.0
4.8
5.0
4.9 | 5.1
5.1
5.6
5.7 | 6.2
6.7
6.8
6.5
6.4 | 49
37
31
28
27 | 94
98
104
130
135 | 74
70
88
86
84 | 70
68
63
61
62 | 56
57
34
31
30 | 8.0
7.9
7.0
8.4
8.2 | | 26
27
28
29
30
31 | 9.1
9.2
9.2
12
14
8.3 | 5.6
5.4
5.4
5.3 | 5.0
5.0
5.0
5.0
5.0 | 4.8
4.8
5.0
5.2
4.8 | 5.9
6.0
6.0
6.1 | 7.4
11
12
16
8.0
7.0 | 28
32
40
49
74 | 129
143
157
156
155
126 | 78
80
88
89
71 | 64
66
69
69
68 | 30
53
51
47
44
43 | 8.2
18
19
21
22 | | TOTAL
MEAN
MAX
MIN
AC-FT | 461.1
14.9
24
8.0
915 | 193.8
6.46
13
4.5
384 | 158.9
5.13
5.5
4.9
315 | 154.3
4.98
5.2
4.8
306 | 153.8
5.30
6.1
4.8
305 | 206.8
6.67
16
5.3
410 | 1110.4
37.0
80
8.0
2200 | 3223
104
157
41
6390 | 3144
105
159
70
6240 | 2073
66.9
92
54
4110 | 1746
56.3
85
30
3460 | 495.0
16.5
37
6.7
982 | CAL YR 1987 TOTAL 20041.8 MEAN 54.9 MAX 252 MIN 4.5 AC-FT 39750 WTR YR 1988 TOTAL 13120.1 MEAN 35.8 MAX 159 MIN 4.5 AC-FT 26020 ## 09143500 SURFACE CREEK AT CEDAREDGE, CO LOCATION.--Lat 38°54'06", long 107°55'14", in SW4SE4 sec.20, T.13 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank at Cedaredge, 700 ft east of State Highway 65, and 8.5 mi upstream from mouth. DRAINAGE AREA .-- 39.0 mi2. PERIOD OF RECORD. -- October 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WDR-CO-83-2: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,220 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 8, 1917, nonrecording gage at present site at datum 0.50 ft, higher. REMARKS.--Estimated daily discharges: Nov. 17 to Dec. 6, Dec. 13 to Feb. 26, and Mar. 10-20. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions to and from nearby streams, many small storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 72 years, 28.3 ft 3/s; 20,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,190 ft³/s, May 13, 1941, gage height, 2.50 ft, from rating curve extended above 640 ft³/s; no flow, Sept. 25, 1939, and practically no flow at times during some winters. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 121 ${\rm ft}^3/{\rm s}$ at 1930 May 12, gage height, 1.81 ft; minimum daily, 1.3 ${\rm ft}^3/{\rm s}$, Sept. 28. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | , | | М | EAN VALUI | ES | | | , | | | |--------------------------------------|---------------------------------------|-----------------------------------|-----------------------------------|--|-----------------------------------|-------------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15
16
12
12
12 | 8.6
16
8.2
6.2
6.3 | 2.5
2.4
2.4
2.3
2.4 | 1.7
1.6
1.6
1.8
1.9 | 2.6
2.7
2.8
2.7
2.5 | 4.0
4.0
3.8
3.1
3.3 | 6.0
6.3
8.1
11
9.5 | 69
53
48
50
59 | 72
67
70
68
73 | 33
29
29
31
31 | 23
28
26
18
19 | 12
13
7.6
5.3
4.9 | | 6
7
8
9
10 | 14
14
15
15
14 | 9.6
8.7
6.6
5.2
4.2 | 2.4
2.5
2.4
2.5
1.9 | 1.9
2.0
1.9
1.9
2.0 | 2.3
2.4
2.6
2.8 | 2.8
2.7
2.8
3.5
2.8 | 17
33
40
32
25 | 64
52
50
50
65 | 70
75
73
68
64 | 26
25
22
21
18 | 27
20
18
16
13 | 4.1
3.9
3.8
3.2
5.8 | | 11
12
13
14
15 | 14
15
15
15
14 | 4.1
3.1
3.4
4.0
3.6 | 1.9
1.6
1.5
1.4
1.3 | 1.9
1.8
1.9
2.0
2.1 | 2.6
2.5
2.5
2.6
2.7 | 2.9
3.0
3.2
3.3
3.6 | 28
47
58
55
67 | 81
84
71
75
72 | 67
63
58
55
55 | 20
26
26
29
28 | 20
24
24
23
23 | 10
20
21
16
8.9 | | 16
17
18
19
20 | 14
11
10
9.8
8.7 | 2.6
2.5
2.4
2.3
2.6 | 1.5
1.6
1.7
1.7 | 2.2
2.3
2.4
2.0
1.9 | 2.5
2.4
2.3
2.4
2.6 | 3.9
3.7
3.5
3.8
4.4 | 44
37
22
34
54 | 65
69
91
64
58 | 57
52
45
41
39 | 21
19
18
23
25 | 15
15
10
8.4
15 | 8.6
11
11
7.4
5.6 | | 21
22
23
24
25 | 8.3
7.4
6.6
7.3 | 2.7
4.8
4.4
2.6
2.7 | 1.7
1.8
1.9
1.9 | 2.1
2.2
2.2
2.2
2.2 | 2.7
2.8
2.8
2.8
2.9 | 5.0
5.9
6.0
5.7
5.3 | 56
44
42
40
39 | 58
59
63
80
71 | 33
29
29
24
26 | 26
25
24
23
24 | 18
19
8.6
6.1
9.6 | 7.8
8.3
6.4
5.5
4.6 | | 26
27
28
29
30
31 | 9.4
7.7
7.5
9.5
14
8.7 | 2.7
4.6
2.5
2.4
2.4 | 1.8
1.7
1.6
1.7
1.7 | 2.3
2.3
2.4
2.4
2.4
2.5 | 3.0
3.8
3.6
3.7 | 7.0
14
14
11
7.1
5.8 | 37
42
49
56
74 | 73
79
76
71
62
64 | 26
28
51
55
40 | 25
26
26
24
24
22 | 11
19
17
15
12 | 4.4
3.7
1.3
1.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | 364.9
11.8
16
6.6
724 | 142.0
4.73
16
2.3
282 | 59.1
1.91
2.5
1.3
117 | 64.0
2.06
2.5
1.6
127 | 78.9
2.72
3.8
2.3
156 | 154.9
5.00
14
2.7
307 | 1112.9
37.1
74
6.0
2210 | 2046
66.0
91
48
4060 | 1573
52.4
75
24
3120 | 769
24.8
33
18
1530 | 531.7
17.2
28
6.1
1050 | 228.2
7.61
21
1.3
453 | CAL YR 1987 TOTAL 12167.5 MEAN 33.3 MAX 203 MIN 1.3 AC-FT 24130 WTR YR 1988 TOTAL 7124.6 MEAN 19.5 MAX 91 MIN 1.3 AC-FT 14130 # 09144250 GUNNISON RIVER AT DELTA, CO LOCATION.--Lat 38°45'01", long 108°04'06", in SE4NE4 sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020005, on left bank near upstream side of U.S. Highway 50 bridge at north edge of Delta. DRAINAGE AREA. -- 5,628 mi². PERIOD OF RECORD.--May 1976 to current year. Gage-height records collected at this site 1912-77 (flood seasons only) are in reports of the National Weather Service. GAGE.--Water-stage recorder. Datum of gage is 4,919.97 ft, National Weather Service Datum (levels by National Weather Service). Prior to May 1976 nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Jan. 20-22. Records good. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, and many diversions for irrigation. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--12 years, 2,487 ft3/s; 1,802,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,500 ft³/s, June 7, 1984, gage height, 13.15 ft; minimum daily, 208 ft³/s, Aug. 11, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum gage height observed, 13.5 ft, June 6, 1957, from National Weather Service wire-weight gage at present datum, (discharge not determined). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,430 $\rm ft^3/s$ at 0400 Mar. 28, gage height, 4.88 $\rm ft$; minimum daily, 382 $\rm ft^3/s$, July 19-20. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | , , , , , , , , , , , , , , , , , , , | 00210 | | 52002, | MEAN VALU | | 1701 10 | | 1,00 | | | |---|--|---------------------------------------|--|--|---|--|--|--|---------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 1370 | 1710 | 1840 | 1870 | 1910 | 1990 | 2090 | 1720 | 1290 | 897 | 535 | 691 | | 2 | 1370 | 1960 | 1860 | 1870 | 1910 | 1580 | 2010 | 1530 | 1210 | 731 | 476 | 678 | | 3 | 1360 | 1870 | 1900 | 1850 | 1930 | 2080 | 2000 | 1350 | 1200 | 641 | 450 | 666 | | 4 | 1370 | 1880 | 1880 | 1880 | 1880 | 2070 | 2040 | 1260 | 1460 | 688 | 443 | 708 | | 5 | 1390 | 1890 | 1990 | 1900 | 1860 | 2090 | 1620 | 1370 | 1810 | 655 | 437 | 745 | |
6 | 1400 | 2020 | 1950 | 1920 | 1870 | 2120 | 1310 | 1490 | 2010 | 625 | 458 | 773 | | 7 | 1390 | 1950 | 1900 | 1930 | 1870 | 2140 | 1450 | 1430 | 1900 | 586 | 501 | 774 | | 8 | 1360 | 1910 | 1960 | 1930 | 1890 | 2100 | 1800 | 1270 | 1770 | 541 | 484 | 731 | | 9 | 1350 | 1870 | 1940 | 1900 | 1890 | 2090 | 1760 | 1110 | 1680 | 527 | 457 | 708 | | 10 | 1340 | 1850 | 1960 | 1890 | 1900 | 2130 | 1620 | 949 | 1630 | 530 | 414 | 553 | | 11 | 1340 | 1830 | 1930 | 1940 | 1880 | 2130 | 1810 | 744 | 1650 | 546 | 414 | 587 | | 12 | 1330 | 1800 | 1920 | 1930 | 1870 | 1570 | 1830 | 972 | 1640 | 474 | 414 | 919 | | 13 | 1360 | 1770 | 1900 | 1880 | 1830 | 1610 | 1740 | 1240 | 1450 | 419 | 432 | 1200 | | 14 | 1450 | 1790 | 1870 | 1880 | 1830 | 2060 | 1790 | 1510 | 1220 | 422 | 428 | 941 | | 15 | 1450 | 1800 | 1800 | 1930 | 1830 | 1960 | 2230 | 1850 | 1110 | 405 | 410 | 893 | | 16 | 1440 | 1840 | 1820 | 1970 | 1880 | 1950 | 2180 | 1940 | 1120 | 402 | 484 | 854 | | 17 | 1410 | 1840 | 1880 | 2080 | 1860 | 1970 | 2040 | 1950 | 1100 | 422 | 527 | 809 | | 18 | 1410 | 1810 | 1930 | 2130 | 1840 | 1850 | 1760 | 2170 | 1050 | 414 | 524 | 815 | | 19 | 1390 | 1780 | 1890 | 2120 | 1850 | 1670 | 1350 | 2180 | 1060 | 382 | 534 | 812 | | 20 | 1390 | 1820 | 1870 | 1720 | 1850 | 1690 | 1220 | 1790 | 1090 | 382 | 422 | 840 | | 21 | 1390 | 1850 | 1850 | 880 | 1970 | 1710 | 1330 | 1370 | 1020 | 395 | 453 | 872 | | 2 2 | 1380 | 1840 | 1860 | 1210 | 2020 | 1750 | 1390 | 1200 | 956 | 398 | 550 | 908 | | 23 | 1380 | 1850 | 1910 | 2140 | 1900 | 1790 | 1510 | 1120 | 913 | 398 | 520 | 890 | | 24 | 1380 | 1850 | 1900 | 2010 | 1930 | 1820 | 1510 | 1080 | 860 | 406 | 492 | 875 | | 2 5 | 1420 | 1830 | 1870 | 1970 | 1970 | 1790 | 1530 | 1190 | 853 | 395 | 473 | 879 | | 26
27
28
29
30
31 | 1440
1560
1570
1610
1780
1720 | 1880
1870
1830
1830
1850 | 1860
1850
1860
1870
1910 | 2040
1890
1870
1870
1910
1920 | 1980
2000
2060
2090
 | 1980
2160
2300
2220
2180
2130 | 1410
1340
1320
1350
1460 | 1270
1450
1410
1510
1710
1500 | 786
782
750
1120
1090 | 426
438
434
428
456
522 | 484
554
562
607
570
608 | 844
843
876
864
878 | | TOTAL
MEAN
MAX
MIN
AC-FT | 44300
1429
1780
1330
87870 | 1849
2020
1710 | 58640
1892
1990
1800
16300 | 58230
1878
2140
880
115500 | 55350
1909
2090
1830
109800 | 60680
1957
2300
1570
120400 | 49800
1660
2230
1220
98780 | 44635
1440
2180
744
88530 | 37580
1253
2010
750
74540 | 15385
496
897
382
30520 | 15117
488
608
410
29980 | 24426
814
1200
553
48450 | CAL YR 1987 TOTAL 922720 MEAN 2528 MAX 6170 MIN 1040 AC-FT 1830000 WTR YR 1988 TOTAL 519613 MEAN 1420 MAX 2300 MIN 382 AC-FT 1031000 #### 09146200 UNCOMPAHGRE RIVER NEAR RIDGWAY, CO LOCATION.--Lat 38°11'02", long 107°44'43", in SW4NE4 sec.4, T.45 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 15 ft downstream from bridge, 0.2 mi downstream from Dry Creek, 0.5 mi upstream from Dallas Creek, and 2.3 mi north of Ridgway. DRAINAGE AREA. -- 149 mi2. PERIOD OF RECORD. -- October 1958 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 6,877.58 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). REMARKS.--Estimated daily discharges: Dec. 15, 29, Jan. 1-3, 12-15, 19, 22-28, Feb. 4-9, 11-16, 18-20, and Apr. 7-8. Records good except for estimated daily discharges, which are poor. Diversions for irrigation upstream from station. Water is imported upstream from station in some years by Red Mountain ditch from Mineral Creek in San Juan River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 30 years, 168 ft 3/s; 121,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,100 ft³/s, June 24, 1983, gage height, 5.73 ft; from rating curve extended above 1,800 ft³/s; minimum daily, 26 ft³/s, Jan. 13, 1963. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|------|------|----------------------|---------------------| | June 6 | 2300 | *780 | *3.98 | | | | | Minimum daily, 36 ft³/s, Feb. 4. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|--------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 83 | 79 | 55 | 46 | 39 | 85 | 59 | 133 | 208 | 401 | 130 | 121 | | 2 | 81 | 85 | 56 | 46 | 40 | 74 | 60 | 116 | 193 | 356 | 127 | 118 | | 3 | 77 | 81 | 57 | 42 | 40 | 72 | 62 | 113 | 293 | 321 | 129 | 102 | | 4 | 75 | 76 | 57 | 43 | 36 | 66 | 66 | 114 | 528 | 308 | 119 | 99 | | 5 | 74 | 74 | 58 | 45 | 38 | 61 | 69 | 118 | 617 | 298 | 112 | 98 | | 6 | 73 | 105 | 57 | 45 | 38 | 71 | 74 | 126 | 634 | 284 | 135 | 95 | | 7 | 72 | 97 | 57 | 46 | 38 | 65 | 100 | 112 | 665 | 263 | 151 | 91 | | 8 | 71 | 91 | 56 | 45 | 38 | 54 | 100 | 109 | 673 | 246 | 137 | 88 | | 9 | 70 | 81 | 55 | 45 | 40 | 57 | 97 | 103 | 661 | 239 | 134 | 85 | | 10 | 70 | 76 | 56 | 45 | 40 | 60 | 89 | 117 | 653 | 232 | 133 | 96 | | 11
12
13
14
15 | 70
71
78
84
79 | 71
68
66
67
68 | 56
54
51
49
48 | 46
44
40
40 | 38
38
38
38
38 | 53
50
49
48
48 | 91
111
131
131
138 | 152
206
267
312
363 | 645
582
519
411
413 | 215
201
181
156
156 | 123
122
113
107
104 | 149
269
240
182
152 | | 16 | 75 | 65 | 47 | 42 | 38 | 48 | 139 | 376 | 397 | 155 | 110 | 144 | | 17 | 73 | 67 | 49 | 41 | 40 | 48 | 121 | 353 | 459 | 151 | 110 | 139 | | 18 | 73 | 55 | 50 | 41 | 38 | 47 | 113 | 366 | 459 | 145 | 102 | 135 | | 19 | 73 | 55 | 51 | 40 | 38 | 48 | 109 | 313 | 475 | 132 | 99 | 131 | | 20 | 72 | 63 | 52 | 42 | 38 | 58 | 106 | 256 | 529 | 122 | 97 | 126 | | 21 | 72 | 69 | 49 | 43 | 42 | 78 | 117 | 194 | 572 | 117 | 112 | 150 | | 22 | 70 | 63 | 51 | 42 | 44 | 85 | 106 | 174 | 558 | 116 | 140 | 148 | | 23 | 71 | 62 | 51 | 42 | 45 | 79 | 100 | 174 | 585 | 117 | 109 | 137 | | 24 | 72 | 63 | 51 | 40 | 46 | 73 | 95 | 213 | 583 | 119 | 101 | 128 | | 25 | 85 | 61 | 48 | 40 | 49 | 67 | 91 | 242 | 533 | 119 | 97 | 121 | | 26
27
28
29
30
31 | 81
78
76
76
83
79 | 62
61
57
58
56 | 49
46
47
46
48
48 | 40
40
40
41
42
39 | 53
61
78
78
 | 76
91
84
66
65
64 | 90
90
96
101
118 | 227
278
354
386
372
268 | 501
481
499
509
446 | 111
117
125
128
121
129 | 110
226
130
111
107
110 | 113
110
106
100
99 | | TOTAL | 2337 | 2102 | 1605 | 1313 | 1265 | 1990 | 2970 | 7007 | 15281 | 5881 | 3747 | 3872 | | MEAN | 75.4 | 70.1 | 51.8 | 42.4 | 43.6 | 64.2 | 99.0 | 226 | 509 | 190 | 121 | 129 | | MAX | 85 | 105 | 58 | 46 | 78 | 91 | 139 | 386 | 673 | 401 | 226 | 269 | | MIN | 70 | 55 | 46 | 39 | 36 | 47 | 59 | 103 | 193 | 111 | 97 | 85 | | AC-FT | 4640 | 4170 | 3180 | 2600 | 2510 | 3950 | 5890 | 13900 | 30310 | 11660 | 7430 | 7680 | CAL YR 1987 TOTAL 66354 MEAN 182 MAX 872 MIN 42 AC-FT 131600 WTR YR 1988 TOTAL 49370 MEAN 135 MAX 673 MIN 36 AC-FT 97930 172 GUNNISON RIVER BASIN #### 09147000 DALLAS CREEK NEAR RIDGWAY, CO LOCATION.--Lat 38°10'40", long 107°45'28", on line between sec.4 and 5, T.4 5 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 25 ft downstream from county bridge, 1.5 mi upstream from mouth, and 1.5 mi northwest of Ridgway. DRAINAGE AREA. -- 97.2 mi2 (revised). PERIOD OF RECORD.--March 1922 to October 1927, October 1955 to September 1971, October 1979 to current year. REVISED RECORDS .-- WSP 1924: 1960. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,980 ft above National Geodetic Vertical Datum of 1929, from topographic map. Mar. 1, 1922 to Oct. 31, 1927, nonrecording gage at different datum. REMARKS.--Estimated daily discharges: Nov. 18-23, 25, Nov. 28 to Dec. 2, Dec. 9, 13-18, 21, 22, Dec. 24 to Jan. 31, Feb. 4-16, 18-22, and Mar. 12-15. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 4,500 acres upstream from and 700 acres downstream from station. One small ditch imports water from Leopard Creek (Dolores River basin) to drainage upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 30 years, 41.9 ft3/s; 30,360 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 1,120 ft³/s, Aug. 15, 1923, gage height, 4.40 ft, datum then in use, from rating curve extended above 160 ft³/s; maximum gage height, 6.13 ft, July 21, 1983; minimum daily discharge, 0.21 ft³/s, June 19, 1981. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 423 ft³/s at 0630 June 29, gage height, 5.24 ft, maximum gage height, 5.41 ft, Jan. 4 (backwater from ice); minimum daily discharge, 1.1 ft³/s, June 3. DISCHARGE,
CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C MA Y JUN JUL AUG SEP JAN FEB MAR APR 90 31 1.2 1.1 4.5 7.7 51 1.9 1.9 15 17 48 42 67 22 1.3 32 1.3 1.3 1.4 1.3 1.5 27 31 2.0 1.5 58 23 38 36 69 36 1.8 1.9 24 1.9 2.0 2.1 184 22 28 2.1 1.7 1.6 3Ó TOTAL 1490.7 169.6 38.8 20.0 MEAN 21.6 26.8 23.0 29.7 45.1 59 21.7 5.47 49.7 47.5 33.1 MAX MIN 1.3 1.1 AC-FT CAL YR 1987 TOTAL 21489 MEAN 58.9 MAX 243 MIN 15 AC-FT 42620 WTR YR 1988 TOTAL 11046.3 MEAN 30.2 MAX 255 MIN 1.1 AC-FT 21910 #### 09147500 UNCOMPAHGRE RIVER AT COLONA, CO LOCATION.--Lat 38°19'53", long 107°46'44", in NW4NW4 sec.17, T.47 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 15 ft downstream from county highway crossing, 0.2 mi north of Colona, and 1.0 mi upstream from Beaton Creek. DRAINAGE AREA. -- 448 mi2 (revised). PERIOD OF RECORD.--April 1903 to November 1905, April to June 1906 (gage heights and discharge measurements only), October 1912 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Colona" 1904-6, 1922-34. REVISED RECORDS. -- WSP 1313: 1904. GAGE.--Water-stage recorder. Datum of gage is 6,318.80 ft above National Geodetic Vertical Datum of 1929. See ... WSP 1713 or 1733 for history of changes prior to Sept. 30, 1949. REMARKS.--Estimated daily discharges: Dec. 15-16, 20-22, 25-27, 29, Jan. 1-9, 13-15, 21-28, Feb. 4-9, 11-25, and Mar. 12-14. Records good except for estimated daily discharges, which are fair. Flow regulated by Ridgway Reservoir, 1.1 mi upstream since 1986, total capacity, 80,000 acre-ft. Diversions upstream from station for irrigation of about 2,600 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--75 years (water years 1904-5, 1913-86), 271 ft³/s; 196,300 acre-ft/yr, prior to completion of Ridgway Reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, $4,080 \text{ ft}^3/\text{s}$, June 13, 14, 1921; minimum daily, 12 ft $^3/\text{s}$, Sept. 19, 1956, May 7, 1967. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 699 ft³/s at 0030 June 5, gage height, 3.58 ft; minimum daily, 66 ft³/s, Mar. 14, Apr. 27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DA Y OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 352 81 78 172 233 133 QH 76 Ŕ 81 1ó 111 13 129 72 76 77 78 Яlı 23 121 86 84 75 76 87 ---TOTAL MEAN 97.8 89.0 79.2 MAX MIN AC-FT CAL YR 1987 TOTAL 121031 MEAN 332 MAX 1630 MIN 76 AC-FT 240100 WTR YR 1988 TOTAL 52758 MEAN 144 MAX 518 MIN 66 AC-FT 104600 #### 09149500 UNCOMPAHGRE RIVER AT DELTA, CO LOCATION.--Lat 38°44'31", long 108°04'49", in SW4SW4 sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020006, on right bank 525 ft downstream from 5th Street Bridge at west edge of Delta and 1.1 mi upstream from mouth. DRAINAGE AREA. -- 1,115 mi2 (revised). PERIOD OF RECORD.--April 1903 to October 1931 (no winter records in most years), September 1938 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Delta" 1907-24. REVISED RECORDS. -- WSP 1243: 1904. WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 4,926.49 ft above National Geodetic Vertical Datum of 1929. Feb. 18, 1960, to Mar. 26, 1963, water-stage recorder at site 750 ft upstream at datum 3.43 ft, higher. Mar. 27, 1963, to May 12, 1965, water-stage recorder at site 1,050 ft upstream at datum 6.08 ft, higher. See WSP 1733 or 1924 for history of changes prior to Feb. 18, 1960. REMARKS.--Estimated daily discharges: Dec. 5-8, 16-20, 26-30, Jan. 3-10, 14-19. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by water diverted from Gunnison River (see record of diversion through Gunnison tunnel published with station 09128000) and other adjacent basins, diversions for irrigation of about 90,000 acres above station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--52 years (water years 1908, 1921, 1939-88), 297 ft3/s; 215,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge 5,800 ft³/s, May 15, 1984, gage height, 8.85 ft, from rating curve extended above 3,400 ft³/s; no flow at times in 1908; minimum daily determined since beginning of diversion through Gunnison tunnel, 7.0 ft³/s, July 10-15, 17, 21, 24-28, 1910. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,330 ft³/s at 0500 Sept. 13, gage height, 4.89 ft; minimum daily, 67 ft³/s, Mar. 26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|---------------------------------|--------------------------------------|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 405 | 323 | 119 | 105 | 135 | 172 | 261 | 110 | 148 | 192 | 161 | 540 | | 2 | 414 | 360 | 121 | 108 | 135 | 164 | 226 | 181 | 137 | 191 | 151 | 464 | | 3 | 408 | 283 | 123 | 105 | 139 | 147 | 212 | 171 | 138 | 218 | 146 | 219 | | 4 | 405 | 245 | 121 | 105 | 122 | 130 | 193 | 150 | 183 | 253 | 151 | 221 | | 5 | 417 | 218 | 120 | 100 | 121 | 119 | 185 | 128 | 343 | 262 | 152 | 226 | | 6
7
8
9 | 424
439
454
463
470 | 288
271
236
210
204 | 120
120
120
122
123 | 105
110
110
110
115 | 145
136
137
129
140 | 112
115
111
106
111 | 219
295
279
282
257 | 125
141
121
113
99 | 372
239
198
184
177 | 248
220
199
182
190 | 145
161
163
161
158 | 204
225
208
198
211 | | 11 | 466 | 195 | 124 | 118 | 136 | 118 | 235 | 95 | 223 | 205 | 152 | 274 | | 12 | 479 | 182 | 115 | 121 | 135 | 104 | 158 | 102 | 285 | 185 | 162 | 556 | | 13 | 508 | 176 | 105 | 117 | 139 | 100 | 228 | 117 | 261 | 179 | 161 | 1090 | | 14 | 572 | 178 | 107 | 115 | 146 | 97 | 285 | 131 | 228 | 169 | 156 | 656 | | 15 | 441 | 190 | 108 | 110 | 135 | 99 | 339 | 147 | 207 | 159 | 151 | 497 | | 16 | 419 | 182 | 110 | 108 | 136 | 97 | 343 | 166 | 213 | 147 | 147 | 454 | | 17 | 429 | 171 | 112 | 105 | 127 | 91 | 303 | 149 | 226 | 140 | 144 | 423 | | 18 | 434 | 162 | 115 | 105 | 122 | 97 | 270 | 184 | 226 | 139 | 143 | 407 | | 19 | 446 | 168 | 115 | 102 | 116 | 104 | 251 | 266 | 226 | 125 | 139 | 382 | | 20 | 462 | 166 | 115 | 102 | 125 | 100 | 216 | 311 | 241 | 123 | 135 | 388 | | 21 | 477 | 166 | 115 | 135 | 129 | 100 | 210 | 234 | 232 | 120 | 145 | 382 | | 22 | 474 | 155 | 115 | 123 | 136 | 100 | 276 | 197 | 201 | 119 | 185 | 337 | | 23 | 481 | 148 | 126 | 139 | 146 | 100 | 219 | 187 | 223 | 123 | 172 | 324 | | 24 | 510 | 144 | 114 | 131 | 142 | 100 | 197 | 150 | 190 | 121 | 170 | 296 | | 25 | 530 | 141 | 104 | 121 | 152 | 82 | 185 | 133 | 173 | 117 | 169 | 277 | | 26
27
28
29
30
31 | 592
509
471
420
407
325 | 138
135
127
124
122 | 100
100
100
105
105
106 | 121
131
134
140
130
141 | 170
177
184
213 | 67
75
121
253
276
278 | 169
148
116
122
102 | 133
137
157
152
186
181 | 169
182
203
211
222 | 107
116
121
119
129
154 | 165
432
335
264
239
236 | 262
330
241
222
225 | | TOTAL | 14151 | 5808 | 3525 | 3622 | 4105 | 3846 | 6781 | 4854 | 6461 | 5072 | 5551 | 10739 | | MEAN | 456 | 194 | 114 | 117 | 142 | 124 | 226 | 157 | 215 | 164 | 179 | 358 | | MAX | 592 | 360 | 126 | 141 | 213 | 278 | 343 | 311 | 372 | 262 | 432 | 1090 | | MIN | 325 | 122 | 100 | 100 | 116 | 67 | 102 | 95 | 137 | 107 | 135 | 198 | | AC-FT | 28070 | 11520 | 6990 | 7180 | 8140 | 7630 | 13450 | 9630 | 12820 | 10060 | 11010 | 21300 | CAL YR 1987 TOTAL 152129 MEAN 417 MAX 1440 MIN 80 AC-FT 301700 WTR YR 1988 TOTAL 74515 MEAN 204 MAX 1090 MIN 67 AC-FT 147800 #### 09151500 ESCALANTE CREEK NEAR DELTA, CO LOCATION.--Lat 38°45'24", long 108°15'34", in E½ sec.8, T.15 S., R.97 W., Sixth Principal Meridian, Delta County, Hydrologic Unit 14020005, on left bank just upstream from county bridge, 0.2 mi upstream from mouth, and 10.5 mi west of Delta. DRAINAGE AREA .-- 209 mi2. PERIOD OF RECORD. -- April 1922 to September 1923, May 1976 to current year. REVISED RECORDS.--WSP 1313: 1923 (monthly runoff). WDR CO-84-2: 1979. GAGE.--Water-stage recorder. Elevation of gage is 4,810 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to September 1923, nonrecording gage at different datum operated by State Engineer of Colorado. REMARKS.--Estimated daily discharges: Nov. 29 to Feb. 19. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--12 years, 63.3 ft³/s; 45,860 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,050 $\rm ft^3/s$, July 24, 1977, gage height, 8.54 $\rm ft$, from floodmarks, from rating curve extended above 320 $\rm ft^3/s$, on basis of slope-area measurement of peak flow; no flow, June 23-25, 1981. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 415 ft³/s at 0300 April 16, gage height, 4.16 ft; minimum daily, 0.45 ft³/s, July 25. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISCHARGE | , CODIC | rber ren .
| ECOND, | MEAN VALU | ES | 1901 10 | DGI IBMDBN | 1900 | | | |--------------------------------------|------------------------------------|---------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|-----------------------------------|----------------------------------|------------------------------------|--|---------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.9
7.0
7.0
7.3
8.5 | 14
27
29
24
20 | 14
15
15
16
16 | 11
11
12
12
13 | 15
16
16
16
15 | 23
21
19
18
18 | 42
45
45
61
67 | 293
217
195
195
202 | 56
51
40
35
32 | 15
16
13
15
13 | 31
15
8.6
6.7
5.5 | 8.0
7.6
7.0
7.0
5.5 | | 6
7
8
9
10 | 8.5
8.0
7.8
8.0 | 48
43
29
23
21 | 16
16
16
15
15 | 12
12
12
13
13 | 15
15
16
17 | 19
21
17
17
22 | 82
128
202
201
146 | 201
176
164
148
154 | 30
28
26
25
23 | 10
8.9
8.5
7.5
7.3 | 5.0
5.4
6.3
6.7
6.1 | 2.7
2.3
2.4
2.4
2.4 | | 11
12
13
14
15 | 7.6
7.6
7.0
8.0 | 20
18
16
17
17 | 16
14
14
13 | 13
13
12
11
12 | 17
16
16
17
17 | 17
15
15
16
19 | 144
200
233
266
346 | 155
175
183
184
187 | 22
22
21
21
20 | 8.0
8.3
5.5
4.3
2.6 | 4.5
4.3
2.9
3.2
3.2 | 2.4
8.4
30
13
9.4 | | 16
17
18
19
20 | 9.8
8.5
7.6
7.6 | 15
14
14
17
17 | 13
13
13
12
12 | 13
14
15
16
15 | 17
16
16
17
18 | 21
16
16
17
19 | 339
240
194
199
195 | 171
163
226
157
149 | 18
15
15
15
14 | 2.5
3.4
4.3
4.3
2.6 | 3.2
5.7
8.0
9.1
8.5 | 8.5
8.5
8.5
8.5 | | 21
22
23
24
25 | 8.0
8.5
8.9
8.3
8.5 | 16
16
15
15 | 13
13
13
13
12 | 14
13
13
13 | 18
15
15
16
16 | 18
23
27
28
30 | 203
182
159
150
144 | 117
106
97
90
89 | 11
10
8.5
8.5
7.8 | 2.0
1.5
.91
.58 | 7.3
9.3
9.4
7.0
6.7 | 8.5
8.9
9.8
9.8 | | 26
27
28
29
30
31 | 12
10
9.4
10
9.8
14 | 17
15
14
14
13 | 12
13
13
12
13 | 13
13
13
14
14 | 17
17
23
22 | 31
43
74
58
76
61 | 150
160
183
197
249 | 83
77
74
68
65
65 | 7.0
9.3
11
19
22 | .53
1.2
4.7
6.7
6.1
4.3 | 6.7
7.0
9.8
13
9.9
8.1 | 9.4
9.4
9.4
9.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 267.7
8.64
14
7.0
531 | 593
19.8
48
13
1180 | 427
13.8
16
12
847 | 403
13.0
16
11
799 | 484
16.7
23
15
960 | 835
26.9
76
15
1660 | 5152
172
346
42
10220 | 4626
149
293
65
9180 | 643.1
21.4
56
7.0
1280 | 188.97
6.10
16
.45
375 | 243.1
7.84
31
2.9
482 | 246.8
8.23
30
2.3
490 | CAL YR 1987 TOTAL 26721.4 MEAN 73.2 MAX 786 MIN 3.0 AC-FT 53000 WTR YR 1988 TOTAL 14109.67 MEAN 38.6 MAX 346 MIN .45 AC-FT 27990 ## 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO LOCATION.--Lat 38°59'00", long 108°27'00", in NEdSW4 of sec.14, T.2 S., R .1 E., Ute Meridian, Mesa County, Hydrologic Unit 14020005, on right bank 180 ft upstream from bridge on State Highway 141, 0.4 mi downstream from Whitewater Creek, 0.5 mi south of Whitewater, and 8 mi southeast of Grand Junction. DRAINAGE AREA .-- 7,928 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1894 to December 1895 (gage heights only), October 1896 to September 1899, October 1901 to October 1906, October 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Whitewater" 1901-6. REVISED RECORDS. -- WSP 509: Drainage area at former site. WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 4,628.12 ft above National Geodetic Vertical Datum of 1929. See WSP 1733 or 1924 for history of changes prior to October 1959. REMARKS.--Estimated daily discharges: Jan. 24-28, Aug. 4, 5, 8, 9, and Aug. 22-24. Records good. Records show flow that enters Colorado River from Gunnison River basin except for about 60 ft³/s diverted downstream from gage during irrigation season. Natural flow of river affected by diversions for irrigation of about 233,000 acres upstream from station, storage reservoirs, and return flow from irrigated lands. AVERAGE DISCHARGE.--80 years (water years 1897-99, 1902-06, 1917-88), 2,621 ft³/s; 1,899,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 35,700 ft³/s, May 23, 1920, gage height, 14.95 ft, site and datum then in use, from rating curve extended above 22,000 ft³/s; minimum daily, 106 ft³/s, July 20, 1934. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,720 ft³/s at 1930 May 18, gage height, 5.18 ft; minimum daily, 645 ft³/s, July 26. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | 210 0 | indi, oob. | 10 1 111 1 1 | | MEAN VALU | | un 1701 1 | 0 551 1512 | un 1700 | | | |----------------------------------|--|--------------------------------------|--|--|------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | иои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 1820 | 2230 | 2090 | 2070 | 2150 | 2530 | 2710 | 2590 | 1920 | 1540 | 915 | 1270 | | 2 | 1810 | 2440 | 2090 | 2050 | 2130 | 2080 | 2590 | 2640 | 1800 | 1310 | 942 | 1450 | | 3 | 1810 | 2450 | 2130 | 2090 | 2150 | 2280 | 2520 | 2320 | 1670 | 1190 | 829 | 1230 | | 4 | 1800 | 2260 | 2140 | 2140 | 2080 | 2410 | 2560 | 2150 | 1800 | 1250 | 800 | 1190 | | 5 | 1840 | 2300 | 2210 | 2190 | 2010 | 2370 | 2440 | 2120 | 2250 | 1300 | 760 | 1240 | | 6 | 1830 | 2530 | 2340 | 2130 | 2060 | 2400 | 1890 | 2250 | 2660 | 1220 | 766 | 1250 | | 7 | 1840 | 2520 | 2200 | 2120 | 2070 | 2410 | 2100 | 2310 | 2500 | 1130 | 817 | 1250 | | 8 | 1830 | 2410 | 2200 | 2110 | 2060 | 2390 | 2490 | 2120 | 2290 | 1050 | 880 | 1210 | | 9 | 1820 | 2330 | 2220 | 2140 | 2060 | 2360 | 2640 | 1930 | 2170 | 962 | 880 | 1160 | | 10 | 1830 | 2290 | 2200 | 2080 | 2100 | 2370 | 2480 | 1690 | 2090 | 926 | 822 | 1120 | | 11 | 1810 | 2270 | 2190 | 2090 | 2100 | 2400 | 2420 | 1590 | 2090 | 960 | 744 | 1090 | | 12 | 1830 | 2240 | 2170 | 2110 | 2080 | 2130 | 2660 | 1620 | 2280 | 934 | 773 | 1460 | | 13 | 1900 | 2220 | 2130 | 2050 | 2050 | 1710 | 2520 | 1970 | 2140 | 817 | 783 | 2780 | | 14 | 2060 | 2220 | 2120 | 2050 | 2050 | 2160 | 2740 | 2320 | 1960 | 823 | 769 | 2290 | | 15 | 2080 | 2280 | 2050 | 2110 | 2030 | 2230 | 3200 | 2660 | 1670 | 779 | 782 | 1960 | | 16 | 1990 | 2250 | 2060 | 2170 | 2080 | 2180 | 3500 | 2890 | 1670 | 739 | 762 | 1830 | | 17 | 1980 | 2190 | 2130 | 2150 | 2080 | 2180 | 3280 | 2920 | 1650 | 745 | 889 | 1760 | | 18 | 1980 | 2170 | 2220 | 2270 | 2070 | 2170 | 3000 | 3360 | 1630 | 770 | 913 | 1660 | | 19 | 1980 | 2130 | 2210 | 2260 | 2070 | 1890 | 2580 | 3510 | 1590 | 724 | 923 | 1630 | | 20 | 1990 | 2140 | 2160 | 1830 | 2070 | 1880 | 2350 | 3190 | 1690 | 692 | 900 | 1660 | | 21 | 2010 | 2190 | 2140 | 1020 | 2130 | 1900 | 2360 | 2580 | 1650 | 673 | 809 | 1680 | | 22 | 2010 | 2190 | 2120 | 1340 | 2260 | 1930 | 2580 | 2210 | 1510 | 676 | 750 | 1680 | | 23 | 2010 | 2180 | 2180 | 2430 | 2260 | 1980 | 2500 | 2040 | 1380 | 665 | 700 | 1640 | | 24 | 2030 | 2160 | 2200 | 2300 | 2200 | 2030 | 2470 | 1860 | 1350 | 662 | 800 | 1610 | | 25 | 2060 | 2140 | 2120 | 2200 | 2310 | 2010 | 2440 | 1820 | 1300 | 651 | 840 | 1560 | | 26
27
28
29
30
31 | 2140
2230
2170
2190
2280
2270 | 2140
2170
2130
2090
2100 | 2080
2130
2100
2110
2170
2120 | 2200
2100
2100
2130
2110
2140 | 2350
2380
2470
2610 | 2050
2340
2560
2700
2760
2720 | 2320
2150
2110
2150
2280 | 1900
2050
2060
2020
2210
2310 | 1230
1240
1240
1420
1780 | 645
692
732
769
795
846 | 819
988
1200
1150
1050
1020 | 1520
1560
1490
1470
1470 | | TOTAL | 61230 | 67360 | 66730 | 64280 | 62520 | 69510 | 76030 | 71210 | 53620 | 27667 | 26775 | 46170 | | MEAN | 1975 | 2245 | 2153 | 2074 | 2156 | 2242 | 2534 | 2297 | 1787 | 892 | 864 | 1539 | | MAX | 2280 | 2530 | 2340 | 2430 | 2610 | 2760 | 3500 | 3510 | 2660 | 1540 | 1200 | 2780 | | MIN | 1800 | 2090 | 2050 | 1020 | 2010 | 1710 | 1890 | 1590 | 1230 | 645 | 700 | 1090 | | AC-FT | 121400 | 133600 | 132400 | 127500 | 124000 | 137900 | 150800 | 141200 | 106400 | 54880 | 53110 | 91580 | CAL YR 1987 TOTAL 1137320 MEAN 3116 MAX 9120 MIN 1480 AC-FT 2256000 WTR YR 1988 TOTAL 693102 MEAN 1894 MAX 3510 MIN 645 AC-FT 1375000 #### GUNNISON RIVER BASIN 177 ## 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued (Irrigation network station) (National stream-quality accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1931 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1935 to September 1974, September 1975 to current year. WATER TEMPERATURES: April 1949 to
September 1974, September 1975 to current year. INSTRUMENTATION. -- Water-quality monitor since September 1975 REMARKS .-- Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens several days during July and September 1974; minimum, 194 microsiemens June 6, 1979. WATER TEMPERATURE: Maximum, 30.0°C Aug. 13, 1958; minimum, 0.0°C on many days during winter months most EXTREMES FOR CURRENT YEAR .-- INSPECTIFIC CONDUCTANCE: Maximum recorded, 1,480 microsiemens Aug. 25 (may have been higher during period of missing record August 4-24); minimum recorded, 560 microsiemens Apr. 18, 19 and May 18. WATER TEMPERATURES: Maximum, 26.1°C July 29 (may have been higher during period of missing record Aug.4-24); minimum, 0.0°C several days in winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE
NOV | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | |---|---|---|---|---|--|---|---|---|--|--|---|---| | 10
FEB | 0800 | 2340 | 905 | 8.1 | 7.0 | 6.4 | 11.2 | K18 | 74 | 360 | 89 | 33 | | 02 | 1500 | 2160 | 730 | 8.3 | 1.5 | 6.8 | 12.2 | К2 | 550 | 270 | 68 | 25 | | APR
05
JUN | 1420 | 2460 | 598 | 8.1 | 7.5 | 13 | 9.5 | K52 | 130 | 220 | 56 | 20 | | 22
AUG | 1330 | 1500 | 1030 | 8.2 | 20.0 | 14 | 7.6 | К92 | 350 | 440 | 120 | 35 | | 16
SEP | 1130 | 737 | 1410 | 8.3 | 22.0 | 39 | 7.2 | 69 | К93 | 590 | 150 | 51 | | 22 | 1450 | 1800 | 1220 | 8.3 | 15.5 | 50 | 8.1 | 97 | K110 | 540 | 140 | 46 | | | | | | | | | | | | | | | | DA TE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SORP-
TION
RATIO | POTAS -
SIUM,
DIS -
SOLVED
(MG/L
AS K) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HC03 | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | SULFATE
DIS -
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
10 | DIS-
SOLVED
(MG/L | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L | BONATE WATER DIS IT FIELD MG/L AS | BONATE WATER DIS IT FIELD MG/L AS | LINITY WAT DIS TOT IT FIELD MG/L AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | | NOV
10
FEB
02 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE WATER DIS IT FIELD MG/L AS HC03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI -
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
10
FEB
02
APR
05 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HC03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DIS -
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SI02) | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI -
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
10
FEB
02
APR
05
JUN
22 | DIS-
SOLVED
(MG/L
AS NA)
52 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HC03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DIS-
SOLVED
(MG/L
AS SO4)
290 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
7.4
7.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
10
FEB
02
APR
05
JUN
22
AUG
16 | DIS-
SOLVED
(MG/L
AS NA)
52
42 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K)
3.3
2.9 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HC03 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DIS -
SOLVED
(MG/L
AS SO4)
290
230 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
7.4
7.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.40
0.30 | DIS-
SOLVED
(MG/L
AS
SI02) | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
603
471
379 | SUM OF
CONSTI -
TUENTS,
DIS-
SOLVED
(MG/L)
574
469
375 | | NOV
10
FEB
02
APR
05
JUN
22 | DIS-
SOLVED
(MG/L
AS NA)
52
42
33
59 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K)
3.3
2.9
2.3
3.1 | BONATE WATER DIS IT FIELD MG/L AS HC03 151 148 150 146 | BONATE WATER DIS IT FIELD MG/L AS CO3 6 0 0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DIS -
SOLVED
(MG/L
AS SO4)
290
230
170
400 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
7.4
7.8
5.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
0.40
0.30
0.30 | DIS-
SOLVED
(MG/L
AS
SIO2)
15
13 | RESIDUÉ
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
603
471
379
762 | SUM OF
CONSTI -
TUENTS,
DIS-
SOLVED
(MG/L)
574
469
375
728 | K Based on non-ideal colony count ## GUNNISON RIVER BASIN ## 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | DIS-
D SOLVE
(TONS
PER | NITRATE D DIS- SOLVED (MG/L | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS -
PHOROUS
ORTHO,
DIS -
SOLVED
(MG/L
AS P) | |------------------------|--|---------------------------------|-------------------------------|---|---|--|---|--|---|---|---|--| | NOV
10
FEB
02 | 0.8 | _ | | <0.01
<0.01 | 0.82 | 0.03 | 0.02 | 0.17
0.48 | 0.20 | 0.02 | 0.01 | <0.01
<0.01 | | APR 05 | 0.5 | , | | <0.01 | 0.38 | 0.02 | 0.05 | 0.48 | 0.50 | 0.08 | 0.02 | <0.01 | | JUN | _ | _ | | | - | | | | _ | 0.10 | 0.02 | <0.01 | | 22
AUG
16 | 1.0 | | 1.47 | 0.03 | 1.50 | 0.05 | 0.08 | 0.95 | 1.0
0.60 | 0.10 | 0.02 | <0.01 | | SEP | | • | 1.79 | 0.01 | 1.80 | 0.07 | 0.06 | 0.53 | | | _ | | | 22 | 1.2 | 4 4420 | | <0.01 | 1.20 | 0.03 | <0.01 | 0.57 | 0.60 | 0.12 | 0.05 | 0.02 | | DAI | re ' | I
IIME (| DIS- D
OLVED SO
UG/L (U | ENIC BARI
IS- DIS
LVED SOLV
G/L (UC
AS) AS | IUM, LIU
5- DIS
VED SOL | S- DI
.VED SOL
G/L (UC | S- DIS
VED SOL | IM, COBA
S- DIS
VED SOLV | S- DIS
VED SOL | S- DI
VED SOL
S/L (UC | S- DI
VED SOL
J/L (UG | S-
VED | | NOV
10 | | 0800 | 10 | 2 | 50 | <0.5 | 2 | | <3 | 3 | 5 | < 5 | | APR
05 | | 1420 | <10 | 1 | 51 | <0.5 | <1 | <1 | < 3 | 2 | 7 | < 5 | | AUG
16
| | 1130 | 10 | 3 | 54 | 40. 5 | <1 | <1 | < 3 | 1 | 7 | < 5 | | SEP
22 | • | 1450 | 10 | 2 | 59 | <0.5 | < 1 | <1 | < 3 | 2 | 10 | < 5 | | AF | DATE DV 10 PR 05 | : | DIS-
D SOLVED
UG/L | MERCURY DIS- SOLVED (UG/L AS HG) <0.1 <0.1 | MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) <10 <10 <10 10 | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
6
2 | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
1.0
1.0
<1.0 | STRON-
TIUM,
DIS-
SOLVED (UG/L
AS SR)
910
520
1700 | VANA - DIUM, DIS- SOLVED (UG/L AS V) <6 <6 <6 <6 | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
7
<3
<3 | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|------|---|--|--|---| | NOV | | | | | | | 10
FEB | 0800 | 2340 | 50 | 316 | 87 | | 02 | 1500 | 2160 | 34 | 198 | 64 | | APR | | | | | | | 05 | 1420 | 2460 | 110 | 731 | 80 | | JUN
22 | 1330 | 1500 | 87 | 352 | 86 | | AUG | .550 | 1500 | 0, | 372 | 00 | | 16 | 1130 | 737 | 137 | 273 | 78 | | SEP | | | | | | | 22 | 1450 | 1800 | 197 | 9 5 7 | 83 | 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued | | SPECIFIC | CONDUCTANC | E (MICROS | SIEMENS/C | | 25 DEC. G),
MEAN VALUES | WATER | YEAR | OCTOBER | 1987 | TO SEPTEMBER | 1988 | | |----------------------------------|--|--------------------------|-------------------------------------|---------------------------------|---------------------------------|--|---------------------------------|------|--|---------------------------------|--|--|--------------------------------------| | DA Y | OCT | NOV | DEC | JAN | FEB | MA R | APR | | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1020
1040
1040
1040
1040 | 951
940
906 | 757
745
745
743
743 | 700

782 | 729

701 | 661
683
692
680
726 | 610
612
614
610
595 | | 614
579
578
587
603 | 737
750
771
820
875 | 1060
1110
1180
1230
1250 | 1380
1340
1370 | 1410
1360
1220
1220
1230 | | 6
7
8
9
10 | 1040
1030
1030
1020
1020 | 889
889
888 | 744
740
742
735
721 | 792
790
761
727
720 | 697
680
641
629
640 | 811
716
680
648
643 | 583
616
681
654
616 | | 618
611
612
619
631 | 792
743
728
736
752 | 1260
1290
1340
1330
1340 | | 1240
1230
1230
1230
1240 | | 11
12
13
14
15 | 1020
1010
1010
1020
1020 | 873
869
869 | 727

 | | 637
640
635
638
639 | 643
623
620
622
617 | 608
605
587
588
590 | | 652
691
742
685
629 | 765
785
788
797
812 | 1340
1360
1340
1370
1370 | | 1280
1400
1390
1400
1340 | | 16
17
18
19
20 | 1030
1040
1040
1040
1030 | 859
857
837 |

683 | | 640
642
641
643
644 | 664
647
617
617
614 | 587
578
568
573
577 | | 590
577
575
582
583 | 837
864
884
906
960 | 1420
1410
1390 | | 1300
1260
1250
1230
1210 | | 21
22
23
24
25 | 1020
1020
1020
1020
1020 | 816
816
807 | 687
688
690
696
699 | | 645
646
645
658
644 | 617
622
625
630
636 | 592
626
634
632
634 | | 585
593
603
616
628 | 967

 | 1380
1380
1380
1400
1400 | 1450 | 1190
1180
1160
1140
1130 | | 26
27
28
29
30
31 | 1010
1020
958
940
937
941 | 788
786
775
772 | 700

702
697
702
706 | 750
758 | 643
647
653
655 | 643
630
608
608
609
610 | 619
611
618
630
636 | | 655
719
724
705
737
765 | 1150
1090 | 1390
1380
1370
1360
1350
1370 | 1440
1430
1430
1410
1400
1400 | 1130
1110
1100
1100
1090 | MEAN ## GUNNISON RIVER BASIN ## 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |----------------------------------|--------------------------------------|---|--|--|----------------------------------|----------------------------------|--|--------------------------------------|--|--------------------------------------|---------------------------------------|--------------------------------------| | | OCT | DBER | NOVE | MBER | DE C | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 15.0
15.2
15.1
14.9
14.8 | 11.6
11.8
11.8
11.6 | 10.9
10.8
11.0
10.6
10.1 | 9.5
9.9
9.8
9.1
8.6 | 3.7
3.8
4.4
4.7
4.7 | 2.2
2.4
2.5
3.4
3.7 | 1.8
1.6
.7
.0 | .6
.0
.0 | 1.5
2.4
3.2
2.9
2.9 | .2
1.7
1.9
2.0
1.8 | 5.3
6.7
7.4
7.3
7.7 | 4.1
5.5
5.5
5.5
5.2 | | 6
7
8
9
10 | 14.9
14.6
14.3
14.3 | 11.6
11.6
12.0
11.4
11.7 | 10.3
9.7
8.8
8.8
8.1 | 9.0
8.6
7.6
7.3
7.0 | 5.6
6.5
5.0
4.4
4.9 | 4.7
4.3
3.6
3.4
3.3 | .0
.9
2.0
2.0
1.8 | .0
.0
1.0
.9 | 3.7
2.8
1.8
1.5 | 1.4
.0
.0
.0 | 7.7
7.5
6.6
6.3
5.5 | 5.7
4.9
4.4
5.0
3.8 | | 11
12
13
14
15 | 14.5
13.5
12.6
11.6
12.7 | 11.5
11.5
11.8
10.9
10.6 | 8.6
8.1
7.3
7.3
6.8 | 6.9
6.7
6.1
6.6
5.2 | 5.6
3.8
2.0
1.8
2.0 | 4.1
2.2
.9
.7 | 2.0
2.0
1.8
1.7 | .7
1.0
.2
.0 | 1.7
2.3
3.1
3.6
3.8 | .4
1.0
1.3
1.5 | 5.3
6.2
5.8
4.4
4.4 | 3.6
4.9
3.4
1.4
2.2 | | 16
17
18
19
20 | 13.1
12.2
11.7
11.5
11.1 | 11.0
10.0
9.4
9.1
8.5 | 5.5
4.8
4.3
4.4
5.0 | 4.4
3.9
3.1
2.9
3.0 | 1.2
1.2
2.5
3.1
3.7 | .0
.3
.9
2.3
2.9 | .0
.2
1.6
2.5 | .0
.0
.3
1.2 | 3.6
3.6
3.7
3.7
3.5 | 1.1
1.3
1.4
1.1 | 5.0
5.1
5.7
6.9
8.6 | 2.0
3.0
3.4
3.6
4.8 | | 21
22
23
24
25 | 10.3
10.2
9.4
10.7
12.1 | 8.0
7.7
7.9
8.5
10.1 | 4.8
4.7
5.2
5.4
4.5 | 3.5
3.4
3.7
4.0
3.6 | 3.9
3.8
2.9
3.3
3.0 | 3.0
2.6
1.4
2.3
2.0 | 1.6
.2
.0
1.2 | .0
.0
.0 | 2.9
3.3
4.1
4.6
5.0 | .9
1.5
2.1
2.4
2.8 | 9.3
9.6
9.4
9.2
9.6 | 5.9
7.1
6.6
6.7
6.6 | | 26
27
28
29
30
31 | 12.1
11.4
10.4
10.3
10.6 | 10.5
9.3
8.9
8.9
9.5
9.3 | 4.1
4.6
4.6
3.5
3.6 | 3.5
3.4
3.4
2.3
2.2 | 1.9
.9
.9
1.2
1.0 | .0
.0
.2
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 5.3
5.6
6.0 | 2.9
3.1
3.4
3.8 | 10.5
10.3

5.1
5.5
6.0 | 7.0
7.9

3.7
4.3
4.8 | | MONTH | 15.2 | 7.7 | 11.0 | 2.2 | 6.5 | .0 | | | 6.0 | .0 | | | | | APF | RIL | MA | Y | Jt | UNE | Jī | ULY | AUG | GUST | SEPTI | EMBER | | 1
2
3
4
5 | 7.3
8.7
9.5
8.9
9.5 | 4.7
5.7
7.1
7.9
7.1 | 10.7
12.0
12.5
13.6 | 8.5
8.2
9.6
10.3 | 16.2
18.6
20.1

21.1 | 10.5
13.7
15.6

17.9 | 23.9
24.1
23.2
23.0
22.8 | 19.6
20.3
20.8
21.1
20.1 | 24.3
23.0
25.3 | 22.0
21.3
21.7 | 21.5
21.2
20.9
20.8
20.3 | 18.6
17.6
17.9
17.6
17.5 | | 6
7
8
9
10 | 11.5
12.9

9.7 | 7.1
9.0

7.6 | 12.6
11.6
12.0
14.1
15.9 | 10.5
9.1
8.9
10.4
11.3 | 19.1
19.6
19.7 | 16.6
16.3
16.6
16.5 | 23.3
24.3
24.6
24.4
24.0 | 19.5
20.5
21.1
22.2
21.0 |

 |

 | 19.6
19.4
19.2
18.7
17.6 | 16.8
16.6
16.4
16.2
15.7 | | 11
12
13
14
15 | 10.6
11.1
12.2
12.4
12.8 | 6.2
8.0
8.8
9.9
10.1 | 17.4
18.0
17.4
17.9 | 12.4
13.7
13.6
14.6
13.6 | 19.0
18.6
19.0

20.1 | 16.1
13.4
14.6

16.0 | 23.2
24.1
25.3
25.1
23.8 | 20.2
20.7
21.4
22.4
22.7 |

 |

 | 15.5
14.1
13.7
14.3
15.1 | 14.2
13.3
12.1
12.6
12.3 | | 16
17
18
19
20 | 10.2

11.0
12.9 | 9.2

8.0
9.0 | 17.1
15.9
14.2
13.4
12.4 | 14.1
14.2
12.5
11.7
9.5 | 20.9
20.4

21.3
21.5 | 16.4
15.8

17.0
18.7 | 24.4
24.8
25.0
25.1
25.2 | 21.4
21.1
21.1
21.2
20.5 |

 |

 | 16.0
16.6
16.8
14.9
17.1 | 12.9
13.3
14.5
12.1
12.1 | | 21
22
23
24
25 | 11.5
10.1
9.7
11.3
12.2 | 10.2
8.3
7.9
8.2
9.1 | 14.3
16.0
17.3
18.3 | 10.1
10.6
10.4
12.1
13.4 | 22.5 | 18.9

 |
25.3
25.5
25.5
26.0
26.0 | 21.2
21.5
21.8
21.4
21.9 |

25.5 | 22.4 | 18.1
16.9
14.9
14.7
15.0 | 15.0
13.7
12.3
12.3
12.2 | | 26
27
28
29
30
31 | 11.2
12.9
13.8
14.8
15.1 | 8.3
8.9
10.8
11.7
12.4 | 17.7
17.8

18.1
15.9
14.4 | 14.4
14.2

15.7
14.4
12.3 | 23.2 | 21.2
19.4 | 25.6
24.0
24.7
26.1
24.7
25.8 | 22.3
21.4
21.7
21.6
22.1 | 23.3
23.8
22.6
21.8
21.8
22.1 | 21.8
20.9
20.5
19.0
19.9 | 14.1
14.1
13.2
13.0
13.1 | 12.4
11.8
11.4
10.4 | | MONTH | | | | | | | 26.1 | 19.5 | | | 21.5 | 10.4 | #### REED WASH BASIN 181 #### 09153290 REED WASH NEAR MACK, CO LOCATION.--Lat 39°12'41", long 108°48'11", in SELSWL sec.27, T.2 N., R.3 W., Ute Meridian, Mesa County, Hydrologic Unit 14010005, on right bank 250 ft upstream from unnamed tributary, 0.4 mi downstream from Peck and Beede Wash, and 3.5 mi east of Mack. DRAINAGE AREA . -- 15.7 mi2. PERIOD OF RECORD. -- October 1975 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,505 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Jan. 1-3, 13, 14, 20-26, and Feb. 5-8. Records good except for estimated daily discharges, which are fair. Flow is mostly return flow and waste water from irrigated lands under Government Highline and Grand Valley Canals. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 13 years, 44.9 ft3/s; 32,530 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 390 ft³/s, July 23, 1983, gage height, unknown, maximum recorded gage height, 6.09 ft, July 24, 1979; minimum daily discharge, 2.0 ft³/s, Jan. 31, 1979. DISCHARGE CHRIC GEET DER SECOND WATER VEAR OCTORER 1087 TO SEPTEMBER 1088 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 110 ft³/s at 0900 Aug. 14, gage height, 4.10 ft; minimum daily, 3.6 ft³/s, Apr. 6-7. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|--|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | DAY | ОСТ | NOV | DE C | JAN | FEB | MA R | APR | МА У | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 78
78
80
78
86 | 77
69
21
14
13 | 8.3
8.5
8.5
8.6 | 7.2
6.9
6.6
6.4
6.3 | 4.7
4.7
4.8
4.4
4.3 | 5.0
4.7
4.3
4.4
4.4 | 3.8
3.9
3.9
3.7 | 52
49
43
38
43 | 58
61
62
73
84 | 58
59
62
75
68 | 69
70
72
70
72 | 63
65
63
65 | | 6
7
8
9 | 80
77
80
87
85 | 16
13
12
12
12 | 8.4
8.2
14
84
79 | 6.3
6.3
6.1
6.0 | 4.2
4.1
4.0
4.0
4.0 | 4.4
4.2
4.1
4.1 | 3.6
3.6
27
65
70 | 49
52
49
57
61 | 83
72
69
70
53 | 67
66
60
56
64 | 80
82
92
97
90 | 68
67
75
73
74 | | 11
12
13
14
15 | 86
82
83
91
82 | 12
11
10
11
10 | 80
77
75
66
10 | 6.0
5.9
5.8
5.8 | 4.1
4.1
4.2
4.2
4.2 | 4.2
4.2
4.3
4.4
4.7 | 63
62
63
62
71 | 64
64
70
66
63 | 55
58
58
50
50 | 72
71
64
66
62 | 88
87
92
95
90 | 72
79
76
80
76 | | 16
17
18
19
20 | 78
77
76
78
79 | 9.3
9.1
8.9
8.5
8.5 | 8.5
8.3
8.5
8.5
8.3 | 5.6
5.6
5.5
5.4 | 4.2
4.2
4.2
4.2
4.2 | 4.7
4.4
4.4
4.0
3.9 | 66
64
63
53
54 | 61
59
62
62
58 | 55
55
64
58
59 | 67
62
62
63
59 | 89
82
87
90
76 | 79
74
75
70
65 | | 21
22
23
24
25 | 77
76
73
72
74 | 8.1
8.2
8.2
8.3
8.5 | 8.1
8.0
8.0
8.0
7.8 | 5.2
5.1
5.0
5.0 | 4.2
4.3
4.6
4.3
5.4 | 4.0
4.2
4.1
4.1
4.1 | 58
59
57
69
57 | 65
63
61
53
54 | 53
55
63
66
60 | 61
62
68
66
64 | 72
67
71
75
77 | 73
83
81
81
76 | | 26
27
28
29
30
31 | 74
74
71
76
78
80 | 8.5
8.5
8.7
8.7
8.4 | 7.7
7.5
7.5
7.5
7.5
7.4 | 5.0
5.0
4.9
4.8
4.7 | 7.4
6.1
5.2
4.6 | 4.1
4.0
3.9
4.2
4.1 | 55
54
50
50
47 | 59
60
59
53
54
53 | 62
60
59
60
58 | 62
63
62
62
66
74 | 71
74
70
68
65
69 | 68
67
71
70
70 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2446
78.9
91
71
4850 | 441.4
14.7
77
8.1
876 | 671.1
21.6
84
7.4
1330 | 175.8
5.67
7.2
4.7
349 | 131.1
4.52
7.4
4.0
260 | 131.9
4.25
5.0
3.9
262 | 1365.3
45.5
71
3.6
2710 | 1756
56.6
70
38
3480 | 1843
61.4
84
50
3660 | 1993
64.3
75
56
3950 | 2449
79•0
97
65
4860 | 2168
72.3
83
63
4300 | CAL YR 1987 TOTAL 16467.7 MEAN 45.1 MAX 102 MIN 2.8 AC-FT 32660 WTR YR 1988 TOTAL 15571.6 MEAN 42.5 MAX 97 MIN 3.6 AC-FT 30890 #### COLORADO RIVER MAIN STEM #### 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE LOCATION.--Lat 39°07'45", long 109°01'36", in SE4NW4 sec.5, T.11 S., R.104 W., Mesa County, Hydrologic Unit 14010005, on right bank 0.7 mi downstream from McDonald Creek, 12 mi southwest of Mack, Colo., and 1.5 mi upstream from Colorado-Utah State line. DRAINAGE AREA. -- 17,843 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1951 to current year. REVISED RECORDS. -- WRD Colo. 1974: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,325 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 1951, to October 1979, water-stage recorder at site 5.7 mi upstream at different datum. REMARKS.--Estimated daily discharges: Dec. 9 to Feb. 13. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation. (Records include all return flow from irrigated areas). AVERAGE DISCHARGE. -- 37 years, 6,364 ft3/s; 4,611,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 69,800 ft³/s, May 27, 1984, gage height, 16.12 ft, (from highwater mark); minimum daily, 960 ft³/s, Sept. 7, 1956. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 15,400 ft³/s at 0630 May 19, gage height, 5.92 ft; minimum daily, 2,280 ft³/s, July 27. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |----------|--------|------------|-------|----------|---------|------------------------|-----------------|------------|-----------|--------|--------|---------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 3980 | 4640 | 4160 | 3100 | 3230 | 5280 | 5260 | 5790 | 10200 | 7320 | 2780 | 3110 | | ż | 3920 | 5000 | 4070 | 2900 | 2990 | 5210 | 4980 | 7120 | 8820 | 6700 | 2990 | 3430 | | 2 | 3900 | 5400 | 4130 | 2950 | 3280 | 4690 | 4840 | 7130 | 7840 | 6210 | 2960 | 3310 | | 3
4 | 3870 | 5060 | 4130 | 3060 | | | 4880 | 6460 | 8350 | 6030 | 2780 | 3050 | | | | | | | 3310 | 4990 | | | | | | | | 5 | 3890 | 4860 | 4340 | 3150 | 3310 | 4910 | 5000 | 5920 | 10700 | 5920 | 2580 | 3060 | | 6 | 3940 | 5490 | 4530 | 3250 | 2990 | 4820 | 4500 | 5860 | 13400 | 5680 | 2520 | 3020 | | 7
8 | 3970 | 5210 | 4360 | 3500 | 2990 | 4770 | 4630 | 6370 | 13800 | 5290 | 2720 | 3020 | | 8 | 3910 | 5100 | 4200 | 3200 | 3200 | 4830 | 4980 | 6440 | 13400 | 4700 | 2850 | 3000 | | 9 | 3880 | 4970 | 4000 | 3060 | 3350 | 4790 | 5650 | 5960 | 12700 | 4340 | 2910 | 2900 | | 10 | 3990 | 4830 | 3800 | 2640 | 3410 | 4700 | 5810 | 5410 | 12100 | 4070 | 2800 | 2890 | | 10 | 3330 | 4030 | 5000 | 2040 | 3410 | 4700 | 5010 | 7410 | 12 100 | 4070 | 2000 | 2030 | | 11 | 4060 | 4770 | 3980 | 2680 | 3400 | 4700 | 5320 | 5040 | 11700 | 3920 | 2630 | 2990 | | 12 | 4130 | 4740 | 3820 | 2840 | 3390 | 4530 | 5200 | 4850 | 11700 | 3840 | 2530 | 3410 | | 13 | 4190 | 4730 | 3500 | 2960 | 3570 | 4110 | 5130 | 5350 | 10700 | 3660 | 2590 | 5510 | | 14 | 4420 | 4600 | 3300 | 2740 | 4130 | 4100 | 5470 | 6670 | 9950 | 3430 | 2570 | 5830 | | 15 | 4690 | 4700 | 3200 | 2680 | 4220 | 4470 | 6320 | 8530 | 8260 | 3280 | 2570 | 4900 | | | 4090 | 4700 | 3200 | 2000 | 4220 | 4410 | 0320 | 0,30 | 0200 | 3200 | 2310 | 4 300 | | 16 | 4530 | 4650 | 3400 | 2600 | 4220 | 4410 | 7170 | 10300 | 7690 | 2930 | 2630 | 4630 | | 17 | 4470 | 4580 | 3460 | 2760 | 4240 | 4480 | 7260 | 11400 | 7630 | 2820 | 2650 | 4370 | | 18 | 4440 | 4500 | 3520 | 2860 | 4150 | 4340 | 7280 | 13100 | 7520 | 2770 | 2790 | 4150 | | 19 | 4450 | 4400 | 3700 | 2940 | 4110 | 4240 | 6920 | 15000 | 7380 | 2710 | 2820 | 4060 | | 20 | 4460 | 4340 | 3800 | 2990 | 4140 | 4090 | 6310 | 14500 | 7460 | 2550 | 2810 | 3980 | | | | - | | | | | | | | | | | | 21 | 4420 | 4400 | 3860 | 3000 | 4170 | 4120 | 6200 | 12500 | 7950 | 2460 | 2750 | 4020 | | 22 | 4420 | 4390 | 3840 | 2920 | 4490 | 4180 | 6710 | 10700 | 7730 | 2330 | 3240 | 4080 | | 23 | 4330 | 4360 | 3800 | 3200 | 4670 | 4330 | 6850 | 9070 | 7530 | 2340 | 3300 | 4080 | | 24 | 4380 | 4380 | 3500 | 3540 | 4600 | 4380 | 6720 | 8 100 | 7130 | 2360 | 3210 | 3990 | | 25 | 4460 | 4290 | 3360 | 3600 | 4680 | 4400 | 6420
 7900 | 7540 | 2350 | 3100 | 3920 | | 26 | 4520 | 4280 | 3400 | 3600 | 4690 | 4490 | 6050 | 8190 | 7110 | 2290 | 2980 | 3750 | | 27 | 4450 | 4300 | 3480 | 3440 | 4800 | 4610 | 5670 | 8560 | 6730 | 2280 | 3160 | 3670 | | 28 | 4440 | 4260 | 3550 | 3300 | | | | | | 2360 | | | | 20 | | | | 3300 | 4890 | 4870 | 5420 | 9350 | 6510 | | 3300 | 3 5 50 | | 29
30 | 4470 | 4180 | 3600 | 3440 | 5180 | 5210 | 5350 | 10000 | 6270 | 2380 | 3370 | 3440 | | | 4590 | 4080 | 3540 | 3310 | | 5350 | 5 3 50 | 11400 | 7450 | 2370 | 3360 | 3450 | | 31 | 4700 | | 3300 | 3280 | | 5280 | | 12100 | | 2500 | 3240 | | | TOTAL | 132270 | 139490 1 | 16740 | 95490 | 113800 | 143680 | 173650 | 265070 | 273250 | 114190 | 89490 | 112570 | | MEAN | 4267 | 4650 | 3766 | 3080 | 3924 | 4635 | 5788 | 8551 | 9108 | 3684 | 2887 | 3752 | | MA X | 4700 | 5490 | 4530 | 3600 | 5180 | 5350 | 7280 | 15000 | 13800 | 7320 | 3370 | 5830 | | MIN | 3870 | 4080 | 3200 | 2600 | 2990 | 4090 | 4500 | 4850 | 6270 | 2280 | 2520 | 2890 | | AC-FT | 262400 | | 31600 | 189400 | 225700 | 285000 | 344400 | 525800 | 542000 | 226500 | 177500 | 223300 | | 1 | 202400 | 210100 2 | ,,000 | ,09700 | 227100 | 20,000 | 00 | J2 J 0 0 0 | J42000 | 220,00 | 111500 | | CAL YR 1987 TOTAL 2384700 MEAN 6533 MAX 22000 MIN 3200 AC-FT 4730000 WTR YR 1988 TOTAL 1769690 MEAN 4835 MAX 15000 MIN 2280 AC-FT 3510000 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National stream-quality accounting network station) PERIOD OF RECORD. -- October 1979 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1979 to current year. WATER TEMPERATURE: October 1979 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1979. REMARKS.--Water-quality data collection was moved 5.5 miles upstream to this site from previous site 09163530. Water-quality records for this site are considered to be equivalent to data obtained at old site. Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,940 microsiemens Aug. 13, 1981; minimum, 277 microsiemens June 11, 1985. WATER TEMPERATURE: Maximum, 27.0 °C Aug. 7-9, 1981; minimum, 0.0 °C on many days during winter months EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 1,720 microsiemens Aug. 22; minimum, 440 microsiemens June 9. WATER TEMPERATURE: Maximum, 25.7 C July 25, 29, and 30; minimum, 0.0 C on many days during winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STRE
FLO
INST
TANE
(CF | AM- C
W, C
AN- D
OUS A | PE-
IFIC
ON-
UCT-
NCE
S/CM) | PH
(STAND-
ARD
UNITS) | TEMPE
ATUR
WATE
(DEG | E
R | TUR-
BID-
ITY
FTU) | I
SC | YGEN,
DIS-
DLVED
4G/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREETOCOCO
FECAL
KF AGA
(COLS
PER
100 MI | CI
KŔ | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | |------------------|----------------|------------------------------------|--|--|-----------------------------------|-------------------------------|--|-----------------------------|--|-------------------------------------|--|--|--|---| | OCT 27 | 1200 | 4400 | | 1300 | 8.2 | 11 | .0 | 57 | | 8.9 | 48 | 8 | 35 | 460 | | NOV
24 | 1300 | 4440 | | 1150 | 8.3 | 3 | •5 | - | - | | | | | 380 | | DEC
16 | 1300 | 3650 | | 1080 | 8.2 | 0 | .0 | 3.5 | | 12.6 | к3 | ! | 53 | 350 | | JAN
27
FEB | 1040 | 3580 | | 1030 | 8.2 | 0 | . 0 | - | - | | | | | 310 | | 17
MAR | 1200 | 4220 | | 1010 | 8.1 | 1 | . 0 | 15 | | 12.2 | К6 | 15 | 50 | 310 | | 18
APR | 1200 | 4450 | | 1010 | 8.2 | 4 | • 5 | - | - | | | • | | 290 | | 12
MAY | 1300 | 5460 | | 834 | 8.2 | 10 | • 5 | 75 | | 9.1 | K 56 | 1 | 0 | 270 | | 24
JUN | 1000 | 8220 | | 675 | 8.2 | 14 | • 5 | - | - | | | | | 240 | | 14
JUL | 1300 | 10200 | | 607 | 7.7 | 16 | .0 | 57 | | 8.6 | 100 | 2 | 0 | 220 | | 26
AUG | 1300 | 2300 | | 1420 | 8.3 | 23 | • 5 | - | - | | | | | 540 | | 30
SEP | 1300 | 3430 | | 1400 | 8.2 | 21 | • 5 | 100 | | 6.7 | 210 | 5 | 0 | 540 | | 29 | 1200 | 3380 | | 1300 | 8.4 | 13 | • 5 | - | - | | | | | 480 | | DATE | DI
SO
(M | CIUM
S-
LVED
G/L
CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODII
DIS-
SOLVI
(MG, | UM, A
- SOR
ED TI
/L RAT | D-
P-
ON : | POTAS
SIUM
DIS-
SOLVE
(MG/L
AS K) | - BO
DI
D F | CAR-
NATE
ATER
S IT
IELD
/L AS
CO3 | CAR-BONATE WATE DIS 1 FIEL MG/L CO1 | TE LINI
TR WAT
TT TOT
D FIE
AS MG/L | TY A DIS LI IT LD (AS | LKA-
NITY
LAB
MG/L
AS
CACO3 | | | 0 CT
27 | 12 | :0 | 39 | 100 | | 2 | 4.7 | | 202 | | 0 | 155 17 | 0 | | | NOV
24 | 9 | 6 | 33 | 100 | | 2 | 3.6 | | | | | 16 | 0 | | | DEC 16 | 8 | 7 | 32 | 95 | | 2 | 3.5 | | 174 | | 0 | 141 15 | 54 | | | JAN
27 | 8 | 1 | 27 | 91 | | 2 | 4.0 | | | | | 19 | 7 | | | FEB
17
MAR | 7 | 8 | 27 | 90 | | 2 | 4.2 | | 172 | | 0 | 137 1 | 5 | | | 18
APR | 7 | 5 | 26 | 89 | | 2 | 3.4 | | | | | 14 | 2 | | | 12
MAY | 6 | 9 | 23 | 69 | | 2 | 3.3 | | 161 | | 0 | 132 13 | 0 | | | 24
JUN | 6 | 4 | 20 | 51 | | 1 | 2.0 | | | | | 11 | 5 | | | 14
JUL | 5 | 8 | 17 | 41 | | 1 | 2.2 | | 117 | | 0 | 96 10 | 3 | | | 26
AUG | 14 | 0 | 46 | 120 | | 2 | 4.4 | | | | | 16 | 2 | | | 30
SEP | 14 | 0 | 46 | 120 | | 2 | 4.9 | | 205 | | 0 | 168 17 | '5 | | | 29 | 12 | 0 | 44 | 110 | | 2 | 3.6 | | | | | 16 | 4 | | | K Base | d on no | n-idea | l colon | y count | t | | | | | | | | | | K Based on non-ideal colony count ## COLORADO RIVER MAIN STEM # O9163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI- | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO -
GEN,
NITRATE
DIS -
SOLVED
(MG/L
AS N) | | |-----------|-----------|---|---|--|---|--|--|---|--|---|--| | | OCT 27 | 390 | 88 | 0.40 | 11 | 878 | 860 | 1 10 | 10400 | 0.790 | | | | NOV 24 | 300 | 86 | 0.30 | 12 | | 730 | | 8750 | | | | | DEC 16 | 270 | 84 | 0.30 | 11 | 715 | 670 | 0.97 | 7050 | 0.650 | | | | JAN
27 | 240 | 95 | 0.40 | 12 | | 647 | 0.88 | 6250 | | | | | FEB 17 | 230 | 87 | 0.40 | 11 | 624 | 618 | 0.85 | 7110 | 0.560 | | | | MAR 18 | 230 | 85 | 0.30 | 9.9 | | 605 | 0.82 | 7270 | | | | | APR 12 | 190 | 57 | 0.30 | 11 | 523 | 503 | 0.71 | | | | | | MA Y 24 | 170 | 38 | 0.30 | 11 | | 428 | 0.58 | 9490 | | | | | JUN 14 | 150 | 32 | 0.20 | 8.7 | 381 | | | 10500 | 0.410 | | | | JUL 26 | 480 | 110 | 0.30 | | 201 | 373
1010 | | 6270 | | | | | AUG 30 | 470 | 100 | 0.40 | 7.2 | | | | 9720 | 1.09 | | | | SEP 29 | | 98 | | 12 | 1050 | 1010 | | | | | | | 29 | 430 | 90 | 0.40 | 9.3 | | 917 | 1.25 | 8370 | | | | | DA TE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS -
PHOROUS
DIS -
SOLVED
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | | OCT 27 | 0.01 | 0.80 | 0.02 | 0.04 | 3.4 | 3.4 | 0.01 | <0.01 | <0.01 | | | | NOV 24 | | 0.77 | | | | | | | | | | | DEC
16 | 0.02 | 0.67 | 0.03 | 0.03 | | <0.20 | 0.02 | 0.01 | <0.01 | | | | JAN
27 | | 0.63 | | | | | | | | | | | FEB 17 | 0.01 | 0.57 | 0.06 | 0.08 | 0.34 | 0.40 | 0.08 | 0.03 | 0.04 | | | | MAR
18 | | 0.39 | | | | | | | | | | | APR 12 | <0.01 | 0.47 | 0.09 | 0.09 | 0.51 | 0.60 | 0.20 | 0.04 | 0.02 | | | | MAY 24 | | 0.52 | | | | | | | | | | | JUN
14 | 0.01 | 0.42 | 0.02 | 0.02 | 0.38 | 0.40 | 0.07 | 0.03 | <0.01 | | | | JUL
26 | | 0.96 | | 0.02 | 0.30 | | | 0.05 | | | | | AUG 30 | 0.01 | 1,10 | 0.08 | 0.06 | 0.52 | 0.60 | 0.04 | 0.03 | <0.01 | | | | SEP 29 | | | | | | 0.00 | | 0.03 | \0. 01 | | | | 23 | | 0.79 | | | | | | | | | | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | OCT
27 | 1200 |
<10 | 2 | 60 | <0.5 | <1 | <1 | <3 | 5 | 10 | 7 | | FEB 17 | 1200 | 40 | 1 | 53 | <0.5 | 2 | <1 | <3 | 5 | 39 | ر
<5 | | JUN 14 | 1300 | 40 | 1 | 93
45 | <0.5 | <1 | <1 | \ 3 | 5 | 34 | < 5 | | AUG 30 | | | | | | | | | | | | | 30 | 1300 | 100 | 1 | 75 | <0.5 | 3 | <1 | <3 | 20 | 43 | < 5 | # 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY DIS- SOLVED (UG/L AS HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA -
DIUM,
DIS -
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |------------------|--|--|----------------------------------|---|--|---|--|--|--|--| | OCT | | | | | | | | | | | | 27 | 53 | 6 | <0.1 | <10 | 1 | 6 | <1.0 | 1200 | <6 | < 3 | | FEB
17
JUN | 34 | 24 | <0.1 | 10 | 4 | 4 | <1.0 | 750 | <6 | 7 | | 14
AUG | 21 | 5 | <0.1 | <10 | 5 | 3 | 1.0 | 530 | <6 | <3 | | 30 | 67 | 5 | <0.1 | 20 | 2 | 11 | <1.0 | 1600 | <6 | 42 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA' | TE TIME | STREAM
FLOW!
INSTAM
TANEOU
(CFS) | , MENT,
N- SUS-
US PENDED | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|---------|--|---------------------------------|--|---| | OCT | | | | | | | 27 | . 1200 | 4400 | 166 | 1970 | 88 | | FEB
17 | . 1200 | 4220 | 82 | 934 | 63 | | APR | | | | | _ | | 12 | . 1300 | 5460 | 216 | 3180 | 82 | | JUN
14 | . 1300 | 10200 | 189 | 5210 | 68 | | AUG | | | | | | | 30 | . 1300 | 3430 | 350 | 3240 | 92 | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY O CT JUL AUG SEP NOA DE C JAN FEB MA R APR MA Y JUN ------1330 789 770 ---878 8 1310 1190 1130 908 773 1380 ---1300 564 ------------1130 706 530 ---757 1280 27 1240 1430 609 ---777 --------- --- --- --- --- MEAN --- --- --- --- 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued TRMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MA X | MIN | |--|--|--|--|--|--|--|--|--|--|--
--|--| | | OCT | OBER | NOV | EMBER | DE C | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 16.4
16.5
16.6
16.2
16.5 | 13.6
13.2
13.4
13.3
13.6 | 11.1
11.2
11.4
11.1 | 10.5
10.6
10.4
10.2
9.9 | 2.4
2.6
2.9
3.2
3.9 | 1.5
1.6
1.9
2.2
3.2 | .0
.0
.0 | .0 | .5
1.2
2.2
1.5
1.0 | .0
.4
.9
.5 | 7.8
7.8
8.5
8.2
7.9 | 6.7
6.6
6.8
7.0
6.6 | | 6
7
8
9
10 | 16.6
16.5
16.0
15.9
15.6 | 13.3
13.6
13.4
13.1
12.8 | 10.4
10.2
9.9
9.1
8.7 | 9.9
9.5
9.1
8.2
7.7 | 4.8
4.7
5.1
4.4
4.0 | 4.0
4.4
4.2
3.4
3.0 | .0
.0
.1
.4 | .0
.0
.0 | .5
.4
.9
1.0 | .0
.0
.0 | 7.4
6.8
6.1
6.7
6.0 | 6.2
5.5
4.4
4.9
5.1 | | 11
12
13
14
15 | 15.5
15.2
15.0
13.9
14.7 | 12.7
12.7
12.6
11.8
11.7 | 8.2
7.8
7.6
7.3
7.0 | 7.4
7.2
7.0
6.9
6.3 | 3.8
3.3
2.1
.9 | 3.2
2.2
.9
.2 | .4 | .0 | 2.0
2.2
2.4
2.4
2.4 | .4
.6
.9
.7 | 5.8
4.8
5.3
5.2
5.7 | 4.7
4.0
3.2
3.4
4.0 | | 16
17
18
19
20 | 14.6
14.2
13.8
13.5
12.5 | 11.4
11.8
11.2
11.0
9.9 | 6.2
5.5
4.5
4.3
4.4 | 5.4
4.5
3.8
3.4
3.5 | .1
1.0
1.8
2.4
2.4 | .0
.9
1.7
1.6 | .0
.0
.3
.1 | .0
.0
.0 | 2.1
2.6
2.1
2.6
2.9 | .9
.8
.9
.9 | 5.6
5.9
5.9
7.1
8.4 | 4.5
3.7
3.9
4.6
5.8 | | 21
22
23
24
25 | 12.0
11.4
11.5
11.2
12.5 | 9.7
9.0
9.4
10.0
9.7 | 4.3
4.4
4.6
4.4
3.8 | 3.7
3.8
3.9
3.3
3.2 | 2.0
1.8
1.7
1.4 | 1.2
1.0
1.3
.4 | .0 | .0 | 3.5
3.7
4.0
4.3
4.6 | 1.6
2.0
2.3
2.6
3.0 | 9.6
10.1
10.4
9.6
10.1 | 7.1
8.4
8.7
8.4
7.9 | | 26
27
28
29
30
31 | 13.1
12.0
11.2
10.9
11.2
10.8 | 11.0
10.6
10.3
10.1
10.4
9.8 | 4.0
3.4
3.2
3.2
2.6 | 3.3
2.5
2.3
2.3
1.6 | .0 | .0 | .0
.0
.0
.0 | .0 | 5.4
5.3
6.3
7.5 | 3.3
4.1
4.9
5.8 | 11.3
11.5
10.1
7.6
6.8
7.2 | 9.2
9.8
7.6
6.4
5.1 | | MONTH | 16.6 | 9.0 | 11.4 | 1.6 | 5.1 | .0 | . 4 | .0 | 7.5 | .0 | 11.5 | 3.2 | | | | | | | | | | | | | | | | | API | RIL | M | ΑY | J | UNE | J | ULY | AU | GUST | SEPT | EMBER | | 1
2
3
4
5 | 8.2
9.4
10.4
10.7
11.2 | 6.2
7.0
8.5
9.7
9.0 | 15.3
12.6
12.5
13.7
13.6 | 12.7
11.2
10.7
11.6
12.2 | 15.0
17.1
19.0
20.2
20.0 | 12.3
13.9
15.9
17.8
18.2 | 22.3
22.6
22.7
21.7
21.6 | 20.2
21.0
21.8
20.8
20.4 | 24.6
25.1
24.9
25.3
24.5 | 22.8
22.7
22.0
22.9
22.3 | SEPTI
23.0
22.5
21.9
22.1
21.5 | 20.6
20.5
20.1
19.8
19.4 | | 2
3
4 | 8.2
9.4
10.4
10.7 | 6.2
7.0
8.5
9.7 | 15.3
12.6
12.5
13.7 | 12.7
11.2
10.7
11.6 | 15.0
17.1
19.0
20.2 | 12.3
13.9
15.9
17.8 | 22.3
22.6
22.7
21.7 | 20.2
21.0
21.8
20.8 | 24.6
25.1
24.9
25.3 | 22.8
22.7
22.0
22.9 | 23.0
22.5
21.9
22.1 | 20.6
20.5
20.1
19.8 | | 2
3
4
5
6
7
8
9 | 8.2
9.4
10.4
10.7
11.2
12.1
13.2
13.2 | 6.2
7.0
8.5
9.7
9.0
9.7
10.6
11.8 | 15.3
12.6
12.5
13.7
13.6
13.4
12.7
14.1
15.8
16.8
18.1 | 12.7
11.2
10.7
11.6
12.2
11.6
10.5
10.9 | 15.0
17.1
19.0
20.2
20.0
18.9
17.6
17.6
18.0 | 12.3
13.9
15.9
17.8
18.2
17.1
16.1
15.6
15.8 | 22.3
22.6
22.7
21.7
21.6
22.1
22.8
23.8
23.3
24.0
23.8
23.4 | 20.2
21.0
21.8
20.8
20.4
20.4
21.1
21.8
22.0 | 24.6
25.1
24.9
25.3
24.5
24.9
23.8
23.6
22.9
23.1
22.8 | 22.8
22.7
22.0
22.9
22.3
22.5
21.9
21.2
20.9
20.7
20.7 | 23.0
22.5
21.9
22.1
21.5
20.9
20.5
20.9 | 20.6
20.5
20.1
19.8
19.4
19.2
18.8
18.6
18.5
16.0
14.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.2
9.4
10.4
10.7
11.2
12.1
13.2
11.9
10.8
11.5
12.6
13.5
13.6 |
6.2
7.0
8.5
9.7
9.0
9.7
10.6
10.1
9.2
9.3
10.1
11.4
12.6 | 15.3
12.6
12.5
13.7
13.6
13.4
12.3
14.1
15.8
16.8
18.1
18.5
18.3 | 12.7
11.2
10.7
11.6
12.2
11.6
10.5
10.9
11.9
13.3
14.4
15.7
16.6 | 15.0
17.1
19.0
20.2
20.0
18.9
17.6
18.0
18.2 | 12.3
13.9
15.9
17.8
18.2
17.1
16.1
15.6
15.8
16.3 | 22.3
22.6
22.7
21.7
21.6
22.1
22.8
23.8
23.3
24.0
23.8
23.4
24.7 | 20.2
21.0
21.8
20.8
20.4
20.4
21.1
21.8
22.0
21.5
21.5
21.5
21.9
22.8 | 24.6
25.1
24.9
25.3
24.5
24.9
23.6
23.4
22.9
23.1
22.7
22.8
23.3 | 22.8
22.7
22.0
22.9
22.3
22.5
21.9
21.2
20.9
20.7
20.6
20.7
20.8 | 23.0
22.5
21.9
22.1
21.5
20.9
20.5
20.9
20.5
19.7
18.3
15.9
15.0 | 20.6
20.5
20.1
19.8
19.4
19.2
18.8
18.6
18.5
16.0
14.5
13.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.2
9.4
10.4
10.7
11.2
12.1
13.2
11.9
10.8
11.5
12.6
14.8
14.5
13.7
11.9
12.6 | 6.2
7.0
8.5
9.7
9.0
9.7
10.6
10.1
9.2
9.3
10.1
12.6
13.0
13.4
11.8
10.9 | 15.6
12.5
13.6
12.5
13.6
13.4
12.7
14.1
15.8
16.8
18.5
18.3
18.5
18.2
17.4
15.4 | 12.7
11.2
10.7
11.6
12.2
11.6
10.9
11.9
13.3
14.4
15.7
16.6
16.5 | 15.0
17.1
19.0
20.2
20.0
18.9
17.6
18.0
18.2
18.4
17.8
18.2
19.0
20.3
20.3
20.7
21.0 | 12.3
13.9
17.8
17.1
16.1
15.6
16.3
16.4
17.8
16.1
16.1
17.8
18.1
19.4 | 22.3
22.6
22.7
21.7
21.6
22.8
23.8
23.8
23.3
24.0
23.8
24.7
25.1
25.0
24.4
24.8
25.0 | 20.2
21.0
21.8
20.8
20.4
20.4
21.1
21.8
22.0
21.5
21.5
21.5
22.8
22.3
22.1
22.5
21.8
22.4 | 24.19
24.99
25.35
24.88
23.66
22.23
23.60
23.78
23.22
23.36
24.45 | 22.8
22.7
22.0
22.9
22.3
22.5
21.9
21.2
20.9
20.7
20.6
20.7
20.8
21.5
21.3
22.0
21.7
22.0 | 23.0
22.5
21.9
22.1
21.5
20.9
20.5
20.9
20.5
19.7
18.3
15.0
15.3
16.1
17.0
17.5
16.7 | 20.6
20.5
20.1
19.8
19.4
19.2
18.8
18.6
18.5
16.0
14.57
13.7
14.1
14.9
15.5
2 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
24
25
26
27
28
29
30 | 8.2
9.4
10.4
10.7
11.2
12.1
13.2
11.9
10.8
11.5
12.6
13.6
14.8
14.5
13.7
11.6
13.1
11.6
12.0 | 6.2
7.0
8.5
9.7
9.0
9.7
10.18
10.1
9.3
10.1
11.4
12.6
13.0
11.8
10.9
11.9
12.0
11.9
11.0
11.0
11.0
11.0
11.0
11.0
11 | 15.6
12.5
13.6
12.5
13.6
13.4
12.7
14.1
15.8
18.1
18.3
18.5
18.3
18.5
18.2
17.4
14.8
16.4
17.9
17.8
17.8
17.8
17.8
17.8
17.8 | 12.7
11.7
11.6
11.6
11.6
11.6
11.6
11.6
11 | 15.0
17.1
19.0
20.2
20.0
18.9
17.6
18.0
18.2
18.4
17.8
18.2
19.0
20.3
20.3
21.7
21.7
22.4
23.6
23.6
23.6
21.9
22.9 | 12.3
13.9
17.8
17.1
15.6
16.1
15.8
16.1
16.1
17.8
18.5
18.5
19.7
20.3
20.7
21.5
21.4
20.7
19.9 | 22.6
22.7
21.6
22.7
21.6
22.8
23.8
23.3
24.7
25.1
25.4
24.7
25.1
25.4
25.1
25.1
25.3
25.7
25.3
25.7
25.7
25.3
25.7
25.7
25.7
25.7
25.7
25.7
25.7
25.7 | 20.2
21.0
21.8
20.8
20.4
20.4
21.1
22.0
21.5
21.5
21.5
21.5
21.5
22.8
22.3
22.1
22.5
21.8
22.3
22.1
22.3
22.3
22.3
22.3
22.3
22.3 | 45.1935 986649 17836 22454 433332 322336 2244458 443342 56286 22454 433336 | 22.8
22.7
22.9
22.3
22.5
21.9
21.2
20.7
20.7
20.8
21.5
21.3
22.0
21.7
22.0
21.7
22.0
21.7
22.0
21.7
22.0
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1
21.1 | 23.0
22.5
21.9
22.1
20.5
20.9
20.9
20.9
20.9
15.3
16.1
17.5
16.6
17.5
17.4
17.3
16.5
17.3
16.5
17.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.5
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3
15.3 |
20.6
20.5
20.1
19.8
19.2
18.8
18.6
16.0
14.5
17.1
14.9
15.2
13.9
15.4
15.3
15.4
15.4
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29 | 8.2
9.4
10.4
10.7
11.2
12.1
13.2
11.9
10.8
11.5
12.6
13.6
14.8
14.5
13.7
11.9
13.1
12.1
12.1
13.2
11.9
13.6
14.8
14.5
13.7
11.6
12.1
13.1
12.1
13.2
13.6
14.8
14.5
13.1
14.8
14.5
14.6
15.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16.6
16 | 6.2
7.0
8.5
9.7
9.0
9.7
11.8
10.1
9.2
9.3
10.1
12.6
13.0
13.4
11.8
10.9
12.0
11.9
12.0
11.9
12.0 | 15.6
12.5
13.6
13.7
14.8
16.8
18.5
18.5
17.4
14.8
18.5
17.4
14.8
14.0
17.4
17.8
17.8
17.8 | 12.7
11.2
10.7
11.6
10.9
11.3
14.4
15.7
16.6
16.5
14.2
12.9
11.6
12.2
11.6
12.2
11.6
11.6
11.6
11.6 | 15.0
17.1
19.0
20.0
18.9
17.6
18.0
18.2
18.4
17.8
18.2
19.0
20.3
20.3
21.7
21.7
22.4
23.6
23.6
23.6
22.7
22.9 | 12.3
13.9
17.8
17.8
17.1
15.6
15.3
16.4
15.6
16.1
16.1
17.8
18.1
19.4
19.7
20.3
20.7
21.5
21.6
20.7 | 22.6
22.7
21.6
22.7
21.6
22.8
23.8
23.3
24.0
23.8
23.4
24.7
25.1
25.0
24.8
25.1
25.1
25.1
25.1
25.1
25.1
25.1
25.1 | 20.2
21.0
21.8
20.8
20.4
20.4
21.1
21.8
22.0
21.5
21.5
21.5
21.5
22.8
22.3
22.1
22.5
21.8
22.4
22.3
22.4
22.3
22.6
23.6
23.6
23.6
23.6
23.6
23.6 | 245.1935.5 986649 178836 224558 4433332 232232 2444.58 4434.2 56628 224558 2233.8 | 22.8
22.7
22.9
22.3
22.5
21.9
21.2
20.7
20.6
21.7
20.8
21.7
21.7
22.0
21.7
21.7
22.6
21.7
21.1
21.7
21.1
21.7
21.6
21.6
21.6 | 23.0
22.5
21.9
22.1
21.5
20.9
20.9
20.9
20.9
15.3
16.1
17.0
17.5
16.0
17.2
17.4
17.3
16.5
17.2
17.3
16.5
17.2
17.3 | 20.6
20.1
19.8
19.8
19.8
18.8
18.6
16.0
14.7
13.7
14.1
15.5
15.3
15.1
15.3
15.4
14.4
13.4 | YEAR MAXIMUM 25.7 MINIMUM .0 09163570 HAY PRESS CREEK ABOVE FRUITA RESERVOIR NO. 3, NEAR GLADE PARK, CO LOCATION.--Lat 38°51'03", long 108°46'56", in $NE_{\pi}^{1}SW_{\pi}^{1}$ sec.10, T.14 S., R.102 W., Mesa County, Hydrologic Unit 14030001, on right bank, 10 mi southwest of Glade Park Post Office. DRAINAGE AREA. -- 0.77 mi2. PERIOD OF RECORD. -- April 1983 to March 1988 (discontinued). GAGE.--Water-stage recorder. Elevation of gage is 8,885 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1, 1983 to August 23, 1983, water-stage recorder at site 100 ft upstream, at datum 5 ft, higher. REMARKS.--Estimated daily discharges: Nov. 15 to Mar. 31. Records fair except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 26 ft³/s, May 14, 1984, gage height, 1.20 ft, from rating curve extended above 9.7 ft³/s; minimum daily, 0.01 ft³/s, Oct. 2-13, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to March, 0.08 ft³/s at 0600 Nov. 6, gage height, 0.55 ft, no peak greater than base discharge of 5.0 ft³/s, minimum daily discharge, 0.01 ft³/s, 0ct. 2-13. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO SI | EPTEMBER | 1988 | | | |-------|------|------------|---------|----------|---------|--------------------------|-----|------------|----------|------|-----|--------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | .02 | .05 | .04 | .04 | .04 | .05 | | | | | | | | 2 | .01 | .06 | .04 | .04 | .04 | .05 | | | | | | | | 3 | .01 | .05 | .04 | .04 | .04 | .04 | | | | | | | | ŭ | .01 | .03 | .04 | .04 | .04 | .04 | | | | | | | | 5 | .01 | .03 | .04 | .04 | .04 | .04 | | | | | | | | , | •01 | •00 | .04 | .04 | .04 | .04 | | | | | | | | 6 | .01 | .06 | .05 | .04 | .04 | .04 | | | | | | | | 7 | .01 | .05 | .05 | .04 | .04 | .04 | | | | | | | | ė | .01 | .03 | .05 | •04 | .04 | .05 | | | | | | | | 9 | .01 | .03 | .05 | .04 | .04 | .05 | | | | | | | | 10 | .01 | .02 | .05 | .04 | .04 | .05 | | | | | | | | 10 | •01 | .02 | .05 | .04 | .04 | •05 | | | | | | | | 11 | .01 | .02 | .04 | .04 | .05 | .05 | | | | | | | | 12 | .01 | .02 | .04 | .03 | .05 | .05 | | | | | | | | 13 | .01 | .02 | .04 | .03 | .05 | .04 | | | | | | | | 14 | .02 | .02 | .04 | .03 | .05 | .04 | | | | | | | | 15 | .02 | .02 | .04 | •03 | .05 | .04 | | | | | | | | 10 | •02 | •02 |
• 04 | •03 | .05 | .04 | | | | | | | | 16 | .02 | .02 | .04 | .03 | .05 | .05 | | | | | | | | 17 | .02 | .02 | .04 | .04 | .05 | .05 | | | | | | | | 18 | .02 | .02 | .04 | • 04 | .05 | .04 | | | | | | | | 19 | .02 | .02 | .04 | •05 | .05 | .04 | | | | | | | | 20 | .02 | .02 | .04 | .05 | .05 | .04 | | | | | | | | 20 | •02 | •02 | •04 | •05 | •05 | •04 | | | | | | | | 21 | .02 | .02 | .04 | .05 | .04 | .04 | | | | | | | | 22 | .02 | .03 | .04 | .04 | .04 | .04 | | | | | | | | 23 | .02 | .03 | .04 | .04 | .04 | .04 | | | | | | | | 24 | .02 | .03 | • 04 | .04 | .04 | .04 | | | | | | | | 25 | .03 | .03 | .04 | .04 | .04 | •04 | | | | | | | | | •03 | •05 | • • • • | •04 | •01 | •04 | | | | | | | | 26 | .02 | .03 | -04 | .04 | .04 | .05 | | | | | | | | 27 | .02 | .03 | .04 | .04 | .04 | .05 | | | | | | | | 28 | .02 | .04 | .04 | . 04 | .05 | .06 | | | | | | | | 29 | .02 | .04 | .04 | .04 | .05 | .06 | | | | | | | | 30 | .03 | .04 | • 04 | • 04 | | .06 | | | | | | | | 31 | .03 | | .04 | .04 | | .07 | | | | | | | | J 1 | •00 | | •07 | •04 | | •01 | | | | | | - | | TOTAL | 0.53 | 0.93 | 1.29 | 1.22 | 1.28 | 1.44 | | | | | | | | MEAN | .017 | .031 | .042 | .039 | .044 | .046 | | | | | | | | MA X | .03 | .06 | .05 | .05 | .05 | .07 | | | | | | | | MIN | .01 | .02 | .04 | .03 | .04 | .04 | | | | | | | | AC-FT | 1.1 | 1.8 | 2.6 | 2.4 | 2.5 | 2.9 | | | | | | | | | | | | | | , | | | | | | | CAL YR 1987 TOTAL 289.86 MEAN .79 MAX 9.6 MIN .01 AC-FT 575 188 DOLORES RIVER BASIN #### 09165000 DOLORES RIVER BELOW RICO, CO LOCATION.--Lat 37°38'20", long 108°03'35", Dolores County, Hydrologic Unit 14030002, on left bank at upstream side of Montelores bridge northwest of State Highway 145 (relocated), at Dolores-Montezuma County line, 0.5 mi upstream from Ryman Creek, and 4.0 mi southwest of Rico. DRAINAGE AREA. -- 105 mi2. PERIOD OF RECORD. -- October 1951 to current year. GAGE.--Water-stage recorder. Datum of gage is 8,422.23 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Oct. 1-5, 7, Nov. 17-21, Nov. 25 to Dec. 5, Dec. 7-10, Dec. 13 to Mar. 2, and Mar. 8-19. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 37 years, 139 ft 3/s; 100,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,170 ft³/s, May 24, 1984, gage height, 5.95 ft; from rating curve extended above 1,620 ft³/s, maximum gage height, 6.15 ft, June 10, 1952; minimum daily discharge, 7.0 ft³/s, Nov. 16-17, 1956, Feb. 6-7, 1961. EXTREMES OUTSIDE PERIOD OF RECORD .-- Greatest flood since at least 1885 occurred Oct. 5, 1911. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|-----------------------------------|---------------------| | June 6 | 2200 | * 764 | *4.47 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 15 ft3/s, Feb. 4. | | | DISCHARGE, | COBIC | FEET PER | SECOND, | MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|--|-------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
34
32
32
32 | 57
70
60
55
55 | 34
34
34
30 | 20
20
19
19 | 17
17
16
15
16 | 36
34
30
29
28 | 47
47
50
55
56 | 207
163
141
147
177 | 291
296
394
525
567 | 175
158
145
179
144 | 122
86
77
63
57 | 102
79
66
60
59 | | 6
7
8
9
10 | 32
32
30
30
30 | 114
85
66
60
56 | 28
26
26
26
26 | 20
20
20
20
20 | 16
16
17
18
17 | 29
30
26
26
26 | 73
108
140
139
131 | 182
158
155
147
184 | 643
611
562
521
516 | 134
119
108
113
129 | 76
128
88
67
60 | 52
48
45
43
44 | | 11
12
13
14
15 | 30
30
47
55
48 | 48
47
46
50
44 | 27
25
24
22
22 | 19
19
19
19 | 17
17
17
17
17 | 26
24
22
22
22 | 135
159
192
178
175 | 247
343
405
474
570 | 504
433
366
289
284 | 117
97
92
83
80 | 55
59
52
48
47 | 63
219
207
144
114 | | 16
17
18
19
20 | 41
38
36
34
31 | 37
40
40
38
40 | 22
22
22
22
22 | 18
18
18
18 | 17
17
17
17
17 | 22
22
22
22
27 | 175
146
129
133
131 | 572
625
655
540
391 | 287
290
311
299
284 | 78
73
67
63
59 | 56
71
57
50
46 | 97
88
81
74
69 | | 21
2 2
23
24
25 | 29
30
34
34
47 | 42
42
39
38
38 | 22
22
22
22
22
22 | 19
19
19
18
18 | 18
19
20
20
22 | 33
42
46
47
47 | 133
115
104
96
94 | 316
293
322
370
387 | 263
231
230
251
233 | 59
55
54
53
51 | 45
58
52
54
57 | 139
113
91
80
71 | | 26
27
28
29
30
31 | 44
43
40
46
58
48 | 36
36
36
36
34 | 22
20
20
20
20
20 | 18
18
18
18
18 | 24
28
32
34 | 60
75
81
66
59
51 | 99
106
119
127
169 | 359
403
490
519
489
356 | 208
203
256
236
198 | 52
54
63
65
60 | 60
158
91
84
95
97 | 66
70
67
58
55 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1161
37.5
58
29
2300 | 1485
49.5
114
34
2950 | 760
24.5
34
20
1510 | 581
18.7
20
17
1150 | 552
19.0
34
15
1090 | 1132
36.5
81
22
2250 | 3561
119
192
47
7060 | 10787
348
655
141
21400 | 10582
353
643
198
20990 | 2839
91.6
179
51
5630 | 2216
71.5
158
45
4400 | 2564
85.5
219
43
5090 | CAL YR 1987 TOTAL 61470 MEAN 168 MAX 1050 MIN 20 AC-FT 121900 WTR YR 1988 TOTAL 38220 MEAN 104 MAX 655 MIN 15 AC-FT 75810 #### 09166500 DOLORES RIVER AT DOLORES, CO LOCATION.--Lat 37°28'21", long 108°29'49", in SWaSWa sec.10, T.37 N., R.15 W., Montezuma County, Hydrologic Unit 14030002, on left bank 0.25 mi upstream from bridge on State Highway 184 in Dolores and 0.8 mi upstream from Lost Canyon Creek. DRAINAGE AREA . -- 504 mi2. PERIOD OF RECORD.--June 1895 to October 1903, August 1910 to November 1912, October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 859: 1937. WRD Colo. 1972: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,940 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 7, 1952. Oct. 7, 1952 to Nov. 16, 1983, at site 0.4 mi downstream at different datum. REMARKS.--Estimated daily discharges: Nov. 14, 15, 18, 20-24, 26, Nov. 29 to Mar. 7, 10, 13-16, 18-20. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Flow partly regulated by Ground Hog Reservoir, capacity, 21,710 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--77 years (water years 1896-1903, 1911-12, 1922-88), 440 ft3/s; 318,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 10,000 ft 3/s, Oct. 5, 1911, gage height, 10.2 ft, site and datum then in use, from rating curve extended above 2,800 ft 3/s; minimum daily, 8.0 ft 3/s, Aug. 16, 1896. EXTREMES OUTSIDE PERIOD OF RECORD .-- Maximum stage since at least 1885, that of Oct. 5, 1911. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|-------------|-------------|----------------------|---------------------| | May 18 | 0500 | *2,410 | *5.06 | No other pe | eak greater | than base dischar | ge | Minimum daily, 60 ft3/s, Dec. 27. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|----------------------------|----------------------------------|----------------------------------|--------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 84 | 150 | 80 | 70 | 75 | 100 | 174 | 1090 | 824 | 401 | 304 | 371 | | 2 | 82 | 204 | 75 | 70 | 80 | 100 | 198 | 865 | 756 | 367 | 263 | 318 | | 3 | 80 | 186 | 80 | 70 | 80 | 100 | 215 | 736 | 939 | 354 | 258 | 270 | | 4 |
79 | 172 | 80 | 70 | 80 | 100 | 247 | 705 | 1190 | 509 | 224 | 243 | | 5 | 76 | 162 | 80 | 70 | 75 | 90 | 258 | 799 | 1300 | 397 | 197 | 242 | | 6 | 72 | 272 | 80 | 75 | 75 | 90 | 314 | 842 | 1430 | 353 | 209 | 218 | | 7 | 70 | 275 | 75 | 75 | 80 | 90 | 462 | 715 | 1410 | 322 | 305 | 201 | | 8 | 70 | 214 | 75 | 70 | 80 | 87 | 636 | 685 | 1280 | 292 | 299 | 190 | | 9 | 69 | 190 | 70 | 70 | 80 | 88 | 640 | 610 | 1140 | 272 | 229 | 182 | | 10 | 69 | 180 | 70 | 70 | 80 | 90 | 560 | 687 | 1080 | 303 | 199 | 177 | | 11 | 70 | 161 | 70 | 70 | 80 | 89 | 571 | 922 | 1100 | 346 | 189 | 215 | | 12 | 71 | 148 | 70 | 70 | 75 | 75 | 697 | 1210 | 957 | 272 | 184 | 387 | | 13 | 89 | 142 | 70 | 70 | 75 | 70 | 870 | 1470 | 844 | 242 | 186 | 604 | | 14 | 157 | 130 | 65 | 70 | 75 | 70 | 827 | 1610 | 662 | 252 | 172 | 410 | | 15 | 1 50 | 130 | 65 | 75 | 75 | 75 | 884 | 1840 | 604 | 246 | 166 | 336 | | 16 | 118 | 113 | 65 | 75 | 75 | 75 | 907 | 1940 | 611 | 250 | 178 | 294 | | 17 | 104 | 98 | 65 | 75 | 75 | 72 | 791 | 1980 | 598 | 240 | 228 | 265 | | 18 | 98 | 95 | 75 | 70 | 75 | 70 | 635 | 2240 | 604 | 230 | 206 | 247 | | 19 | 93 | 95 | 70 | 75 | 80 | 75 | 608 | 1870 | 640 | 219 | 184 | 230 | | 20 | 89 | 100 | 65 | 75 | 80 | 80 | 616 | 1430 | 593 | 204 | 177 | 218 | | 21 | 84 | 95 | 65 | 75 | 80 | 102 | 625 | 1120 | 562 | 199 | 166 | 277 | | 22 | 80 | 95 | 65 | 75 | 80 | 134 | 584 | 1010 | 501 | 193 | 198 | 262 | | 23 | 84 | 90 | 70 | 75 | 80 | 163 | 532 | 1030 | 498 | 188 | 196 | 215 | | 24 | 92 | 90 | 75 | 75 | 80 | 179 | 503 | 1130 | 503 | 186 | 186 | 190 | | 25 | 133 | 93 | 75 | 70 | 85 | 169 | 536 | 1150 | 543 | 186 | 234 | 175 | | 26
27
28
29
30
31 | 150
124
113
114
173
161 | 90
86
82
90
85 | 70
60
65
65
65
70 | 70
75
75
75
75
75 | 85
90
90
95
 | 210
279
343
256
256
213 | 639
658
725
792
909 | 1050
1110
1300
1330
1340
1010 | 489
438
585
555
461 | 183
176
179
194
183 | 223
459
346
352
353
360 | 163
158
160
143
132 | | TOTAL | 3098 | 4113 | 2190 | 2250 | 2315 | 3990 | 17613 | 36826 | 23697 | 8131 | 7430 | 7493 | | MEAN | 99.9 | 137 | 70.6 | 72.6 | 79.8 | 129 | 587 | 1188 | 790 | 262 | 240 | 250 | | MAX | 173 | 275 | 80 | 75 | 95 | 343 | 909 | 2240 | 1430 | 509 | 459 | 604 | | MIN | 69 | 82 | 60 | 70 | 75 | 70 | 174 | 610 | 438 | 176 | 166 | 132 | | AC-FT | 6140 | 8160 | 4340 | 4460 | 4590 | 7910 | 34940 | 73040 | 47000 | 16130 | 14740 | 14860 | CAL YR 1987 WTR YR 1988 TOTAL 217260 MEAN 595 MAX 3420 MIN 60 AC-FT 430900 TOTAL 119146 MEAN 326 MAX 2240 MIN 60 AC-FT 236300 ## 09166950 LOST CANYON CREEK NEAR DOLORES, CO LOCATION.--Lat 37°26'46", long 108°28'07", in SE4SE4 sec.23, T.37N., R.15W., Montezuma County, Hydrologic Unit 14030002, on right bank 3 mi upstream from mouth, and 2.5 mi southeast of Dolores DRAINAGE AREA. -- 71.3 mi2. PERIOD OF RECORD. -- April 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 7,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 19-29, Dec. 4-15, Jan. 11, 18, Jan. 30 to Feb. 4, Feb. 10, 12-23, Feb. 25 to Mar. 16, and Aug 24, 25. Records good except for estimated daily discharges, which are poor. Several small storage reservoirs and diversions for irrigation of about 4,700 acres in the San Juan River basin and one diversion for irrigation of about 10 acres in Lost Canyon in the Dolores River basin. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 744 ft³/s, Apr. 2, 1986, gage height, 7.23 ft; no flow many days each year. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 139 ft³/s at 0300 Apr. 9, gage height, 4.03 ft; no flow many days. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 198 7 T O | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|----------------------------------|--------------------------------------|---------------------------------|------------------------------------|------------------------------------|--|----------------------------------|--|-----------------------------------|------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 10
9.9
15
15
14 | 1.3
1.2
1.2
1.1 | • 55
• 54
• 41
• 54
• 67 | .95
.95
.95
.94 | 1.1
.95
.85
.70 | 13
16
17
22
20 | 110
67
54
51
58 | 1.1
.74
.87
.81 | 1.1
.81
.28
.23
.13 | 4.9
4.4
4.2
3.1
2.4 | 1.3
1.7
1.5
1.4
2.0 | | 6
7
8
9 | .00
.00
.00
.00 | 13
17
18
15
14 | .90
.90
.85
.85 | .81
.81
.81
.81 | .94
.94
.94
.94 | .60
.60
.55
.55 | 30
54
94
98
7 0 | 52
40
33
26
26 | .93
1.1
1.1
1.1 | .05
.03
.01
.0 | 2.2
3.4
2.1
2.1
1.9 | 2.1
1.5
1.3
.88
.26 | | 11
12
13
14
15 | .00
.00
.00
.00 | 13
12
8.6
8.9 | .80
.80
.75 | .75
.62
.54
.67 | 1.0
.90
.90
.90 | .55
.55
.50
.50 | 60
72
90
73
81 | 32
37
39
36
35 | 1.3
1.3
.95
.74 | .00
.00
.00
.00 | 1.7
1.7
1.6
1.3
2.5 | .22
2.0
11
12
11 | | 16
17
18
19
20 | .00
.00
.00
.00 | 8.2
3.8
2.2
1.9 | .68
.93
1.1
1.1 | .81
.90
.94 | .90
.90
.90
.90 | .55
.55
.54
1.4
2.6 | 82
78
48
32
31 | 30
22
7.4
27
41 | .24
.20
.24
.33
.19 | .00
.00
.00 | 2.4
1.8
1.3
1.0 | 11
11
9.4
8.8
7.6 | | 21
22
23
24
25 | .00
.00
.00
.00 | 1.6
1.7
1.7
1.6
1.5 | .94
1.1
1.1
.94 | .94
.94
.94
.81 | 1.0
1.0
.90
.94
1.2 | 4.9
10
16
22
22 | 24
19
18
24
32 | 33
28
10
3.3
2.0 | .18
.19
.24
.20 | .01
.22
.48
.80 | .61
.54
.40
.34 | 8.0
9.9
9.1
8.8
7.3 | | 26
27
28
29
30
31 | .0
.24
1.3
1.3
1.3 | 1.4
1.4
1.5
1.4
1.5 | .81
.68
.81
.68 | .68
.81
.94
.94
.95 | 1.6
1.1
1.1
1.1
 | 29
40
48
44
39
28 | 56
58
52
63
100 | 1.5
1.5
1.1
.62
.74
1.4 | .28
1.5
2.4
2.8
2.4 | 1.7
2.2
2.4
4.1
4.9
4.9 | .23
.19
.13
.11
.10 | 4.8
3.6
2.8
1.4
1.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 12.64
.41
8.5
.00
25 | 226.3
7.54
18
1.4
449 | 28.30
.91
1.3
.68
56 | 24.13
.78
.95
.41
48 | 28.59
.99
1.6
.90 | 318.19
10.3
48
.50
631 | 1527
50.9
100
13
3030 | 906.56
29.2
110
.62
1800 | 25.88
.86
2.8
.16
51 | 25.75
.83
4.9
.00
51 | 50.08
1.62
4.9
.10
99 | 154.66
5.16
12
.22
307 | CAL YR 1987 TOTAL 14828.48 MEAN 40.6 MAX 471 MIN .00 AC-FT 29410 WTR YR 1988 TOTAL 3328.08 MEAN 9.09 MAX 110 MIN .00 AC-FT 6600 #### 09169500 DOLORES RIVER AT BEDROCK, CO LOCATION.--Lat 38°18'37", long 108°53'05", in NW4SW4 sec.20, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank at upstream side of bridge, 0.4 mi southeast of Bedrock, and 3.1 mi upstream from East Paradox Creek. DRAINAGE AREA . -- 2,024 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1917 to September 1922 (monthly discharge only for some periods, published in WSP 1313), August 1971 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 1, 1971, nonrecording gage at different datum. REMARKS.--Estimated daily discharges: Nov. 19, Nov. 29 to Dec. 5, Dec. 13-16, 21, 22, and Dec. 24 to Feb. 19. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 5,000 acres upstream from station, and about 74,760 acres in the San Juan River basin. Flow regulated since March 19, 1984, by McPhee Reservoir, capacity 381,000 acre-ft. AVERAGE DISCHARGE.--17 years (water years 1918-22, 1972-83), 497 ft³/s; 360,100 acre-ft/yr, prior to completion of McPhee Reservoir. 5 years (water years 1984-1988), 522 ft³/s; 378,200 acre-ft/yr, subsequent to completion of McPhee Reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,280 ft³/s, Apr. 30, 1973, gage height, 12.09 ft, from floodmarks, from rating curve extended above 8,700 ft³/s; no flow, Sept. 13, 1974, Aug. 15 to 18, 1978. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 7.15 ft, present datum, from floodmarks (discharge not determined). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,340 ft³/s at 0500 Nov. 6, gage height, 6.72 ft; minimum daily, 54 ft³/s, Oct. 1. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP 77 222 70 74 79 115 77 78 77 83 22 83 ลก QΔ 76 76 75 75 75 28 87 8o 591 111 3ó ---TOTAL 85.6 79.8 MEAN 94.5 85.0 MA X MIN AC-FT CAL YR 1987 TOTAL 216320 MEAN 593 MAX 3550 MIN 50 AC-FT 429100 WTR YR 1988 TOTAL 72194 MEAN 197 MAX 1240 MIN 54 AC-FT 143200 192 DOLORES RIVER BASIN ## 09169500 DOLORES RIVER AT BEDROCK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1979 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1979 to current year. WATER TEMPERATURES: November 1979 to current
year. INSTRUMENTATION .-- Water-quality monitor since November 1979. REMARKS .-- Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 6,970 microsiemens Aug. 14, 1987; minimum, 140 microsiemens May 25, 1983. WATER TEMPERATURES: Maximum, 33.5°C Aug. 7, 1981; minimum, -0.5°C Dec. 3-8, 1982. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum recorded, 2,550 microsiemens July 8; minimum recorded, 160 microsiemens May 26 (but may have been less during periods of missing record in May and June). WATER TEMPERATURES: Maximum recorded, 29.4°C July 29; minimum recorded, 0.0°C many days during winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |-----------|------|---|---|--------------------------------|--------------------------------------|---|---|--|--|--|---| | OCT | | | | | | | | | | | | | 05
NOV | 1030 | 78 | 782 | 8.4 | 12.0 | 210 | 84 | 56 | 18 | 7 5 | 2 | | 17
JAN | 1100 | 109 | 800 | 7.7 | 3.0 | 2 50 | 120 | 64 | 22 | 80 | 2 | | 13
MAR | 1200 | 99 | 880 | 8.5 | 0.0 | 220 | 89 | 58 | 19 | 71 | 2 | | 01
MAY | 1130 | 253 | 808 | 7 - 4 | 6.0 | 240 | 120 | 60 | 23 | 74 | 2 | | 11 | 1205 | 618 | 380 | 8.0 | 13.0 | 160 | 46 | 44 | 12 | 20 | 0.7 | | 24 | 1150 | 673 | 389 | 7.8 | 15.0 | 170 | 55 | 47 | 12 | 20 | 0.7 | | JUN
09 | 1425 | 625 | 361 | 8.1 | 20.0 | 150 | 44 | 45 | 9.9 | 16 | 0.6 | | 28
AUG | 1140 | 285 | 762 | 8.0 | 22.5 | 180 | 5 7 | 46 | 16 | 72 | 2 | | 02
SEP | 1315 | 151 | 425 | 7.9 | 24.0 | 120 | 0 | 35 | 7.4 | 34 | 1 | | 21 | 1715 | 79 | 837 | 8.2 | 19.5 | 270 | 140 | 7 5 | 20 | 71 | 2
2 | | 22 | 0845 | 78 | 841 | 8.4 | 15.0 | 2 50 | 130 | 67 | 21 | 68 | 2 | | | | | | | | | SOI. | IDS. | | NI. | TRO- | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | |-------------------|---|---|---|---|--|---|---|---|---|---| | OCT | | | | | | | | | | | | 05
NO V | 1.0 | 130 | 120 | 96 | 0.20 | 2.0 | 446 | 0.61 | 94.0 | <0.10 | | 17 | 3.4 | 135 | 150 | 94 | 0.20 | 5.1 | 500 | 0.68 | 147 | <0.10 | | JAN | | | | | | | | | | | | 13 | 3.9 | 134 | 110 | 96 | 0.20 | 5.4 | 444 | 0.60 | 119 | <0.10 | | MAR | 1. 1. | 404 | | | | | | - 60 | 24.0 | | | 01 | 4.4 | 124 | 190 | 69 | 0.20 | 6.1 | 50 2 | 0.68 | 343 | 0.12 | | MA Y
11 | 1.8 | 114 | 7 2 | 14 | 0.20 | 5.3 | 238 | 0.30 | 397 | 0.10 | | | | | | | 0.20 | | | 0.32 | | | | 24
JUN | 1.9 | 112 | 74 | 15 | 0.20 | 5.0 | 242 | 0.33 | 440 | <0.10 | | 09 | 1.8 | 109 | 56 | 12 | 0.30 | 4.4 | 211 | 0.29 | 356 | <0.10 | | 28 | 3.9 | 124 | 93 | 96 | 0.20 | 2.8 | 404 | 0.55 | 311 | <0.10 | | AUG | 3.9 | 147 | 33 | 90 | 0.20 | 2.0 | 707 | 0.55 | 311 | -0.10 | | 02 | 4.2 | 140 | 49 | 31 | 0.30 | 5.2 | 251 | 0.34 | 102 | 0.25 | | SEP | **- | | ., | ٥. | 3.30 | J•L | 2)1 | 3.54 | | 0.25 | | 21 | 3.7 | 126 | 190 | 73 | 0.20 | 4.4 | 513 | 0.70 | 109 | <0.10 | | 22 | 3.6 | 127 | 180 | 80 | 0.20 | 4.2 | 500 | 0.68 | 105 | <0.100 | | | J. 0 | , | 100 | 00 | 3.20 | | 500 | 3.00 | | 5.100 | 09169500 DOLORES RIVER AT BEDROCK, CO--Continued | | SPECIFIC | CONDUCTAN | CE (MICI | ROSIEMENS | 'CM AT | 25 DEG. C),
MEAN VALUES | WATER | YEAR | OCTOBER | 1987 | TO SEPTEMBER | 1988 | | |----------------------------------|--|---------------------------------|---|--|--------------------------------------|--|---------------------------------|------|---------------------------------|---------------------------------|--|---|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 798
797
745
797 | 622
745
629
609 | 938
989
876
887 | 901
1060
1070
992 | 721
744
997
966 | 861
1110
1310
1280 | 653
675
741
752 | | 712
660
731 | | 507
751
735
782 | 495
477
561
457 | 1260
1080
983
964 | | 5 | 769 | 631 | 834 | 928 | 1030 | 1210 | 694 | | | | 753 | 573 | 987 | | 6
7
8
9
10 | 662
624
617
602
601 | 469
527
626
652
675 | 877
874
870
825
926 | 914
775
702
740
753 | 1090
1020
940
906
911 | 1190
1110
1090
1060
1060 | 634
616
591
573
590 | | | 314 | 719
690
2020
1740
1240 | 876
941
959
928
749 | 1010
1020
990
967
939 | | 11
12
13
14
15 | 596
596
606
623
677 | 698
718
742
762
785 | 941
991
966
906
951 | 782
823
873
903
922 | 905
902
960
1040
966 | 1070
1010
958
997
1050 | 637
657
727
768
782 | | 547
417
475
544
558 | 378
433
489
496
510 | 1060
933
879
815
741 | 704
649
664
583
590 | 886
807
613
796
1020 | | 16
17
18
19
20 | 570
574
583
649
821 | 796
797
799
880
905 | 1020
879
805
791
738 | 916
857
869
813
829 | 1030
1140
1290
1090
1160 | 978
1080
1030
1060
1050 | 787
676
638
616
652 | | 551
532
541
541
398 | | 774
694
678
631
616 | 576
555
541
584
674 | 959
936
926
898
874 | | 21
22
23
24
25 | 954
900
720
659
646 | 911
883
851
843
832 | 720
733
777
840
870 | 861
872
969
908
940 | 1130
1080
1000
900
990 | 1060
1010
951
987
925 | 701
727
712
757
713 | | 382
382
384
299
185 | | 612
613
637
600
604 | 664
468
520
541
535 | 854
851
776
731
708 | | 26
27
28
29
30
31 | 652
610
620
627
663
701 | 854
879
862
881
916 | 824
831
1030
951
858
926 | 944
878
841
786
748
718 | 1050
1040
892
825 | 717
633
572
503
535
560 | 655
595
601
672
710 | | 214
192

 | 611
491 | 593
604
592
572
695
627 | 520
509
496
488
487
1730 | 685
691
682
683
667 | 990 968 MEAN 09169500 DOLORES RIVER AT BEDROCK, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MA X | MIN | MA X | MIN | MAX | MIN | MAX | MIN | MA X | MIN | MA X | MIN | |----------------------------------|---|--|--|--|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--|--------------------------------------| | DAI | OCTO | | NOVE | | | EMBER | | UARY | | RUARY | | R CH | | 1
2
3
4
5 | 15.6
16.7
16.7
16.0
16.4 | 11.9
11.9
11.8
11.7 | 10.3
10.3
10.8
11.0
9.9 | 9.0
9.2
9.1
8.2
7.8 | .3
.3
.9
.4 | .0
.0
.1
.1 | .2
.4
.2
.2 | .0
.0
.0
.0 | .1
.1
.1
.1 | .0
.0
.0
.0 | 7.8
8.0
7.5
7.2
7.5 | 4.5
4.7
4.7
4.3
4.1 | | 6
7
8
9
10 | 16.6
16.2
15.4
15.4 | 11.8
11.7
11.8
11.5
11.5 | 9.2
8.9
8.8
8.0
7.3 | 8.9
8.2
7.2
6.3
5.9 | 2.0
1.9
2.5
1.6
2.0 | .6
1.2
.5
.1 | .1
.1
.1
.1 | .0
.0
.0 | .1
.1
.1
.1 | .0
.0
.0 | 7.5
7.4
6.7
7.3
6.1 | 4.4
4.8
2.7
3.2
4.2 | | 11
12
13
14
15 | 15.7
14.0
13.2
11.9
12.8 | 11.0
11.7
12.0
11.2
10.5 | 7.3
6.5
6.4
6.4
| 5.4
5.1
4.9
5.5
3.6 | 2.0
.6
.2
.2 | .1
.0
.0 | .1
.2
.2
.2 | .0
.0
.0 | .2
.2
.2
.2 | .0 | 6.0
4.9
6.0
5.8
5.7 | 3.5
2.3
2.5
1.6
3.5 | | 16
17
18
19
20 | 13.6
13.3
12.9
12.7
12.2 | 10.2
9.3
9.0
8.6
7.9 | 4.6
3.3
2.7
2.4
2.5 | 2.7
1.5
.6
.1 | .2
.4
.3
.2 | .1
.0
.0
.0 | .1
.1
.1
.2 | .0
.0
.0 | .2
.3
.2
.2 | .0
.0
.0
.0 | 7.2
6.7
7.4
8.8
10.1 | 4.4
3.3
3.1
4.3
5.5 | | 21
22
23
24
25 | 11.4
11.9
11.1
10.1
12.7 | 7.3
7.4
8.1
8.9
9.5 | 1.8
3.1
2.9
2.7
1.7 | .1
.4
.5
.5 | .4
.7
.7
.3 | .0
.1
.0
.1 | .2
.2
.2
.2 | .0
.0
.0 | 1.5
2.2
2.4
2.9
3.2 | .1
.1
.2
.3 | 10.8
10.7
10.3
10.3 | 6.8
7.2
6.9
6.8
6.0 | | 26
27
28
29
30
31 | 12.4
12.3
10.9
10.5
10.2
9.3 | 8.6
8.5
8.7
9.2
9.1
8.0 | 2.0
2.1
.5
.3
.4 | 1.0
.1
.1
.0
.0 | .2
.2
.2
.2
.2 | .1
.0
.0
.0 | .2
.2
.1
.1 | .0
.0
.0
.0 | 3.2
2.3
3.3
5.5 | .3
.6
.7 | 11.4
11.7
9.6
7.7
6.1
6.6 | 6.8
8.0
5.8
4.0
4.9 | | MONTH | 16.7 | 7.3 | 11.0 | .0 | 2.5 | .0 | . 4 | .0 | 5.5 | .0 | 11.7 | 1.6 | | | APRIL | | ма у | | JUNI | E | JUL | Y | AUGUS | ST | SEPTEM | BER | | 1
2
3
4
5 | 9.7
11.7
12.0
12.2
14.2 | 4.5
5.3
7.2
8.9
8.7 | 13.2
13.6
15.8
12.9 | 10.7
8.8
9.7
11.7 | 14.8
17.0
18.9
19.9 | 11.1
12.6
14.9
16.2
17.2 | 24.1
24.5
25.3
23.4
24.4 | 19.2
19.8
20.3
19.5
19.8 | 26.2
24.7
26.1
26.1
25.4 | 22.4
21.0
20.5
20.7
18.9 | 23.2
22.5
23.0
24.0
23.9 | 19.7
17.2
17.3
17.3 | | 6
7
8
9
10 | 15.2
15.9
14.5
13.6
13.4 | 9.5
10.5
11.8
9.3
8.3 | 12.0
11.3
11.3
12.1
13.2 | 11.3
10.5
10.3
11.1 | 19.6
19.3
19.5
20.6
20.1 | 16.7
15.8
15.6
16.4
17.0 | 26.9
27.7
27.0
25.1
27.2 | 20.1
20.7
21.8
21.6
20.3 | 27.1
25.8
25.1
25.2
22.7 | 21.0
21.4
19.1
18.6
18.8 | 24.0
22.8
24.3
23.0
20.7 | 17.2
17.2
16.9
17.0 | | 11
12
13
14
15 | 14.6
15.9
15.2
14.4
15.6 | 8.7
9.8
10.9
11.8
11.6 | 17.1
19.6
20.2
21.2
22.1 | 13.0
13.1
14.7
15.8
16.3 | 20.6
21.9
20.7
22.2
20.9 | 17.0
16.7
17.8
16.2
17.4 | 27.1
28.0
29.2
27.6
26.8 | 21.2
21.5
21.3
22.5
22.5 | 24.7
24.1
24.5
24.9
23.4 | 17.8
19.0
18.7
18.3
19.7 | 19.4
16.4
16.7
17.5
18.6 | 15.3
12.6
11.9
12.5
12.3 | | 16
17
18
19
20 | 14.4
12.8
12.6
13.6
13.6 | 11.5
9.9
10.0
9.6
9.9 | 21.7
19.7
18.1
17.2
14.7 | 17.1
17.5
16.2
14.9
13.6 |

 | | 27.5
26.2
27.6
27.9
28.4 | 21.0
22.1
20.7
20.4
21.3 | 23.5
24.6
24.5
24.9
24.6 | 19.6
19.1
19.5
18.6
19.9 | 19.8
20.3
20.7
18.3
18.6 | 13.1
14.0
14.9
11.4
11.7 | | 21
22
23
24
25 | 11.9
9.9
10.5
12.2
13.0 | 10.0
8.2
7.4
8.7
9.1 | 13.7
14.6
15.7
18.1
17.2 | 12.8
12.8
13.3
14.1
14.9 | | | 28.6
28.3
26.0
26.7
27.7 | 20.8
21.7
21.2
21.5
21.2 | 21.5
24.7
27.0
27.4
26.4 | 17.2
17.6
19.4
21.0
21.3 | 19.5
19.8

20.2
20.4 | 14.9

12.9
13.8 | | 26
27
28
29
30
31 | 14.1
15.2
15.0
16.6
15.9 | 9.1
9.8
11.1
11.5
12.0 | 18.5
18.3

17.4
15.0
14.3 | 15.2
15.2
15.2
15.2
13.3
11.8 | 21.5
24.4 | 20.1
18.5 | 27.3
27.2
28.7
29.4
28.3
27.9 | 21.7
22.3
22.2
22.5
22.9
22.2 | 26.5
26.3
25.0
26.2
25.7
24.6 | 20.6
19.9
19.8
19.5
20.0 | 18.3
19.8
18.5
17.5
18.6 | 13.7
13.9
13.2
10.8
11.4 | | MONTH | 16.6 | 4.5 | | 8.8 | | | 29.4 | 19.2 | 27.4 | 17.2 | | | ## 09170800 WEST PARADOX CREEK ABOVE BEDROCK, CO ## WATER-QUALITY RECORDS LOCATION.--Lat 38°19'54", long 108°53'59", in NE4NW4 sec.18, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002. Site is 1,000 ft downstream from former surface water station and 1.3 mi northwest of Bedrock, 2.6 mi upstream from mouth. DRAINAGE AREA. -- 53.3 mi2 PERIOD OF RECORD. -- Chemical analyses: August 1987 to current year. REMARKS.--Natural flow affected by water imported from Roc Creek through Buckeye Reservoir. Diversion for irrigation of about 2,500 acres. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NON CARB
WH WAT
TOT FLD
MG/L AS
CACO3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |------------------------|---|---|---|---|--|--|---|--|---|---| | OCT | | | | | | | | | | | | 05
NOV | 0930 | 968 | 8.3 | 10.0 | 510 | 300 | 110 | 5 7 | 26 | 0.5 | | 17
JAN | 1050 | 1210 | 7.1 | 3.0 | 550 | 330 | 110 | 68 | 31 | 0.6 | | 13
MAR | 1130 | 1010 | 8.4 | 0.0 | 580 | 340 | 120 | 67 | 31 | 0.6 | | 01 | 1100 | 1040 | 7.2 | 6.0 | 520 | 340 | 120 | 54 | 25 | 0.5 | | MAY
11
24
JUN | 1120
1120 | 1310
834 | 7.7
7.6 | 13.0
14.5 | 710
450 | 470
270 | 140
93 | 88
53 | 49
2 7 | 0.8 | | 09
28
SEP | 1215
1120 | 700
1500 | 8.0
7.6 | 15.5
19.0 | 350
7 80 | 190
540 | 76
150 | 38
98 | 19
46 | 0.5
0.7 | | 21 | 1710
0730 | 1520
1110 | 8.2
8.3 | 17.5
12.0 | 760
540 | 530
330 | 150
110 | 93
65 | 49
33 | 0.8
0.6 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | ОСТ
05 | 5.0 | 210 | 310 | 21 | 0.30 | 9.7 | 667 | 0.91 | 0.0 | 0.53 | | NOV 17 | 3.2 | 222 | | | _ | | • | | | | | JAN | - | | 390 | 24 | 0.30 | 12 | 775 | 1.05 | 0.0 | 0.72 | | 13
Mar | 3.3 | 236 | 340 | 23 | 0.40 | 12 | 742 | 1.01 | 0.0 | 0.86 | | 01
MAY | 3.7 | 181 | 350 | 20 | 0.30 | 11 | 695 | 0.94 | 0.0 | 0.45 | | 11
24
JUN | 5.1
3.2 | 240
183 | 520
280 | 44
23 | 0.40
0.30 | 8.1
9.5 | 1000
599 | 1.36
0.81 | 0.0 | 0.45
<0.10 | | 09
28
SEP | 3.1
4.1 | 152
243 | 210
580 | 15
41 | 0.40
0.30 | 9.5
11 | 466
1080 | 0.63
1.47 | 0.0 | 0.98
1.00 | | 21 | 4.7
3.7 | 229
217 | 580
350 | 49
28 | 0.40
0.30 | 10
11 | 1080
733 | 1.46
1.0 | 0.0 | 0.38
0.49 | #### DOLORES RIVER BASIN ## 09171070 DOLORES RIVER BELOW WEST PARADOX CREEK NEAR BEDROCK, CO #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1979 to November 1987 (discontinued). PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: December 1979 to Dec. 1, 198 WATER TEMPERATURES: December 1979 to Dec. 1, 1987. INSTRUMENTATION .-- Water-quality monitor since December 1979. REMARKS.--Daily maximum and minimum specific-conductance data available in district office. Previously published as 09171100, Dolores River near Bedrock, Co. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 83,300 microsiemens Aug. 9, 1981; minimum, 103 microsiemens June 4, 1984. WATER TEMPERATURES: Maximum, 33.5°C July 10, 1981; minimum, -1.5°C several days during November to January 1981 and 1983. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum recorded, 6,840 microsiemens Oct. 10 (but was exceeded during Oct. 1-5, Oct. 11-15, and Nov. 29 to Dec. 2 when specific conductance exceeded limits of monitor); minimum recorded, 1,820 microsiemens Nov. 6. WATER TEMPERATURES: Maximum, 22.2°C Oct. 3; minimum, 0.0°C several days during November. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREA
FLOV
INSTA
TANEO | N, CON
AN- DUC
DUS ANC | IC
-
T- (S
E | PH
STAND-
ARD
NITS) | TEMPE
ATUR
WATE
(DEG | E (MC
R AS | S
AL
/L | HAR
NESS
NON C.
WH W.
TOT I
MG/L
CAC | S
ARB
AT
FLD
AS | CALCI
DIS-
SOLV
(MG, | IUM S1
- D1
/ED S01
/L (M0 | S- | SODIUM
DIS-
SOLVED
(MG/L
AS NA | SORP-
TION
RATIO | |------------------|------|---|---|--|------------------------------|---
--|---------------------|--|-----------------------------|-------------------------------|---|--------------------------------------|--|--| | OCT
05
NOV | 1200 | 93 | 7 | 040 | 8.3 | 14 | .0 | 360 | : | 220 | 76 | 41 | I | 1300 | 31 | | 17 | 1300 | 118 | 5 | 040 | 7.2 | 4 | .0 | 380 | ; | 240 | 84 | 4 1 | I | 950 | 22 | | DATE | S: | OTAS-
SIUM,
DIS-
OLVED
MG/L
S K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFAT
DIS-
SOLVE
(MG/L
AS SOL | TE RI
DI
ED SC | HLO-
EDE,
ES-
DLVED
MG/L
E CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | DI
SO
(M
A | LVED
G/L | TUEN
DI
SOL | OF STI- | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLI
DI
SOL
(TO
PE
DA | DS,
S- N
VED
NS
R | NITRO-
GEN,
O2+NO3
DIS-
SOLVED
(MG/L
AS N) | | OCT
O5
Nov | | 5.7 | 139 | 220 | 190 | 00 | 0.20 | | 1.7 | 3 | 3630 | 4.93 | 911 | | <0.10 | | 17 | | 40 | 143 | 240 | 150 | 00 | 0.20 | 2 | 8 | 2 | 2970 | 4.04 | 946 | | <0.10 | | | | | | | | | | | | | | 19 | |---|--|---|---|--|----------------------------|-------------------------------|-----------------------|------------------------------|--------------------|-----------------------------------|--------------|-------------| | | | 0917107 | O DOLORES | S RIVER BE | LOW WES | T PARADOX CI | REEK NE | AR BEDROCK, | COC | Continued | | | | | SPECIF | IC CONDUC | TANCE (MIC | CROSIEMENS | | 25 DEG. C),
MEAN VALUES | WATER | YEAR OCTOBER | 1987 | TO SEPTEMBER | 1988 | | | DAY | ост | NOV | DE C | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1 | | 4100 | | | | | | | | | | | | 2
3 | | 3050
3770 | | | | | | | | | | | | 3
4 | | 3690 | | | | | | | | | | | | 5 | | 4050 | | | | | | | | | | | | 6 | 6200 | 2400 | | | | | | | | | | | | 7 | 6130 | 1920 | | | | | | | | | | | | 8 | 6190 | 2170 | | | | | | | | | | | | 9 | 6110 | 2900 | | | | | | | | | | | | 10 | 6370 | 3560 | | | | | | | | | | | | 11 | | 3930 | | | | | | | | | | | | 12 | | 4210 | | | | | | | | | | | | 13
14 | | 4520
4880 | | | | | | | | | | | | 15 | | 5030 | 16 | 4250
4680 | 5120
5050 | | | | | | | | | | | | 17
18 | 5760 | 4940 | | | | | | | | | | | | 19 | 5650 | 4790 | | | | | | | | | | | | 20 | 5650 | 4880 | | | | | | | | | | | | 21 | 5800 | 4720 | | | | | | | | | | | | 22 | 5920 | 4390 | | | | | | | | | | | | 23 | 5680 | 4310 | | | | | | | | | | | | 24 | 5490 | 4090 | | | | | | | | | | | | 25 | 4850 | 4190 | | | | | | | | | | | | 26 | 4890 | 3850 | | | | | | | | | | | | 27
28 | 4810
5230 | 3640
4200 | | | | | | | | | | | | 29 | 5480 | 4200 | | | | | | | | | | | | 30 | 4770 | | | | | | | | | | | | | 31 | 4340 | | DA Y | | TEM | PERATURE, | WATER (DE | G. C), | WATER YEAR C | CTOBER | 1987 TO SEPT | EMBER | 1988 | | | | DA Y | MA X
O CTO | TEM!
MIN | PERATURE, | | G. C), | | CTOBER
MAX | | EMBER
Max | | MA X | MIN
RCH | | | MA X
O CT (| TEMI
MIN
OBER | PERATURE,
MAX
NOVE | WATER (DEC
MIN
EMBER | G. C),
MAX
DE | WATER YEAR O
MIN
CEMBER | CTOBER
MAX
JAN | 1987 TO SEPT | EMBER
MAX
FE | 1988
MIN | MA X | MIN | | 1 | MA X
OCT(
21.9 | TEMI
MIN
OBER
10.5 | PERATURE, MAX NOVE | WATER (DEC
MIN
EMBER
9.2 | G. C),
MAX
DE
1.6 | WATER YEAR OMIN CEMBER .0 | CTOBER
MAX
JAN | 1987 TO SEPT MIN NUARY | EMBER
MAX
FE | 1988
MIN
BRUARY | MA X
MA | MIN
R CH | | 1
2 | MA X
O CT (| TEMMIN DBER 10.5 11.0 | PERATURE, MAX NOVE 11.7 12.0 | MATER (DEC
MIN
EMBER
9.2
9.3 | G. C),
MAX
DE | WATER YEAR O
MIN
CEMBER | CTOBER
MAX
JAN | 1987 TO SEPT
MIN
NUARY | EMBER
MAX
FE | 1988
MIN
BRUARY | MA X | MIN
R CH | | 1
2
3
4 | MAX
OCTO
21.9
21.9
22.2
21.4 | TEMMIN DBER 10.5 11.0 11.3 11.2 | PERATURE, MAX NOVE | WATER (DEC
MIN
EMBER
9.2 | G. C), MAX DE 1.6 | WATER YEAR O MIN CEMBER .0 | OCTOBER
MAX
JAN | 1987 TO SEPT MIN NUARY | EMBER
MAX
FE | 1988
MIN
BRUARY
 | MA X
MA : | MIN
RCH | | 1
2
3 | MAX
0CTC
21.9
21.9
22.2 | TEMMIN OBER 10.5 11.0 11.3 | PERATURE, MAX NOVE 11.7 12.0 12.7 | MIN EMBER 9.2 9.3 8.8 | G. C), MAX DE 1.6 | MATER YEAR O MIN CEMBER .0 | OCTOBER MAX JAN | MIN MIN | MAX
FE | 1988
MIN
BRUARY

 | MA X MA | MIN
R CH | | 1
2
3
4 | MAX
OCTO
21.9
21.9
22.2
21.4 | TEMMIN DBER 10.5 11.0 11.3 11.2 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9 | G. C), MAX DE 1.6 | MIN CEMBER .0 | DCTOBER MAX JAN | MIN MUARY | EMBER
MAX
FE | 1988 MIN BRUARY | MA X MA : | MIN
R CH | | 1
2
3
4
5
6
7 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5
9.9
10.0 | MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0 | MAX DE 1.6 | WATER YEAR OMIN CEMBER .0 | DCTOBER MAX JAN | MIN MUARY | EMBER MAX FE | 1988
MIN
BRUARY

 | MA X MA : | MIN R CH | | 1
2
3
4
5
6
7
8 | MAX 0CTC 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.8 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5
9.9
10.0
10.5 | MIN EMBER 9.2 9.3 8.8 7.4 6.9 8.5 8.0 6.8 | MAX DE 1.6 | MATER YEAR O | DCTOBER MAX JAN | MIN MUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN R CH | | 1
2
3
4
5
6
7
8
9 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 | TEMMIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.8 9.2 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5
9.9
10.0
10.5
9.8 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4 | DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA : | MIN R CH | | 1
2
3
4
5
6
7
8 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.8 9.2 9.6 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 | MIN EMBER 9.2 9.3 8.8 7.4 6.9 8.5 8.0 6.8 5.4 4.7 | MAX DE 1.6 | MATER YEAR O | DCTOBER MAX JAN | MIN MUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN R CH | | 1
2
3
4
5
6
7
8
9 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 9.2 9.6 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5
9.9
10.0
10.5
9.8
9.0 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7 | G. C), MAX DE 1.6 | MATER YEAR C MIN CEMBER .0 | DCTOBER MAX JAN | MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1
2
3
4
5
6
7
8
9
10 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.8 9.2 9.6 8.9 10.2 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7 | G. C), MAX DE 1.6 | MIN CEMBER .0 | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN | | 1
2
3
4
5
6
7
8
9 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 9.2 9.6 | MAX
NOVE
11.7
12.0
12.7
13.4
11.5
9.9
10.0
10.5
9.8
9.0 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7 | G. C), MAX DE 1.6 | MATER YEAR C MIN CEMBER .0 | DCTOBER MAX JAN | MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.7
17.5 14.4 12.7 | TEMI
MIN
DBER
10.5
11.0
11.3
11.2
11.5
9.4
9.2
9.8
9.2
9.6
8.9 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 8.2 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7 | G. C), MAX DE 1.6 | MATER YEAR O | D CTOBER MA X JAN | MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA : | MIN | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 | MIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.8 9.2 9.6 8.9 10.2 11.1 10.5 10.0 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1 2 3 4 5 6 7 8 9 10 11 23 14 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | MIN CEMBER .0 | DCTOBER MAX JAN | MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 1 7 1 8 1 7 1 8 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 6.3 3.7 4.4 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA : | MIN | | 1 2 3 4 5 6 7 8 9 1 0 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 | MIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 7.1 | PERATURE, MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 6.3 3.7 4.4 3.8 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA : | MIN | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 1 7 1 8 1 7 1 8 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 6.3 3.7 4.4 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 15.6 15.4 14.8 14.4 13.7 | MIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.5 10.0 8.4 7.7 7.6 7.1 6.6 6.1 | PERATURE, MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 6.3 3.7 4.4 3.8 4.0 2.7 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | EMBER MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN RCH | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 19 2 2 1 2 2 2 2 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.8 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.4 | MIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.6 6.1 6.3 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 9.8 9.0 9.2 8.2 7.6 6.3 3.7 4.4 3.8 4.0 2.7 4.5 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | MATER YEAR O | DCTOBER MAX JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 7 18 19 0 12 23 | MAX OCTO 21.9 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.8 14.8 13.6 13.6 | TEMMIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 7.1 6.6 6.1 6.3 7.7 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.4 7.6 6.3 3.7 4.4 3.8 4.0 2.7 4.5 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0 | G. C), MAX DE 1.6 | MIN CEMBER .0 | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN RCH | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 19 2 2 1 2 2 2 2 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.8 16.3 16.9 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.4 | MIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.6 6.1 6.3 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 9.8 9.0 9.2 8.2 7.6 6.3 3.7 4.4 3.8 4.0 2.7 4.5 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2 | G. C), MAX DE 1.6 | MATER YEAR O | DCTOBER MAX JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN | | 1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 2 2 2 3 4 5 1 6 7 8 9 1 0 1 2 2 3 4 5 1 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.8 14.8 14.8 15.6 | MIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.1 6.3 7.7 8.6 9.8 | MAX NOVE 11.7 12.0 12.7 13.4 11.5 9.9 10.0 10.5 9.8 9.0 9.2 8.2 7.6 6.3 7.6 6.3 7.6 6.3 7.6 4.4 1.9 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0
.0 | G. C), MAX DE 1.6 | MIN CEMBER .0 | DCTOBER MAX JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN | | 1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 2 3 1 4 5 1 6 1 7 8 1 9 2 2 2 2 3 4 5 2 6 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.3 16.3 16.9 16.7 17.5 14.4 13.7 11.8 15.0 15.6 14.8 14.4 13.7 13.6 13.6 13.6 15.6 | MIN OBER 10.5 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.6 6.1 6.3 7.7 8.6 9.8 8.0 | MAX NOVE 11.7 12.07 13.4 11.5 9.9 10.0 10.5 9.0 9.2 8.2 7.4 6 6.3 7.4 6 6.3 3.7 4.5 5 4.1 1.9 3.0 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0
.0
.0 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 3 | MIN RCH | | 12345 67899 10 112345 112345 112345 112345 1123222 2222 2228 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.8 16.3 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.8 14.8 14.8 14.8 15.0 | MIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.8 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.1 6.3 7.7 8.6 9.8 8.0 7.9 8.6 | MAX NOVE 11.7 12.07 13.4 11.5 9.9 10.0 5 9.0 9.2 8.2 2 7.6 6 3.7 4.4 8 4.0 2.7 5 4.1 1.9 3.3 1.8 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0
.0 | G. C), MAX DE 1.6 | WATER YEAR O | D CTOBER MA X JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN RCH | | 12345 67899
10112345 67899
1022245 6789 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.3 16.9 16.7 17.5 14.4 13.7 11.8 15.6 15.4 14.8 14.8 14.4 13.7 13.66 15.1 11.4 | MIN OBER 10.5 11.0 11.3 11.2 11.5 9.4 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.6 6.1 6.3 7.7 8.6 9.8 8.0 9.8 8.0 9.8 8.7 | MAX NOVE 11.7 12.07 13.4 11.5 9.9 10.0 10.5 9.0 9.2 2.2 7.4 6 6.3 7.4 6 6.3 7.4 1.9 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.7
.0
.0
.0
.0
.0 | G. C), MAX DE 1.6 | MIN CEMBER .0 | DCTOBER MAX JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN RCH | | 12345 67899 10 112345 112345 112345 112345 1123222 2222 2228 | MAX OCTO 21.9 22.2 21.4 17.1 17.8 17.8 16.3 16.7 17.5 14.4 12.7 11.8 15.0 15.6 14.8 14.8 14.8 14.8 14.8 14.8 15.0 | MIN DBER 10.5 11.0 11.3 11.2 11.5 9.4 9.8 9.2 9.6 8.9 10.2 11.1 10.5 10.0 8.4 7.7 7.6 6.1 6.3 7.7 8.6 9.8 8.0 7.9 8.6 | MAX NOVE 11.7 12.07 13.4 11.5 9.9 10.0 5 9.0 9.2 8.2 2
7.6 6 3.7 4.4 8 4.0 2.7 5 4.1 1.9 3.3 1.8 | MATER (DEC
MIN
EMBER
9.2
9.3
8.8
7.4
6.9
8.5
8.0
6.8
5.4
4.7
4.4
3.6
3.2
5.7
3.2
1.7
.0
.0
.0
.0 | G. C), MAX DE 1.6 | MIN CEMBER .0 | DCTOBER MAX JAN | 1987 TO SEPT MIN NUARY | MAX FE | 1988 MIN BRUARY | MA X MA 1 | MIN RCH | 6.1 13.4 .0 MONTH 22.2 #### 09171100 DOLORES RIVER NEAR BEDROCK, CO LOCATION.--Lat 38°21'29", long 108°49'54", in SW4NW4 sec.2, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank 2.5 mi downstream from West Paradox Creek and 4.3 mi northeast of Bedrock. DRAINAGE AREA. -- 2, 145 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1971 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,910 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Feb. 1, 1972, at site 400 ft upstream at datum 1.02 ft, higher. REMARKS.--Estimated daily discharges: Dec. 26-28, Jan. 6-9, 16-22, Jan. 31 to Feb. 5, and Feb. 10-17. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 80,000 acres, of which about 74,760 acres are in the San Juan River basin. Flow regulated by McPhee Reservoir, capacity 381,000 acre-ft, since Mar. 19, 1984. AVERAGE DISCHARGE.--12 years (water years 1972-83), 502 ft³/s; 363,700 acre-ft/yr, prior to completion of McPhee Dam; 5 years (water years 1984-88), 552 ft³/s; 399,900 acre-ft/yr, subsequent to completion of McPhee Dam. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,500 ft³/s, Apr. 30, 1973, gage height, 12.88 ft, from floodmarks; minimum daily, 0.12 ft³/s, July 17, 18, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 11.25 ft, site and datum in use prior to Feb. 1, 1972 (discharge, 5,710 ft³/s), by slope-area measurement at site 1,400 ft upstream. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,330 ft 3 /s at 0600 Nov. 6, gage height, 8.07 ft; minimum daily, 61 ft 3 /s, July 24-26. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------------|-----------------------------------|--|------------------------------------|--|-----------------------------------|-----------------------------------|-------------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 62
83
86
87
89 | 129
158
135
132
125 | 94
108
115
113
140 | 91
66
74
82
89 | 120
120
110
110
110 | 248
221
195
181
170 | 254
205
180
234
336 | 326
314
483
1350
1360 | 695
681
675
669
687 | 124
97
96
117
148 | 221
185
117
83
75 | 385
147
99
83
77 | | 6
7
8
9
10 | 90
90
91
91
91 | 859
409
236
165
142 | 150
122
116
112
108 | 90
90
90
90
100 | 119
116
121
123
110 | 157
160
152
165
142 | 324
339
401
407
352 | 1320
1310
1350
1310
1060 | 665
667
658
634
453 | 115
93
84
78
74 | 73
72
68
67
68 | 75
74
72
72
73 | | 11
12
13
14
15 | 91
91
91
105
138 | 129
125
120
118
121 | 106
99
79
92
68 | 102
101
98
94
89 | 120
120
120
120
120 | 135
134
123
117
119 | 285
240
228
230
251 | 636
317
271
265
275 | 292
233
225
220
300 | 73
75
71
69
68 | 63
65
68
65
62 | 77
110
665
295
145 | | 16
17
18
19
20 | 117
111
98
96
95 | 117
117
109
107 | 72
129
120
141
121 | 85
85
85
85 | 120
120
123
123
125 | 118
116
116
112
110 | 378
393
464
361
306 | 279
287
318
399
1210 | 278
197
139
107
94 | 66
66
68
66 | 68
180
132
84
74 | 105
92
85
80
79 | | 21
22
23
24
25 | 95
95
97
101
111 | 109
110
109
109
108 | 107
106
117
111
79 | 85
85
82
98
94 | 130
139
154
164
165 | 112
119
157
267
336 | 336
295
313
362
413 | 1260
1070
877
703
695 | 90
86
83
79
77 | 63
62
61
61 | 384
201
88
77
76 | 81
80
83
84
81 | | 26
27
28
29
30
31 | 107
104
99
99
112
117 | 112
113
107
95
89 | 75
80
80
86
97
97 | 95
99
101
110
121
120 | 190
201
252
301 | 325
412
662
689
394
304 | 477
447
338
276
282 | 691
686
685
723
998
909 | 86
80
145
151
142 | 61
67
69
66
75
134 | 76
79
113
128
96
107 | 79
79
77
77
77 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3030
97.7
138
62
6010 | 4721
157
859
89
9360 | 3240
105
150
68
6430 | 2861
92.3
121
66
5670 | 4066
140
301
110
8060 | 6768
218
689
110
13420 | 9707
324
477
180
19250 | 23737
766
1360
265
47080 | 9588
320
695
77
19020 | 2496
80.5
148
61
4950 | 3315
107
384
62
6580 | 3688
123
665
72
7320 | CAL YR 1987 TOTAL 228556 MEAN 626 MAX 4090 MIN 62 AC-FT 453300 WTR YR 1988 TOTAL 77217 MEAN 211 MAX 1360 MIN 61 AC-FT 153200 ## DOLORES RIVER BASIN 199 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Data collected 1.2 miles upstream from current site at station 09171070 from January 1979 to Dec. 2, 1987. Data between sites are not equivalent. At current site Dec. 2, 1987 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Dec. 2, 1987 to current year. WATER TEMPERATURE: Dec. 2, 1987 to current year. INSTRUMENTATION. -- Water-quality monitor since Dec. 2, 1987. REMARKS .-- Daily maximum and minimum specific-conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 13,000 microsiemens Dec. 16, 1987; minimum, 350 microsiemens May 9 and 10, 1988. WATER TEMPERATURES: Maximum, 32.7°C July 13, 1988; minimum, 0.0°C many days during December and January 1987-88. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum 13,000 microsiemens Dec. 16; minimum 350 microsiemens May 9 and 10. WATER TEMPERATURES: Maximum, 32.7°C July 13; minimum, 0.0°C many days during December and January. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |------|------|---|---|--------------------------------|--------------------------------------|---|---|--|--|--|---| | JAN | | | | | | | | | | | | | 13 | 1300 | 130 | 5100 | 8.3 | 0.0 | 350 | 210 | 74 | 41 | 990 | 24 | | MA R | | | | | | | | | | | | | 01 | 1430 | 282 | 2330 | 7.4 | 9.0 | 310 | 180 | 72 | 32 | 360 | 9 | | MA Y | | | | | | | | | | | | | 11 | 1630 | 630 | 442 | 7.0 | 17.0 | 170 | 54 | 46 | 13
13 | 50
52 | 2
2 | | 24 | 1430 | 698 | 538 | 7.0 | 19.0 | 170 | 57 | 46 | 13 | 52 | 2 | | JUN | | | | | | | | | | | | | 09 | 1120 | 658 | 648 | 8.1 | 18.5 | 160 | 45 | 44 | 11 | 69 | 3 | | 28 | 1545 | 135 | 5550 | 8.1 | 25.5 | 330 | 200 | 68 | 38 | 1100 | 27 | | AUG | | | | | | | | | | | | | 03 | 0800 | 123 | 1880 | 6.9 | 21.0 | 200 | 78 | 54 | 16 | 270 | 9 | | SEP | | | | | | | | | | | | | 21 | 1630 | 81 | 3700 | 8.2 | 20.0 | 360 | 230 | 87 | 34
33 | 590 | 14 | | 22 | 1130 | 79 | 3770 | 8.3 | 16.0 | 340 | 210 | 82 | 33 | 620 | 15 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RI DE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) | |------|---|---|---|--|--|---|---|---|---|--------------------------------------| | JAN | | | | | | | | | | | | 13 | 53 | 144 | 210 | 1600 | 0.20 | 5.3 | 3060 | 4.16 |
1070 | <0.10 | | MA R | | | | | | | | | | | | 01 | 18 | 128 | 250 | 530 | 0.20 | 5.8 | 1350 | 1.83 | 1020 | 0.20 | | MA Y | | | | | | | | | | | | 11 | 3.2 | 115 | 78 | 63 | 0.20 | 5.4 | 328 | 0.45 | 558 | <0.10 | | 24 | 3.6 | 112 | 75 | 71 | 0.20 | 4.9 | 335 | 0.46 | 631 | 0.41 | | JUN | | | | | | | | | | | | 09 | 4.3 | 110 | 5 9 | 100 | 0.30 | 4.0 | 358 | 0.49 | 635 | <0.10 | | 28 | 36 | 128 | 180 | 1600 | 0.20 | 3.1 | 3100 | 4.22 | 1130 | <0.10 | | AUG | | | | | | | | | | | | 03 | 11 | 123 | 160 | 400 | 0.30 | 5.1 | 9 92 | 1.35 | 329 | 0.42 | | SEP | | | | | | | | | | | | 21 | 32 | 129 | 250 | 960 | 0.20 | 4.5 | 2040 | 2.77 | 445 | <0.10 | | 22 | 24 | 131 | 220 | 980 | 0.20 | 4.4 | 2040 | 2.78 | 436 | <0.10 | | | | | | | | | | | | | SOLIDS MITTER DOLORES RIVER BASIN ## 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENTS/CM AT 25 DEG. C) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | |----------------------------------|-----|-----|--|--------------------------------------|-----|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3
4
5 | | | 4830
5330
4080 | 6070
9410
8520
8050
6650 | | 3040
3700
3930
4050 | 1830
2190
2520
2290
1820 | 2020
1910
1960
876
465 | 585
600
602
601
603 | 2910
3970
4580
3290
2820 | 2330
1240
1950
2870
3300 | 2590
1150
1300
1650
2070 | | 6
7
8
9
10 | | | 3550
4890
5170
5010
5450 | 4360
3040
3160
3810
4520 | | 4370
4030
4060
3890
4530 | 1970
2020
1740
1360
1480 | 414
384
367
359
363 | 566
584
622
624
774 | 3360
4170
5160
6020
5580 | 3850
4060
4090
4250
3770 | 2410
2690
2760
2790
2850 | | 11
12
13
14
15 | | | 5650
5860
8600
6860
8530 | 4900
4540
5110
 | | 4600
4330
4530
4930
4930 | 1880
2090
1920
1920
1900 | 416
713
955
1020
979 | 1220
1540
1540
1630
1380 | 5490
5090
5290
5350
5330 | 4150
4080
3780
3920
4130 | 2800
2660
1620
1350
1720 | | 16
17
18
19
20 | | | 10400
3670
4320
3430
4090 | | | 4780
4470
4470
4600
4770 | 1760
1450
1280
1400
1960 | 896
885
889
864
641 | 1210
1740
2620
3630
4100 | 5180
5160
4880
4850
4920 | 3960
2620
1270
2060
2670 | 2210
2590
2930
3090
3290 | | 21
22
23
24
25 | | | 5420
5800
4830
5180
7830 | | | 4720
4440
3520
2020
1620 | 2220
2480
2500
2140
1930 | 472
442
459
523
562 | 4190
4320
4260
4310
4320 | 4910
5160
4960
5340
5200 | 3020
1810
1800
2300
2840 | 3470
3720
3610
3770
4070 | | 26
27
28
29
30
31 | | | 7700
5530
6180
7450
6240
6300 | | | 1430
1440
1430
1130
1180
1550 | 1660
1580
2010
2530
2660 | 580
555
576
630
557
535 | 3740
3750
3130
2670
2590 | 5450
5360
5090
5130
4860
3920 | 3170
3340
3230
2420
2690
3130 | 4360
4720
4780
4900
5080 | | MEAN | | | | | | | 1950 | 751 | 2135 | 4799 | 3035 | 2967 | DOLORES RIVER BASIN 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 201 | DA Y | MA X | MIN | |--|--|--|--|---|--|--|---|--|--
--|---|--| | | OCT | OBER | NOV | EMBER | DE C | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2 | | | | | | | .0 | .0 | | | 9.4 | 4.6 | | 3
4 | | | | | 3.0
1.0 | .0 | .0 | .0 | | | 10.0
9.7 | 4.3
4.0 | | 5 | | | | | 1.7 | .0 | .0 | .0 | | | 9.7 | 3.4 | | 6
7 | | | | | 2.6
2.3 | .6
.4 | •7
•9 | .0 | | | 10.0
8.3 | 3.5
4.4 | | 8
9 | | | | | 3.8
2.9 | .0 | .6 | .0 | | | 9.0
9.8 | 1.7 | | 10 | | | | | 3.7 | .0 | .ģ | .0 | | | 8.4 | 2.5
4.4 | | 11
12 | | | | | 2.6
1.5 | .0 | 2.0
1.3 | .0 | | | 8.6
6.3 | 3.2
1.3 | | 13
14 | | | | | .0 | .0 | . 4 | .0 | | | 8.8 | 1.1 | | 15 | | | | | .7
.6 | .0 | | | | | 7.9 | .2
2.0 | | 16 | | | | | .0 | .0 | | | | | 10.3 | 3.3
2.0 | | 17
18 | | | | | 2.1
2.0 | .0
.0 | | | | | 9.8
10.9 | 1.1 | | 19
20 | | | | | 1.2
2.6 | .0 | | | | | 12.7
14.2 | 2.2
3.2 | | 21 | | | | | 1.9 | .0 | | | | | 14.4 | 4.5 | | 22
23 | | | | | 3·3
2·3 | .0
.0 | | | | | 13.4
13.9 | 5.7
5.5
6.6 | | 24
25 | | | | | •7
•3 | .0
.0 | | ' | | | 12.3
11.9 | 6.6
5.4 | | 26 | | | | | .0 | .0 | | | | | 13.5 | 6.6 | | 27
28 | | | | | .5
1.0 | .0 | | | | | 13.1
10.1 | 7.7
6.1 | | 29
30 | | | | | 1.1 | .0 | | | | | 8.2
6.7 | 3.5
4.7 | | 31 | | | | | .9 | .0 | | | | | 7.5 | 3.8 | | MONTH | APF | RIL | M | ΛY | Jī | JNE | Jį | JLY | AU | GUST | SEPTI | EMBE R | | 1 | 11.1 | 3.6 | 14.0 | 11.1 | 16.4 | 11.2 | 29.5 | 20.7 | 28.0 | 21.7 | 25.5 | 19.7 | | 2
3 | 11.1
12.9
13.1 | 3.6
4.7
6.2 | 14.0
16.0
17.4 | 11.1
9.3
9.5 | 16.4
19.0
21.6 | 11.2
12.6
15.2 | 29.5
29.0
30.4 | 20.7
20.4
20.3 | 28.0
27.6
30.3 | 21.7
20.7
20.9 | 25.5
25.8
26.3 | 19.7
18.7
17.6 | | 2 | 11.1
12.9 | 3.6
4.7 | 14.0
16.0 | 11.1
9.3 | 16.4
19.0 | 11.2
12.6 | 29.5
29.0 | 20.7
20.4 | 28.0
27.6 | 21.7
20.7 | 25.5
25.8 | 19.7
18.7 | | 2
3
4
5 | 11.1
12.9
13.1
11.8
13.9 | 3.6
4.7
6.2
8.1
7.3 | 14.0
16.0
17.4
13.3
12.9 | 11.1
9.3
9.5
10.9
9.3 | 16.4
19.0
21.6
22.3
23.1 | 11.2
12.6
15.2
17.1
18.4 | 29.5
29.0
30.4
28.6
26.8 | 20.7
20.4
20.3
21.0
19.8 | 28.0
27.6
30.3
29.5
29.7 | 21.7
20.7
20.9
21.0
18.6 | 25.5
25.8
26.3
26.2
27.1
26.5 | 19.7
18.7
17.6
17.2
17.1 | | 2
3
4
5
6
7
8 | 11.1
12.9
13.1
11.8
13.9 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0 | 11.1
9.3
9.5
10.9
9.3
7.9
7.8 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.0 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0 | 19.7
18.7
17.6
17.2
17.1
16.3
16.2 | | 2
3
4
5
6
7 | 11.1
12.9
13.1
11.8
13.9 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4 | 14.0
16.0
17.4
13.3
12.9 | 11.1
9.3
9.5
10.9
9.3
9.3 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1 | 28.0
27.6
30.3
29.5
29.7 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7 | 19.7
18.7
17.6
17.2
17.1 | | 2
3
4
5
6
7
8
9
10 | 11.1
12.9
13.1
11.8
13.9
15.5
15.9
14.6
13.5
13.6 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0 | 11.1
9.3
9.5
10.9
9.3
7.9
8.7
9.6 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.0
16.5
16.2 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
32.5 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
30.7
25.8 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
18.2 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2 | 19.7
18.7
17.6
17.2
17.1
16.3
15.7
15.6
16.8 | | 2
3
4
5
6
7
8
9 | 11.1
12.9
13.1
11.8
13.9
15.5
15.9
14.6
13.5
13.6 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0 | 11.1
9.3
9.5
10.9
9.3
7.9
8.7
9.6 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.5
16.5 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9
30.7
25.8 | 21.7
20.7
20.9
21.0
18.6
21.7
19.5
18.2 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2 | 19.7
18.7
17.6
17.2
17.1
16.3
15.6
16.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 11.1
12.9
13.1
11.8
13.9
15.5
15.9
14.6
13.5
13.6 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
10.6
11.6 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0
17.3
20.8
21.6
22.7 | 11.1
9.3
9.5
10.9
9.3
7.8
8.7
9.6 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
21.5
24.5 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
32.7
30.7 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.1
20.7 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9
30.7
25.8
30.2
27.6
27.0
27.8 | 21.7
20.7
20.9
21.0
18.6
21.7
19.5
18.2
18.2
17.3
18.9
18.0
17.4 |
25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
18.5 | 19.7
18.7
17.6
17.2
17.1
16.3
15.7
15.6
16.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
12.9
13.1
11.8
13.9
15.5
15.9
14.6
13.5
13.6 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
10.6
11.6 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0
17.3
21.6
22.7
24.2 | 11.1
9.3
9.5
10.9
9.3
7.9
7.8
8.7
9.6 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
24.5
24.5 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.0
16.5
16.2 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
30.9
30.7
30.7 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.1
20.7
21.3 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
30.7
25.8
30.2
27.6
27.8
26.7 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
18.0
17.4 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
17.6
18.5
20.1 | 19.7
18.7
17.6
17.2
17.1
16.3
16.2
15.6
16.8
15.8
12.9
13.0
12.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.5
13.6
17.2
16.7
17.9
14.0 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
11.6
11.5 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0
17.3
20.8
21.6
22.7
24.2 | 11.1
9.3
9.5
10.9
9.3
7.98
8.7
9.6
10.7
12.4
14.5
16.2
17.2 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
21.5
22.6
24.5 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.5
16.5
16.7
16.3
17.5
17.5 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
30.9
32.7
31.1 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.1
20.7
21.3 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
30.7
25.8
30.2
27.6
27.6
27.8
26.7 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
18.0
17.4
19.1 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
17.6
18.5
20.1 | 19.7
18.7
17.6
17.2
17.1
16.3
16.2
15.6
16.8
15.2
13.8
12.9
13.0
12.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
17.2
16.7
14.4
17.9
14.0
15.0
15.9 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
11.6
11.5 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
13.4
15.0
17.3
20.8
21.6
22.7
24.2
23.4
21.3
19.5
18.1 | 11.1
9.3
9.5
10.9
9.3
7.8
8.7
9.6
10.7
12.4
15.5
16.2
17.2
18.0
15.6 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
24.5
22.6
24.5
22.6 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2
16.7
16.3
17.5
17.4
19.1
19.3 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
30.7
31.1
30.8
33.1
31.4 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.7
21.3 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
30.7
25.8
30.2
27.6
27.6
27.8
26.7
27.6
27.5
28.9 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
17.4
19.1 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2
19.4
16.6
18.5
20.1
21.5
20.6
19.8 | 19.7
18.7
17.6
17.2
17.1
16.3
15.7
15.6
16.8
15.2
13.9
13.0
12.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
17.2
16.7
14.0
15.0
14.0
15.7 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
10.6
11.5 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
15.0
17.3
20.8
21.6
22.7
24.2
23.4
21.3
19.5
18.1
16.2 | 11.1
9.3
9.5
10.9
9.3
7.8
8.7
9.6
10.7
14.5
15.2
17.2
18.3
15.4 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
21.5
24.5
24.5
24.5
24.5
24.5
24.6
26.3
27.2
28.6
29.8 | 11.2
12.6
15.2
17.1
18.4
17.8
16.8
16.5
16.5
16.7
17.5
17.5
17.5
17.5
19.7 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
32.7
31.1
30.8
28.3
31.4
30.3 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.1
20.7
21.3
19.7
20.1
19.1
18.1 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9
30.7
25.8
30.2
27.6
27.6
27.8
26.7
27.5
28.2
29.5 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
18.2
17.3
18.9
18.0
17.4
19.1 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2
19.4
16.0
17.6
18.5
20.1
21.5
20.6
19.6 | 19.7
18.7
17.6
17.2
17.1
16.3
15.7
15.6
16.8
15.8
12.9
13.0
12.6
12.8
13.9
10.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
13.6
17.2
16.7
14.4
17.9
14.0
15.0
15.7 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
10.6
11.5
10.4
10.1
11.0 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0
17.3
20.8
21.6
22.7
24.2
23.4
21.3
19.5
18.1
16.2 | 11.1
9.3
9.5
10.9
9.3
7.98
8.7
9.6
10.7
14.75
16.2
17.2
18.3
15.4
11.7 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
21.5
22.6
24.5
27.2
28.6
29.8
30.7
31.0 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2
16.3
17.5
17.4
19.1
19.3
19.7
20.3 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
32.7
30.7
31.1 | 20.7
20.4
20.3
21.0
19.8
20.4
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
21.3 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9
30.7
25.8
30.2
27.6
27.0
27.8
26.7
27.5
28.9
27.5
28.9 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
18.2
17.3
18.9
17.4
19.1
19.5
18.8
20.2
18.8
19.5 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
18.5
20.1
21.5
20.9
20.8
19.6
20.2 | 19.7
18.7
17.6
17.2
17.1
16.3
15.7
15.6
16.8
15.2
13.8
13.9
12.6
12.8
13.9
10.9 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
17.2
14.4
17.9
14.0
15.0
15.9
15.7
14.4
17.9
15.0
15.0
15.0
15.0
15.0
15.0 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.16
11.6
11.6
11.5
11.8
10.4
10.1
11.0 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
11.9
13.4
15.0
17.3
20.6
22.7
24.2
23.4
21.5
18.1
16.2
17.2
18.3
19.3 | 11.1
9.5
10.3
9.5
10.3
7.8
8.7
9.6
10.7
14.5
15.6
17.0
18.0
18.0
18.0
18.0
18.0
18.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
24.5
24.5
22.6
24.5
27.2
28.6
29.8
30.7
31.0
31.1 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.5
16.7
17.5
17.4
19.5
19.7
20.1
20.1
21.8 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
30.7
31.1
30.8
31.4
30.5
31.7
31.1
28.3
31.2
29.7 | 20.7
20.4
20.3
21.0
19.8
20.4
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
20.1
18.1
18.9
19.8 | 28.0
27.6
30.3
29.5
29.7
30.7
28.9
30.7
25.8
30.2
27.0
27.8
27.6
27.8
27.5
28.9
27.5
28.9
27.5
29.9
29.9 | 21.7
20.7
20.9
21.0
18.6
21.7
19.5
18.2
17.3
18.0
17.4
19.1
19.5
18.8
19.5 | 25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2
19.4
16.6
18.5
20.1
21.5
20.6
19.8
19.6
20.2
19.8
19.8 | 19.7
18.7
17.6
17.2
17.1
16.3
15.6
15.6
15.8
15.8
13.9
12.6
13.9
10.9
14.9
12.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |
11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
15.4
17.2
16.7
14.0
15.0
14.0
15.7
13.3
14.0
15.7 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
11.6
11.5
11.8
10.4
10.1
11.0 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
13.4
15.0
17.3
20.8
21.6
22.7
24.2
23.4
21.3
19.5
18.1
16.2
17.2
18.3
19.3
19.3 | 11.1
9.3
9.5
10.9
9.3
7.98
8.7
9.6
12.4
712.4
715.2
17.0
16.3
15.4
11.0
11.8
11.0
11.8
11.1
11.1
11.1
11.1 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
24.5
24.5
24.5
27.2
28.6
29.8
30.7
31.1
31.6 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2
16.3
17.5
17.4
19.1
19.3
19.3
19.3
20.1
20.8
21.8 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
32.7
31.1
30.8
28.3
31.4
30.5
30.5
30.5 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
20.1
19.1
18.1
18.9
18.9
19.8 | 28.0
27.6
30.3
29.7
30.7
29.9
30.7
25.8
30.2
27.6
27.8
26.7
27.5
28.2
29.5
27.5
28.2
29.5
27.5
29.7 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
18.0
17.4
19.1
19.5
18.8
20.2
18.8
19.5
18.8
20.8
19.5
18.8
19.5
18.8
19.5
18.8
19.5
18.8
19.5
18.8
19.5
18.8
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
178.5
20.1
20.9
20.6
19.6
19.6
19.6
20.2 | 19.7
18.7
17.6
17.2
17.1
16.3
15.6
15.6
15.8
12.9
12.6
13.1
13.9
10.5
10.5
12.8
13.1
12.8
13.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.1
12.9
13.1
11.8
13.9
15.5
15.9
13.6
17.2
16.7
14.4
17.9
14.0
15.0
14.0
15.7
13.3
11.8
11.8
11.8
11.8
11.8
11.8
11.8 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.16
11.6
11.5
11.8
10.4
11.0
10.1
11.0
10.5
7.4
9.3
9.3 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
13.4
15.0
17.3
20.6
22.7
24.2
23.4
21.3
19.5
16.2
17.2
18.3
19.3
18.9
20.1 | 11.1
9.3
9.5
10.9
9.3
9.3
9.3
9.6
10.7
14.7
15.2
18.0
16.3
11.7
12.8
11.7
12.8
14.1
15.8 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
23.7
24.5
22.6
24.5
22.6
24.5
22.8
28.8
30.7
311.6
30.4
29.8 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2
16.7
16.3
17.5
17.4
19.1
19.3
19.7
20.8
21.6
20.0
21.4 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
27.5
30.6
30.9
30.7
31.1
30.3
31.7
31.1
28.3
31.1
30.3
31.7
31.1
28.3
31.3
31.3
31.3
31.3
31.3
31.3
31.3
3 | 20.7
20.4
20.3
21.0
19.8
20.4
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
21.3
19.7
21.1
18.9
18.7
19.8
19.8
19.8 | 28.0
27.6
30.3
29.5
29.7
30.7
29.9
28.9
30.7
25.8
30.2
27.6
27.0
27.8
26.7
27.5
28.2
29.3
29.7
29.3
29.7
29.3 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
18.9
17.4
19.1
19.5
18.8
20.8
21.3
20.5
21.3 | 25.5
25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2
19.4
16.6
18.5
20.1
21.5
20.9
20.8
19.6
20.2
19.8
20.6 | 19.7
18.7
17.6
17.2
17.1
16.3
15.6
15.6
15.8
13.9
13.0
12.8
13.9
10.9
14.9
12.0
13.1
13.1
13.9
14.9
13.1 | | 2
3
4
5
6
7
8
9
10
112
133
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29 | 11.1
12.9
13.1
11.8
13.9
15.9
14.6
13.5
13.6
15.4
17.9
14.0
15.9
15.7
14.4
17.9
14.0
15.9
15.7 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.16
11.6
11.6
11.5
11.8
10.4
10.1
11.0
10.5
7.7
9.3
9.3 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
15.0
17.3
20.8
21.6
22.7
24.2
23.4
21.3
19.5
18.1
16.2
15.7
17.2
18.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 |
11.1
9.5
9.5
10.9
9.3
9.3
9.3
9.3
9.3
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9 | 16.4
19.0
21.6
22.3
23.1
22.2
21.8
21.4
21.3
22.1
23.7
22.6
24.5
22.6
24.5
22.8
27.6
28.8
30.7
31.1
31.6
4
29.8
30.0
26.0 | 11.2
12.6
15.2
17.1
18.4
16.8
16.5
16.5
16.5
17.5
17.5
19.1
19.3
19.7
20.8
21.6
20.0
21.6 | 29.5
29.0
30.4
28.6
26.8
30.3
31.3
30.0
27.5
30.6
30.9
30.7
31.1
30.8
28.3
31.4
30.3
31.4
30.3
31.7
31.1
29.7
30.0
29.6
30.3 | 20.7
20.4
20.3
21.0
19.8
20.4
20.1
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
21.3
19.7
20.1
18.9
18.9
19.5
20.1
20.1
20.1 | 28.0
27.6
30.3
29.5
29.7
30.7
28.9
30.7
25.8
30.2
27.6
27.6
27.8
26.7
27.5
28.0
27.5
28.0
27.5
29.3
29.3
29.3
29.3
29.5 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
17.4
19.1
19.5
18.8
20.8
19.5
18.8
21.8
20.2
21.8
20.2 | 25.8
26.3
26.2
27.1
26.5
25.7
26.0
24.4
20.2
19.4
16.0
18.5
20.1
21.5
20.9
20.8
19.6
20.2
19.8
20.6
19.8
20.6 | 19.7
18.6
17.6
17.1
16.3
15.6
15.6
15.8
15.8
13.9
12.6
13.9
10.9
14.9
12.0
13.1
13.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 11.1
12.9
13.1
11.8
13.9
15.5
15.6
13.6
17.2
14.4
17.9
14.0
15.0
15.7
14.4
15.9
15.7
14.4
15.9
15.7
14.4
15.9
15.7
14.6
15.7
14.6
15.7
16.7
17.7
17.7
18.5 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.16
11.6
11.5
11.8
10.4
10.1
11.0
10.5
7.4
10.1
11.0
9.3
9.3 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
13.4
15.0
17.3
20.6
22.7
24.2
23.4
21.3
19.1
16.2
17.2
18.3
19.9
11.9
19.9
11.9
19.9
11.9
19.9
11.9
19.9
11.9
19.9
11.9
19.9
11.9
19.9
11.9
19.9
19.1
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | 11.1
9.5
9.9
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.3
22.1
22.1
23.5
24.5
24.5
24.5
22.6
24.5
22.6
29.8
30.0
26.0
27.0
29.0
20.0
20.0
20.0
20.0
20.0
20.0
20 | 11.26
15.21
17.1
18.4
17.8
16.0
16.5
16.5
16.7
16.3
17.5
17.4
19.3
19.7
20.1
20.8
21.6
21.6
22.6 | 29.5
29.0
30.4
28.6
8
30.3
31.3
327.5
30.6
9.9
30.7
31.1
28.3
30.3
31.7
31.1
28.7
30.6
30.9
30.9
30.9
30.9
30.9
30.9
30.9
30.9 | 20.7
20.4
20.3
21.0
19.8
20.4
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
20.1
18.1
18.9
18.7
19.3
18.9
19.5
20.1
20.8
20.1
20.8
20.1 | 28.0
27.6
30.3
29.7
30.7
29.9
30.7
25.8
30.2
27.0
27.8
27.5
27.5
28.0
27.5
27.5
28.0
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 21.7
20.7
20.9
21.0
18.6
21.7
19.5
18.2
17.3
18.9
17.4
19.1
19.5
18.8
20.2
18.8
19.5
18.8
20.8
21.3
20.2
20.0
20.1 | 25.8
26.3
26.2
27.1
26.5
25.7
24.4
20.2
19.4
16.6
18.5
20.1
20.9
6
19.8
20.6
19.8
20.6
19.8
20.6
19.8
20.6
19.8
20.6 | 19.7
18.6
17.6
17.1
16.2
15.6
15.6
15.6
15.8
13.9
13.9
10.9
12.8
13.1
13.9
10.9
12.8
13.1
13.9
10.6 | | 2
3
4
5
6
7
8
9
10
112
133
14
15
16
17
18
19
20
21
22
23
24
25
26
27
29 | 11.1
12.9
13.1
11.8
13.9
15.9
14.6
13.5
13.6
15.4
17.9
14.0
15.9
15.7
14.4
17.9
14.0
15.9
15.7 | 3.6
4.7
6.2
8.1
7.3
8.1
9.4
10.3
8.3
7.1
7.7
9.1
11.6
11.6
11.5
10.4
10.1
11.0
10.5
7.4
10.1
11.0
10.1
10.1
10.1 | 14.0
16.0
17.4
13.3
12.9
12.2
12.0
13.4
15.0
17.3
20.6
22.7
24.2
23.4
21.3
18.1
16.2
17.3
18.3
19.9
18.3
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9
19.9 |
11.1
9.5
9.5
9.3
9.3
9.3
9.3
9.3
9.3
9.3
10.4
14.5
15.2
17.0
11.2
17.0
11.2
17.0
11.2
17.0
11.2
17.0
11.2
11.2
11.2
11.2
11.2
11.2
11.2
11 | 16.4
19.0
21.6
22.3
23.1
22.2
21.7
21.8
21.4
21.3
22.1
24.5
24.5
24.5
24.5
27.2
28.6
29.8
30.7
31.1
30.4
29.8
30.0
27.2 | 11.2
12.6
15.2
17.1
18.4
17.8
16.0
16.5
16.2
16.7
16.3
16.0
17.5
17.4
19.5
19.3
19.7
20.1
20.8
21.6
21.6
21.4
22.4 | 29.5
29.0
30.4
28.6
8
30.3
31.3
30.0
30.7
30.7
30.7
31.1
30.8
33.3
31.5
30.3
31.7
30.5
30.5
30.5
30.5
30.6
30.5
30.6
30.5
30.6
30.6
30.6
30.6
30.6
30.6
30.6
30.6 | 20.7
20.4
20.3
21.0
19.8
20.4
20.6
21.1
19.5
19.9
20.8
20.7
21.3
19.7
20.7
21.3
19.7
20.1
18.1
19.5
18.9
19.8
19.8 | 28.0
27.6
30.3
29.7
30.9
29.7
29.9
30.7
27.8
27.0
27.8
27.6
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.5
28.9
27.9
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | 21.7
20.7
20.9
21.0
18.6
21.6
21.7
19.5
18.2
17.3
18.9
18.0
17.4
19.1
19.5
18.8
20.2
18.8
19.5
19.8
20.8
21.3 | 25.8
26.3
26.2
27.1
26.7
24.4
20.2
19.4
16.6
18.5
20.1
21.5
20.6
19.8
20.6
19.8
20.6
19.8
20.6 | 19.7
18.7
17.6
17.2
17.1
16.3
15.6
15.6
15.6
13.8
12.9
12.6
13.9
10.5
10.9
14.9
12.8
13.1
12.9
12.8
13.1
12.9
12.8
13.1
12.9
14.9
12.8
13.1
14.9
14.9
15.9
16.9
17.9
17.9
17.9
17.9
17.9
17.9
17.9
17 | 202 DOLORES RIVER BASIN #### 09172500 SAN MIGUEL RIVER NEAR PLACERVILLE, CO LOCATION.--Lat 38°02'33", long 108°07'54", in NW\u00e4NE\u00e4 sec.25, T.44 N., R.12 W., San Miguel County, Hydrologic Unit 14030003, on right bank 1.5 mi downstream from Specie Creek in vicinity of mile marker 88.68 on State Highway 145 and 4.5 mi northwest of Placerville, Co. DRAINAGE AREA. -- 310 mi2. PERIOD OF RECORD.--January to December 1909, September 1910 to December 1912, April 1930 to September 1934, April 1942 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Placerville," 1910-12. GAGE.--Water-stage recorder. Datum of gage is 7,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1958. Oct. 22, 1958 to Mar. 4, 1986, gage located 0.8 mi upstream from present site, at different datum. Mar. 5, 1986, gage moved to present site, at present datum. REMARKS.--Estimated daily discharges: Nov. 14-22, 26, 27, Nov. 29 to Dec. 5, Dec. 12-14, 16-20, 22, and Dec. 24 to Feb. 28. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,700 acres upstream from station. One diversion from Fall Creek for irrigation of about 2,000 acres in Beaver and Saltado Creek basins. One small ditch diverts water from Leopard Creek to Uncompangre River basin. Slight regulation by Lake Hope and Trout Lake operated by Colorado Ute Electric Association, combined capacity, 5,040 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 52 years (water years 1911-12, 1931-34, 1943-88), 238 ft3/s; 172,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,000 ft³/s, Sept. 5, 1909 (result of failure of Trout and Middle Reservoir Dams); minimum daily, 26 ft³/s, Jan. 5, 1960. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 900 ft³/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|---------|------|----------------------|---------------------| | June 11 | 0100 | 952 | 4.14 | June 27 | 1830 | *1,110 | *4.39 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 48 ft³/s, Feb. 19. | | | JIO OMINGE, | OUDIO | | BB 00115, | MEAN VALU | ES | 1,0, 10 | DUI TURBUK | 1,500 | | | |--------------------------------------|--|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--------------------------------------|----------------------------------|--|-------------------------------------|--|------------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 96
96
96
94
92 | 116
121
111
112
106 | 90
90
90
90 | 80
75
70
70
70 | 55
55
55
50
50 | 94
99
99
83
81 | 80
90
92
102
111 | 187
175
176
172
183 | 357
339
421
613
734 | 526
461
423
458
420 | 253
198
189
167
156 | 197
184
164
155
146 | | 6
7
8
9
10 | 91
87
89
99
107 | 136
143
128
120
120 | 87
81
83
84
89 | 70
70
70
70
70 | 50
50
50
55
55 | 77
74
68
69
76 | 134
200
226
191
152 | 188
187
186
173
174 | 801
855
839
817
843 | 381
412
379
354
351 | 179
244
212
176
155 | 136
132
126
132
138 | | 11
12
13
14
15 | 107
105
118
135
127 | 113
103
102
100
100 | 86
85
85
85
84 | 70
70
65
65
65 | 50
50
50
50
50 | 62
69
68
58 | 157
188
196
189
190 | 182
207
266
316
377 | 876
791
740
569
546 | 311
299
289
266
264 | 146
147
136
124
120 | 160
264
268
230
203 | | 16
17
18
19
20 | 106
104
99
93
92 | 90
90
80
80
90 | 85
85
90
90 | 65
60
60
60 | 50
50
50
48
50 | 61
64
55
64
62 | 199
186
169
177
174 | 446
487
568
504
428 | 504
598
621
606
686 | 252
236
224
214
218 | 132
151
135
123
118 | 182
167
174
175
165 | | 21
22
23
24
25 | 89
104
105
109
126 | 95
95
94
96
96 | 92
90
92
90
85 | 60
60
60
60
55 | 50
55
55
60
60 | 68
80
77
87
91 | 189
182
187
183
170 | 348
268
267
324
356 | 756
738
786
800
771 | 205
194
187
174
164 | 126
195
171
155
158 | 196
211
191
175
170 | | 26
27
28
29
30
31 | 116
115
111
108
117
118 | 90
90
96
90
90 | 80
80
80
80
80 | 55
55
56
60
60 | 65
70
70
72
 | 122
149
148
106
94
89 | 162
152
153
155
169 | 311
347
435
493
468
370 | 723
666
707
682
572 | 160
161
170
175
167
174 | 156
315
225
199
199 | 161
159
155
145
136 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3251
105
135
87
6450 | 3093
103
143
80
6130 | 2668
86.1
92
80
5290 | 1995
64.4
80
55
3960 | 1580
54.5
72
48
3130 | 2562
82.6
149
55
5080 | 4905
163
226
80
9730 | 9569
309
568
172
18980 | 20357
679
876
339
40380 | 8669
280
526
160
17190 | 5359
173
315
118
10630 | 5197
173
268
126
10310 | CAL YR 1987 TOTAL 125035 MEAN 343 MAX 1390 MIN 70 AC-FT 248000 WTR YR 1988 TOTAL 69205 MEAN 189 MAX 876 MIN 48 AC-FT 137300 203 ## 09177000 SAN MIGUEL RIVER AT URAVAN, CO LOCATION.--Lat 38°21'26", long 108°42'44", in SW4NE4 sec.2, T.47 N., R.17 W., Montrose County, Hydrologic Unit 14030003, on right bank 20 ft downstream from bridge on State Highway 141, 400 ft downstream from Tabeguache Creek, and 1.5 mi southeast of Uravan. DRAINAGE AREA. -- 1,499 mi2. PERIOD OF RECORD. -- August 1954 to September 1962, October 1973 to current year. REVISED RECORDS. -- WRD Colo. 1974: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,000 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 3, 1959, at site 0.5 mi downstream at different datum. REMARKS.--Estimated daily discharges: Oct. 6-13, Nov. 16-19, and Nov. 29 to Feb. 17. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 28,000 acres upstream from station, and return flow from irrigated areas. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--23 years (water years 1955-62, 1974-88), 403 ft³/s; 292,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,050 ft³/s, May 10, 1983, gage height, 10.14 ft, from rating curve extended above 4,100 ft³/s; minimum daily, 9.4 ft³/s, Aug. 10, 1977. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 12.6 ft, from floodmarks, discharge, 8,910 ft³/s, by slope-area measurement at site 5.5 mi downstream. EXTREMES FOR CURRENT YEAR. -- Peak
discharges greater than base discharge of 2,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |---------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|------------------| | Dec. 28 | 1100 | | *a6.32 | Apr. 8 | 0700 | *1,240 | 5.53 | DISCHARGE CURIC FEFT DED SECOND WATER VEAR OCTOBER 1087 TO SERTEMBER 1088 a Backwater from ice. Minimum daily discharge, 75 ft3/s, Jan. 24. | | | DISCHA | ARGE, CUBI | C FEET | PER SECOND | , WATER
MEAN VAL | | BER 1987 | TO SEPTEM | BER 1988 | | | |----------------------------------|---------------------------------|---------------------------------|--|------------------------|------------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | иои | DEC | JAN | FEB | MA R | APR | Y AM | JUN | JUL | AUG | SEP | | 1 | 128 | 178 | 100 | 100 | 110 | 194 | 218 | 409 | 438 | 616 | 244 | 201 | | 2 | 124 | 233 | 100 | 85 | 180 | 227 | 202 | 410 | 393 | 520 | 194 | 188 | | 3 | 124 | 189 | 110 | 95 | 230 | 199 | 237 | 377 | 392 | 481 | 181 | 165 | | 4 | 124 | 163 | 120 | 100 | 150 | 185 | 293 | 356 | 493 | 465 | 156 | 148 | | 5 | 122 | 160 | 120 | 110 | 110 | 169 | 335 | 336 | 682 | 487 | 138 | 138 | | 6 | 100 | 533 | 110 | 110 | 100 | 164 | 379 | 344 | 768 | 398 | 128 | 128 | | 7 | 100 | 266 | 110 | 110 | 100 | 169 | 586 | 340 | 858 | 396 | 142 | 118 | | 8 | 100 | 215 | 110 | 110 | 110 | 139 | 872 | 324 | 872 | 384 | 203 | 109 | | 9 | 95 | 185 | 100 | 100 | 110 | 114 | 763 | 300 | 836 | 341 | 156 | 99 | | 10 | 95 | 170 | 110 | 110 | 110 | 124 | 564 | 284 | 831 | 340 | 129 | 109 | | 11 | 95 | 160 | 110 | 110 | 110 | 126 | 482 | 296 | 871 | 313 | 118 | 132 | | 12 | 100 | 154 | 110 | 95 | 110 | 104 | 547 | 335 | 843 | 277 | 111 | 271 | | 13 | 100 | 144 | 110 | 90 | 110 | 108 | 601 | 395 | 760 | 256 | 109 | 537 | | 14 | 156 | 146 | 110 | 80 | 110 | 139 | 549 | 493 | 626 | 235 | 97 | 310 | | 15 | 233 | 158 | 110 | 80 | 110 | 134 | 583 | 588 | 550 | 224 | 86 | 233 | | 16 | 177 | 130 | 110 | 80 | 120 | 142 | 596 | 631 | 496 | 224 | 85 | 189 | | 17 | 152 | 110 | 110 | 80 | 120 | 130 | 567 | 685 | 526 | 205 | 95 | 165 | | 18 | 148 | 100 | 130 | 80 | 125 | 126 | 472 | 827 | 577 | 182 | 99 | 148 | | 19 | 140 | 100 | 120 | 80 | 134 | 118 | 421 | 859 | 625 | 160 | 88 | 150 | | 20 | 132 | 115 | 120 | 80 | 142 | 130 | 410 | 772 | 641 | 154 | 83 | 148 | | 21 | 134 | 138 | 110 | 85 | 152 | 140 | 415 | 611 | 750 | 156 | 80 | 139 | | 22 | 128 | 140 | 110 | 80 | 198 | 181 | 469 | 483 | 758 | 148 | 100 | 168 | | 23 | 142 | 130 | 120 | 80 | 234 | 230 | 458 | 421 | 793 | 132 | 137 | 169 | | 24 | 150 | 128 | 120 | 75 | 230 | 262 | 455 | 407 | 809 | 126 | 117 | 156 | | 25 | 162 | 125 | 120 | 80 | 249 | 252 | 435 | 435 | 806 | 115 | 104 | 148 | | 26
27
28
29
30
31 | 173
155
154
148
171 | 142
142
124
100
100 | 110
100
100
100
110
120 | 85
95
100
100 | 252
232
261
245
 | 303
413
630
350
313
257 | 389
349
340
336
356 | 420
400
455
546
654
568 | 800
691
792
791
718 | 108
151
131
122
132
174 | 122
322
268
197
169
208 | 138
128
128
122
117 | | TOTAL | 4239 | 4878 | 3450 | 2850 | 4554 | 6272 | 13679 | 14761 | 20786 | 8153 | 4466 | 5099 | | MEAN | 137 | 163 | 111 | 91.9 | 157 | 202 | 456 | 476 | 693 | 263 | 144 | 170 | | MAX | 233 | 533 | 130 | 110 | 261 | 630 | 872 | 859 | 872 | 616 | 322 | 537 | | MIN | 95 | 100 | 100 | 75 | 100 | 104 | 202 | 284 | 392 | 108 | 80 | 99 | | AC-FT | 8410 | 9680 | 6840 | 5650 | 9030 | 12440 | 27130 | 29280 | 41230 | 16170 | 8860 | 10110 | CAL YR 1987 WTR YR 1988 TOTAL 223168 MEAN 611 MAX 3940 MIN 95 AC-FT 442700 TOTAL 93187 MEAN 255 MAX 872 MIN 75 AC-FT 184800 204 GREEN RIVER BASIN #### 09237500 YAMPA RIVER NEAR OAK CREEK, CO. LOCATION.--Lat 40°17'15", long 106°49'33", in SEHNEH sec. 29, T. 4 N., R. 84 W., Routt County, Hydrologic Unit 1405001, on left bank, 1.0 mi upstream from Morrison Creek and 6.5 mi east of Oak Creek, Co. DRAINAGE AREA. -- 227 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1939 to September 1944 (monthly discharge only for some periods, published in WSP 1313), October 1956 to September 1972, October 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 7,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. Sept. 1939 to Nov. 15, 1939, nonrecording gage, Nov. 16 1939, to Sept 1944 and Oct. 1956 to Sept 1972, water-stage recorder at site 0.5 mi upstream, at different datum. REMARKS.--Estimated daily discharges: Nov. 17 to Apr. 12. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 12,000 acres upstream from station. Natural flow of stream affected by 2 diversions for irrigation to Egeria Creek into Colorado River basin and by storage in Stillwater, Yampa and YamColo Reservoirs (total capacity, 15,820 acre-ft). AVERAGE DISCHARGE. -- 25 years, 89.4 ft3/s; 64,770 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,400 ft³/s, Apr. 16, 1962, gage height, 7.56 ft, from rating curve extended above 570 ft³/s, site and datum then in use; maximum gage height, 8.08 ft, Mar. 8, 1987, (backwater from ice); minimum daily discharge, 8.9 ft³/s, May 22, 1963. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 669 $\rm ft^3/s$ at 1200 Apr. 15, gage height, 3.84 ft; minimum daily, 17 $\rm ft^3/s$, Dec. 6-14. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
CAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|--|----------------------------------|--|--|----------------------------------|-------------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 37
36
36
34
31 | 67
73
71
70
77 | 18
18
18
18
18 | 23
21
20
22
25 | 27
26
28
26
20 | 32
32
34
32
34 | 90
95
100
105
115 | 245
220
205
194
184 | 104
98
90
93
104 | 98
92
106
101
102 | 96
96
99
99 | 43
42
41
39
33 | | 6
7
8
9
10 | 32
34
37
35
36 | 87
91
91
84
66 | 17
17
17
17
17 | 26
27
24
22
21 | 25
26
28
31
30 | 30
34
32
32
32 | 120
127
130
150
170 | 196
161
165
158
145 | 110
91
87
81
84 | 107
111
101
97
105 | 86
91
93
82
77 | 30
27
25
23
22 | | 11
12
13
14
15 | 34
35
39
46
52 | 51
52
53
52
56 | 17
17
17
17
18 | 21
20
20
20
25 | 32
36
33
32
33 | 32
32
32
33
36 | 180
191
327
402
475 | 141
151
165
175
164 | 92
123
120
127
110 | 114
113
103
97
101 | 70
71
75
71
68 | 27
55
79
61
55 | | 16
17
18
19
20 | 60
60
59
54 | 51
56
36
35
34 | 20
20
21
22
21 | 24
23
25
27
24 | 34
34
32
32
32 | 30
35
34
33
34 | 422
444
324
336
392 | 163
163
195
219
223 | 107
104
104
104
105 | 94
93
92
82
74 | 83
78
70
67
64 | 56
50
46
44
48 | | 21
22
23
24
25 | 58
60
62
69
96 | 33
20
20
20
20 | 20
20
22
22
21 | 20
25
26
27
28 | 33
33
34
33
33 | 35
37
39
40
45 | 333
312
202
209
197 | 159
133
118
106
106 | 106
171
127
113
103 | 77
79
85
82
80 | 71
75
69
64
61 | 48
58
56
58
57 | | 26
27
28
29
30
31 | 59
54
55
59
67
72 | 19
19
19
19
19 | 20
21
22
22
23
23 | 29
30
30
30
31
29 | 33
33
33
33 | 50
55
60
70
75
80 | 198
197
185
199
210 | 112
117
120
122
126
127 | 90
96
124
175
121 | 82
94
100
101
101
98 | 58
55
50
47
43
44 | 52
51
53
56
54 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1557
50.2
96
31
3090 | 91
19 | 601
19.4
23
17
1190 | 765
24.7
31
20
1520 | 895
30.9
36
20
1 7 80 | 1241
40.0
80
30
2460 | 6937
231
475
90
13 7 60 | 4978
161
245
106
9870 | 3264
109
175
81
6470 | 2962
95.5
114
74
5880 | 2265
73.1
99
43
4490 | 1389
46.3
79
22
2760 | CAL YR 1987 TOTAL 24686 MEAN 67.6 MAX 246 MIN 17 AC-FT 48960 WTR YR 1988 TOTAL 28315 MEAN 77.4 MAX 475 MIN 17 AC-FT 56160 ## 09237500 YAMPA RIVER NEAR OAK CREEK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1984 to current year. PERIOD OF DAILY RECORD. -- SUSPENDED SEDIMENT DISCHARGE: May 1985 to September 1988, (discontinued). INSTRUMENTATION. -- Automatic pumping sediment sampler May 1985 to September 1988. REMARKS.--This station is part of a hydrologic investigation for a proposed reservoir, data for related stations, Martin Creek, Little Morrison Creek, Middle Creek,
and Yampa River, (all located above the dam site) are published elsewhere in this report. Unpublished daily sediment discharge for May to September, 1988 are available from district office. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREA
FLOV
INSTA
TANEO
(CF: | W, CON
AN- DUC
DUS ANC | PIC
 -
CT- | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |-----------------|--|---|---|--|--|---|---|---|--|--|--| | OCT
05 | 1140 | 31 | | 454 | 8.6 | 8.0 | 6.6 | 240 | 60 | 21 | 13 | | NOV 10 | 1030 | 36 | | 418 | 8.2 | 2.0 | 11.0 | | 55 | 21 | 12 | | FEB 18 | 1300 | 32 | | 356 | 8.1 | 0.5 | 7.5 | | 49 | 17 | 11 | | APR 20 | 1230 | 355 | | 368 | 8.3 | 5.5 | 12.9 | 190 | 48 | 17 | 11 | | MAY
18 | 1130 | 217 | | 306 | 8.2 | 10.0 | 11.3 | | 40 | 14 | 8.4 | | JUN
09 | 1230 | 89 | | 469 | 8.6 | 16.5 | 8.1 | 240 | 62 | 21 | 13 | | JUL
26 | 1230 | 86 | | 503 | 8.6 | 18.5 | 8.4 | 270 | 61 | 28 | 15 | | AUG
24 | 1215 | 63 | | | 8.5 | 16.5 | 8.1 | 200 | 50 | 19 | 11 | | | ,_,, | -5 | | | | | | | | | | | DATE | A
Sof | ON | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA
LINIT
LAB
(MG/
AS
CACO | Y SULF. DIS L SOL (MG | - DIS
VED SOL
/L (MG | E, RI
- D
VED SO
/L (M | LVED (MO
G/L AS | CA, SUM S- CON: LVED TUE S/L D S SO: | STI- DE
NTS, SOI
IS- (TO
LVED PE | IDS,
IS-
LVED
DNS
ER
-FT) | | ост
05 | | 0.4 | 2.4 | 198 | 56 | 2 | . 1 | 0.2 20 |) | 294 (| 0.40 | | NOV
10 | | 0.4 | 2.1 | 185 | 66 | 2 | •3 | 0.2 19 | 3 | 289 (| 0.39 | | FEB
18 | | 0.4 | 2.6 | 167 | 43 | 2 | . 4 | 0.2 19 | 9 | 246 | 0.33 | | APR
20 | | 0.4 | 3.3 | 131 | 75 | 3 | .0 | 0.2 1 | 5 | 252 | 0.34 | | MAY
18 | | 0.3 | 1.7 | 128 | 42 | 2 | .6 | 0.3 1 | 5 | 201 | 27 | | ์
บัง
บัง | | 0.4 | 2.7 | 197 | 64 | 2 | .9 | 0.4 2 | 1 | 305 | 0.41 | | JUL
26 | | 0.4 | 2.4 | 217 | 72 | 2 | . 1 | 0.1 22 | 2 | 333 | 0.45 | | AUG
24 | | 0.3 | 1.9 | 178 | 50 | 2 | • 5 | 0.1 1 | 9 | 260 | 35 | | DATE | SOLII
DIS-
SOLVE
(TONS
PER
DAY) | ED
S | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | N C | IITRO-
GEN,
D2+NO3
DIS-
OLVED
MG/L
IS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITR
GEN,A
MONIA
ORGAN
DIS.
(MG/
AS N | M- PHO
+ PHO
IC D:
SOI
L (M | OS- PI
ROUS
IS-
LVED S
G/L (| PHOS-
HOROUS
ORTHO,
DIS-
OLVED
MG/L
S P) | | | 0CT
05 | 24.4 | ŧ | <0.01 | < | 0.1 | <0.01 | 0. | 20 0 | .02 | <0.01 | | | NOV
10 | 27.9 | 9 | <0.01 | < | <0.1 | 0.04 | 0. | 40 0 | .02 | 0.01 | | | FEB
18 | 21.1 | 4 | 0.01 | | 0.22 | 0.07 | 0. | 60 0 | .06 | 0.02 | | | APR
20 | 242 | | 0.01 | | 0.15 | 0.03 | 0. | 40 0 | .04 | 0.02 | | | MAY
18 | 118 | | <0.01 | • | <0.1 | 0.04 | 0. | 60 0 | . 04 | 0.04 | | | JUN
09 | 73.0 |) | | | | | 0. | 40 0 | .07 | | | | JUL
26 | 77.6 | 5 | <0.01 | < | <0.1 | 0.02 | <0. | 2 0 | .03 | <0.01 | | | AUG
24 | 44.6 | 5 | <0.01 | < | 0.1 | 0.03 | 0. | 40 0 | .05 | 0.02 | | 09237500 YAMPA RIVER NEAR OAK CREEK, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | |-------------------------------|---|---|--|--|--|--|---|--|---|--|---------------------------------------| | OCT 05 | <10 | <1 | 1 | 43 | <0.5 | <1 | <1 | <1 | 4 | 62 | | | FEB
18 | <10 | 1 | <1 | <100 | <0.5 | <1 | <1 | <1 | 5 | 13 | | | APR
20 | 60 | <1 | <1 | 41 | <0.5 | <1 | <1 | <1 | 1 | 56 | | | DATE OCT 05 FEB 18 APR 20 | LEAI
DIS
SOLV
(UG/
AS P |), NES
5- DI
VED SOL
VL (UG | S- DI
VED SOL
VL (UC
MN) AS | IS- DI
VED SOL | UM, NICK
S- DIS
VED SOL
/L (UC | L DI
VED SOL | MM, SIL
S- D
VED SO
G/L (U
SE) AS | IS- DI
LVED SOL
G/L (UG
AG) AS | UM, ZINC
S- DIS
VED SOLV
/L (UG/
SR) AS Z | ED
L | | | DATE | TIME | STREAM
FLOW,
INSTANEOU
(CFS) | CON -
DUCT -
S AN CE | TEMPER
- ATURE
WATER | | | DAT | E TIM | STREAM
FLOW,
INSTAN
TANEOU
(CFS) | CON -
DUCT -
S AN CE | TEMPER -
ATURE
WATER
(DEG C) | | DEC
14 | 1330 | 117 | 31 | 15 0. | 5 | | MAR
18 | 110 | 5 34 | 315 | 4.0 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |--------------|--|--|---|--| | | | | | | | 1140 | 31 | 18 | 1.5 | | | 1030 | 36 | 28 | 2.7 | 54 | | 1300 | 32 | 41 | 3.6 | | | 1200 | 127 | 519 | 178 | | | 1400
1230 | 305
355 | 340
228 | 280
219 | 81 | | 1200 | 4.0.2 | (0 | 22 | | | | | | | | | 1130 | 217 | 363 | 213 | 96 | | 1020 | 0.0 | 20 | 7 .0 | | | | | | | | | 1030 | 114 | 7.1 | 13 | | | 1230 | 86 | 19 | 4.4 | | | 1215 | 63 | 28 | 4.8 | 72 | | 1400 | 70 | 13 | 2.4 | | | | 1140
1030
1300
1200
1400
1230
1300
1200
1130
1230
1230
1230 | FLOW, INSTAN - TANEOUS (CFS) 1140 31 1030 36 1300 32 1200 127 1400 305 1230 355 1300 141 1200 184 1130 217 1230 89 1030 117 1230 86 1215 63 | TIME FLOW, INSTAN - SUS - PENDED (MG/L) | TIME FLOW, MENT, CHARGE, INSTAN- SUS- PENDED (CFS) (MG/L) (T/DAY) 1140 31 18 1.5 1030 36 28 2.7 1300 32 41 3.6 1200 127 519 178 1400 305 340 280 1230 355 228 219 1300 141 60 23 1200 184 195 97 1130 217 363 213 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 89 30 7.2 1230 86 19 4.4 | #### 09238705 LONG LAKE INLET NEAR BUFFALO PASS, CO LOCATION.--Lat 40°28'25", Long 106'40'46", in SELNW4 sec. 23, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on left bank 0.1 mi above Long Lake, and 7.5 mi east of Steamboat Springs. DRAINAGE AREA . -- 0.71 mi2. PERIOD OF RECORD.--October 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,875 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 14 to June. 7. Records fair except for estimated daily discharges, which are poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 62 ft^3/s , June 16, 1988, gage height, 2.99 ft; no flow, Jan. 24-29, March 14-19, 26-30, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 62 ft³/s at 2100 June 16, gage height, 2.99 ft; no flow, Jan. 24-29, March 14-19, March 26-30. | | | DISCHARO | GE, CUBI | C FEET PER | R SECOND, | WATER YEA | R OCTOBE | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------------------|-----------------------------------|----------------------------|-----------------------------------|--|------------------------------------|----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .03
.02
.02
.01 | .38
.35
.20
.29 | .06
.06
.04
.04 | .06
.06
.06
.05 | .05
.06
.06
.07 | .06
.06
.06
.04 | .02
.02
.03
.02
.04 |
.06
.06
.07
.07 | 3.2
7.3
12
25
27 | 5.1
2.8
2.4
2.0
2.0 | .11
.09
.09
.10 | .07
.07
.07
.07 | | 6
7
8
9
10 | .01
.01
.02
.02 | .17
.11
.11
.10 | .06
.06
.06
.07 | .05
.04
.04
.04 | .07
.07
.08
.08 | .04
.04
.04
.02 | .04
.04
.04
.04 | .07
.07
.07
.07 | 30
35
33
30
26 | 1.7
1.4
1.1
.97 | .08
.11
.08
.07 | .04
.01
.01
.01 | | 11
12
13
14
15 | .01
.02
.29
.28 | .08
.06
.07
.06 | .07
.07
.07
.07 | .03
.03
.03
.03 | .10
.10
.10
.10 | .02
.02
.02
.00 | .04
.04
.04
.04 | .06
.06
.08
.07 | 22
19
19
20
28 | .82
.74
.61
.54 | .07
.07
.07
.06
.07 | .11
.10
.12
.14 | | 16
17
18
19
20 | .27
.21
.14
.09 | .06
.06
.06
.06 | .07
.07
.07
.07 | .02
.02
.02
.02 | .10
.10
.10
.10 | .00
.00
.00
.00 | .04
.06
.06
.04
.05 | .08
.06
.08
.08 | 31
25
25
20
20 | .46
.43
.29
.21 | .08
.07
.07
.06 | .25
.13
.09
.07 | | 21
22
23
24
25 | .05
.04
.04
.06 | .06
.07
.07
.07 | .07
.07
.07
.07 | .01
.01
.01
.00 | .08
.08
.08
.08 | .02
.02
.02
.02 | .06
.06
.07
.07 | .30
.70
.85
1.2 | 21
20
15
12
12 | .16
.15
.15
.14 | .08
.06
.06
.06 | .07
.08
.08
.07 | | 26
27
28
29
30
31 | .07
.09
.13
.32
.34 | .07
.07
.07
.07 | .08
.06
.06
.06
.06 | .00
.00
.00
.00
.01 | .06
.06
.06 | .00
.00
.00
.00 | .06
.08
.07
.07 | .75
1.8
3.5
5.6
4.5
4.0 | 9.8
6.8
8.0
7.1
8.4 | .12
.12
.11
.13
.13 | .06
.07
.06
.06
.05 | .07
.07
.10
.11 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3.40
.11
.40
.01
6.7 | 3.51
.12
.38
.06
7.0 | 1.99
.064
.08
.04
3.9 | 0.78
.025
.06
.00 | 2.29
.079
.10
.05
4.5 | 0.62
.020
.06
.00 | 1.45
.048
.08
.02
2.9 | 25.62
.83
5.6
.06 | 577.6
19.3
35
3.2
1150 | 26.57
.86
5.1
.11
53 | 2.22
.072
.11
.05
4.4 | 2.51
.084
.25
.01
5.0 | CAL YR 1987 TOTAL 417.69 MEAN 1.14 MAX 13 MIN .01 AC-FT 828 WTR YR 1988 TOTAL 648.56 MEAN 1.77 MAX 35 MIN .00 AC-FT 1290 09238710 FISH CREEK TRIBUTARY BELOW LONG LAKE, NEAR BUFFALO PASS, CO. LOCATION.--Lat 40°28'36", Long 106°41'13", in NE4SE4 sec. 22, T.6N., R.83W., Routt county, Hydrologic Unit 14050001, on right bank, 0.1 mi below Long Lake Spillway, and 7.5 mi east of Steamboat Springs. DRAINAGE AREA. -- 1.03 mi2. PERIOD OF RECORD. -- August 29, 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,860 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Mar. 22 to June 7. Records fair except for estimated daily discharges, which are poor. Flow regulated by Long Lake Reservoir, capacity 397 acre-ft, 0.1 mi upstream. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 59 $\rm ft^3/s$, June 17, 1986, from rating curve extended above 33 $\rm ft^3/s$; maximum gage height, 3.13 $\rm ft$, May 16, 1987 (backwater from ice); no flow many days each year. EXTREMES FOR CURRENT YEAR. -- Maximum discharge, 46 ft 3/s at 2100 June 16, gage height, 2.29 ft; no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C JAN FEB MA R APR MA Y JUN JUL AUG SEP .0 .00 .00 .00 .00 .00 .00 .00 .00 4.5 .00 .00 3.5 2 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 -00 .75 1.8 2.6 -00 -00 .00 .00 -00 .00 .00 5 .0 .00 .00 .00 .00 .00 .00 2.2 .00 .00 .00 .00 .00 6 5.6 34 . 0 .00 .00 .00 .00 .00 1.9 .00 .00 .0 .00 .00 .00 .00 .00 .00 .00 1.5 .00 .00 8 .0 .00 .00 .00 .00 .00 28 1.2 .00 .00 .00 .00 .00 .00 .00 .96 .00 .00 .00 10 .0 - 00 .00 .00 .00 .00 .00 .00 26 .79 .00 .00 11 .0 .00 .00 .00 .00 .00 .00 .00 24 .57 .00 .00 12 .0 .00 18 .00 .00 .00 .00 .00 .00 .00 .00 13 .0 .00 .00 .00 .00 .00 .00 .00 18 .36 .00 .00 14 .00 22 27 . 0 .00 .00 -00 -00 - 00 -00 .27 .00 . 00 .0 .21 .00 15 .00 .00 .00 .00 .00 .00 .00 .00 .00 . 14 16 29 23 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .08 17 - 0 .00 .00 -00 - 00 .00 .00 .00 .00 .0 .00 .00 .00 .00 .00 .00 24 .05 .00 .00 .00 .0 .00 21 .02 .00 .00 20 .0 .00 .00 .00 .00 .00 .00 .00 20 .00 .00 .00 21 22 .00 .00 .00 .00 .00 .00 .00 19 .00 .00 .00 .0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 23 24 .0 .00 .00 .00 .00 .00 .00 .00 13 .00 .00 .00 .0 .00 .00 .00 -00 - 00 .00 -00 11 -00 .00 .00 25 .00 .00 .00 .00 .00 .00 .00 .00 10 .00 .00 .00 8.5 .00 26 .00 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 8.1 7.9 -00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 29 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 30 31 .00 .00 .00 .00 .00 .00 .00 6.9 .00 .00 .00 .00 ------.00 .00 .00 -00 .00 -00 ---TOTAL 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 459.15 24.30 0.00 0.00 .00 .00 .78 4.5 MEAN. .00 .00 .00 .00 .00 .00 .00 15.3 .00 MA X .00 .00 .00 .00 .00 .00 .00 .00 34 .00 .00 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 AC-FT .0 .0 .0 .0 911 48 .0 .0 .0 .0 .0 .0 CAL YR 1987 TOTAL 305.27 MEAN .84 MAX 28 MIN .00 AC-FT 606 WTR YR 1988 TOTAL 483.45 MEAN 1.32 MAX 34 MIN .00 AC-FT 959 #### 09238750 MIDDLE FORK FISH CREEK NEAR BUFFALO PASS, CO LOCATION.--Lat 40°26'54", Long 106°41'30", in NE4SE4 sec. 10, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on right bank, 0.25 mi above Fish Creek Reservoir, and 7.5 mi east of Steamboat Springs. DRAINAGE AREA .-- 1.37 mi2. PERIOD OF RECORD. -- August 31, 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,955 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 12 to March 28, Apr. 8, and Apr. 25 to July 7. Records good except for estimated daily discharges, which are poor. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 146 ft³/s, June 9, 1986, from rating curve extended above 24 ft³/s; gage height, 4.56 ft; no flow, Feb. 17-20, 1988. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 60 ft³/s, June 7; no flow, Feb. 18-20. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------|--|---------------------------------|------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|---------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .14
.14
.14
.14 | .74
.64
.40
.55 | .30
.30
.25
.25 | .30
.30
.30
.25 | .09
.09
.09
.09 | .09
.10
.11
.12
.13 | .20
.20
.19
.19 | .35
.35
.40
.40 | 15
25
30
45
50 | 9.0
5.0
4.0
3.5
3.5 | .36
.33
.34
.36
.28 | .16
.17
.16
.15 | | 6
7
8
9
10 | .14
.14
.13
.14 | .46
.46
.47
.46 | .30
.30
.30
.35 | .25
.25
.20
.20 | .08
.08
.08
.08 | .14
.15
.15
.16
.16 | .19
.21
.24
.25 | .40
.40
.40
.40 | 54
60
54
50
47 | 3.0
2.4
1.9
1.5
1.4 | .27
.37
.29
.25
.24 | .14
.09
.09
.10 | | 11
12
13
14
15 | .13
.13
.25
.36
.40 | .38
.30
.35
.30 | •35
•35
•35
•35
•35 | .20
.20
.20
.20 | .07
.06
.05
.04 | .17
.17
.18
.18 | .22
.24
.27
.27
.27 | .35
.35
.45
.40 | 45
42
39
39
40 | 1.3
1.2
.91
.77 | .23
.27
.27
.22
.20 | .21
.21
.23
.27 | | 16
17
18
19
20 | .33
.32
.27
.23
.21 | .30
.30
.30
.30 | •35
•35
•35
•35 | .15
.15
.15
.15 | .02
.01
.00
.00 | .18
.18
.19
.19 | .27
.35
.35
.27
.30 | .45
.35
.45
.45 | 42
38
38
31
31 | .69
.66
.55
.54 | .27
.21
.21
.19
.19 | .42
.25
.19
.17 | | 21
22
23
24
25 | .20
.17
.18
.19 | .30
.30
.35
.35 | •35
•35
•35
•35 | .10
.10
.10
.10 | .01
.02
.03
.04 | .18
.19
.20
.20 | .35
.35
.40
.40 | 1.1
2.5
4.0
6.4
5.8 | 32
30
27
23
19 | .45
.42
.41
.40 | .26
.20
.18
.18 | .16
.19
.19
.17 | | 26
27
28
29
30
31 | .24
.26
.29
.56
.48 | .35
.35
.35
.35 | .40
.30
.30
.30
.30 | .10
.10
.10
.10
.10 | .06
.07
.08
.09 | .21
.22
.22
.22
.21
.20 | .35
.45
.40
.40 | 5.0
11
22
21
20
18 | 15
9.0
11
10
12 | .36
.34
.34
.55 | .16
.17
.16
.15
.15 | .15
.16
.19
.21 | | TOTAL
MEAN
MAX
MIN
AC-FT | 7.39
.24
.56
.13 | 11.79
.39
.74
.30
23 | 10.10
.33
.40
.25 | 5.35
.17
.30
.10 | 1.58
.054
.09
.00 | 5.38
.17
.22
.09 | 8.74
.29
.45
.19 | 124.95
4.03
22
.35
248 | 1003.0
33.4
60
9.0
1990 | 47.50
1.53
9.0
.34
94 | 7.28
.23
.37
.15
14 | 5.48
.18
.42
.09 | CAL YR 1987 TOTAL 1028.87 MEAN 2.82 MAX 66 MIN .13 AC-FT 2040 WTR YR 1988 TOTAL 1238.54 MEAN 3.38 MAX 60 MIN .00 AC-FT 2460 #### 09238770 GRANITE CREEK NEAR BUFFALO PASS, CO
LOCATION.--Lat 40°29'35", Long 106°41'31", NEłNEł sec. 15, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on left bank 0.1 mi upstream from Fish Creek Reservoir, and 7.5 mi east of Steamboat Springs. DRAINAGE AREA .-- 2.82 mi². AC-FT 40 58 PERIOD OF RECORD. -- August 31, 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,875 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 30, 31, and Dec. 6 to July 7. Records good except for estimated daily discharges, which are poor. EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 103 ft3/s, June 7, 1988; minimum daily, 0.13 ft3/s, Mar. 21, 1988. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 103 ft3/s, June 7; minimum daily, 0.13 ft3/s, Mar. 21. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES AUG SEP JUL DAY OCT NOV DEC JAN FEB MAR APR MA Y JUN .45 1.6 .50 .60 17 1.2 .52 .50 .44 .50 .46 .26 .60 30 1.0 2 .52 .42 .52 35 50 1.1 1.0 .95 .50 . 44 .28 .60 16 .42 .87 .46 1.3 .48 .42 .60 14 .52 .30 5 .42 1.2 .89 .46 .54 .40 .32 .60 70 10 .95 .46 .42 75 103 .46 6 1.0 .90 .46 .54 .38 .34 .70 6.0 -90 .97 .42 1.2 .47 .90 .46 .56 .36 .36 .38 6.4 8 .42 .90 .70 86 5.7 1.1 .44 .56 .34 .84 .42 .76 .44 .32 .40 .70 85 . 42 10 .40 4.9 .73 .95 .44 .58 .30 .42 .70 89 .78 .50 .28 .80 4.5 .87 11 .39 .70 .95 .44 .58 .42 90 12 .41 .75 .95 .44 .80 78 4.1 .81 .95 .60 .26 .44 . 44 13 14 1.1 .99 .73 .95 .60 .24 .44 .80 78 3.5 . 84 .70 . 44 .80 3.0 .69 1.2 .95 - 60 -22 . 44 90 1.1 .95 . 44 .44 .80 103 2.7 .64 1.0 15 1.1 .60 .20 .94 .78 .73 .70 .18 2.8 .81 1.3 16 .95 .40 .64 .46 .90 99 .67 .95 17 .70 .73 .95 .40 .66 .16 .48 - 90 94 2.6 18 89 .71 .40 .68 .48 .90 2.1 .67 .14 .64 . 84 2.1 .62 .66 . 14 .90 20 .54 1.0 .95 .40 .68 . 14 .48 .90 89 2.0 .57 .66 21 .95 .42 .66 .13 .50 1.0 83 1.7 .81 .65 22 .41 .95 .42 .64 .50 4.0 85 .64 .76 .42 70 23 .42 1.1 .95 .62 . 14 .50 6.0 1.4 .54 .79 24 .50 1.4 .95 9.0 69 .53 .79 1.1 . 44 .60 .14 .50 8.0 25 .77 1.0 .95 .44 . 14 .50 65 1.3 .50 .79 .58 .64 .79 .80 .53 26 1.1 .70 .46 .56 .16 .55 7.0 61 57 1.3 .64 •55 •55 27 1.1 .46 •54 •52 . 16 14 1.3 28 .69 1.0 .48 .18 29 44 1.2 .48 .99 . 48 35 24 29 1.1 1.0 .48 .50 .20 •55 25 1.2 -46 1.0 .46 .50 .55 23 30 1.2 1.0 -50 .20 1.1 1.3 1.3 .50 .46 ---.50 .22 ---TOTAL. 20.29 29.01 27.41 2142 146.8 23.26 22.41 13.90 16.99 7.67 13.11 162.00 71.4 4.74 MEAN . 65 .97 .88 .59 . 44 5.23 .75 1.2 .75 1.3 .45 .25 1.3 1.6 .50 .48 -55 29 103 17 .39 .40 MIN .70 .48 .50 .24 .60 20 . 46 .42 4250 46 44 15 321 291 26 TOTAL 2102.47 MEAN 5.76 MAX 49 MIN .36 AC-FT 4170 TOTAL 2624.85 MEAN 7.17 MAX 103 MIN .13 AC-FT 5210 CAL YR 1987 WTR YR 1988 28 34 54 09238800 MIDDLE FORK FISH CREEK TRIBUTARY, BELOW FISH CREEK RESERVOIR, CO LOCATION.--Lat 40°29'50", Long 106°41'54", in NW4SE4 sec. 10, T.6N., R.83W., Routt County, Hydrologic Unit 14050001, on right bank, at Fish Creek Reservoir Spillway, and 7.5 mi east of Steamboat Springs. DRAINAGE AREA. -- 4.78 mi2. PERIOD OF RECORD. -- August 31, 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,855 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: June 4-7, and June 20 to July 7. Records excellent except for periods of flow, which are fair. Flow regulated by Fish Creek Reservoir, capacity, 1,840 acre-ft. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 186 ft³/s, June 15, 1988, gage height, 1.82 ft; maximum gage height, 3.67 ft, May 10, 1987 (ice jam); no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 143 ft3/s, June 15, no flow many days. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA
EAN VALUES | | 1987 T | O SEPTEMBI | ER 1988 | | | |--------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|--------------------------|---------------------------------------|------------------------------------|---------------------------|---------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 .00
.00
.00 | .00
.00
.00
25
50 | 26
22
20
16
12 | .00
.00
.00
.00 | .00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 75
100
138
135
136 | 9.0
8.0
6.6
5.3
4.6 | .00
.00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 135
120
117
129
143 | 4.0
3.5
3.0
2.3
1.7 | .00
.00
.00
.00 | .00
.00
.00 | | 16
17
18
19
20 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 141
132
127
127
120 | 1.4
1.2
.92
.65
.68 | .00
.00
.00
.00 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 115
105
97
92
84 | .66
.62
.58 | .00
.00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 76
66
55
45
36 | .53
.34
.12
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00 | 0.00
.00
.00 | 2721.00
90.7
143
.00
5400 | 152.91
4.93
26
.00
303 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | CAL YR 1987 TOTAL 2111.87 MEAN 5.79 MAX 77 MIN .00 AC-FT 4190 WTR YR 1988 TOTAL 2873.91 MEAN 7.85 MAX 143 MIN .00 AC-FT 5700 #### 09238900 FISH CREEK AT UPPER STATION, NEAR STEAMBOAT SPRINGS, CO LOCATION.--Lat 40°28'30", long 106°47'11", in SE4SE4 sec.15, T.6 N., R.84 W., Routt County, Hydrologic Unit 14050001, on right bank 2.6 mi upstream from mouth and 2.5 mi east of Steamboat Springs. DRAINAGE AREA . - - 24.8 mi². PERIOD OF RECORD. -- October 1966 to September 1972, May 1982 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 7,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 4-14 and Sept. 9-10. Records good. Diversions upstream from station by Mount Werner Recreation district and City of Steamboat Springs for domestic use began in 1972 (see table below for figures of diversion). Natural flow of stream affected by storage in Fish Creek and Long Lake Reservoir, combined capacity 2,237 acre-ft. Several observations of specific conductance and water temperature were obtained and are published elswhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,110 ft³/s, June 20, 1968, gage height, 3.14 ft; minimum daily, 0.01 ft³/s, Aug. 7, 1972. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 754 $\rm ft^3/s$, at 2045 June 7, gage height, 2.69 ft; minimum daily, 0.28 $\rm ft^3/s$, Sept. 8. | | | DISCHARGE | c, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |---|-----------------------------------|--|--|------------------------------------|---|--|---|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.1
3.4
3.3
3.3
3.3 | 10
14
9.8
8.2
8.1 | 5.4
5.5
5.7
5.9 | 3.8
4.3
4.2
4.6
4.1 | 3.6
4.3
4.2
4.2
3.9 | 4.9
5.1
4.9
4.6 | 7.0
7.5
8.8
9.4
8.8 | 90
74
61
58
65 | 288
303
436
551
612 | 86
67
59
50
45 | 6.7
6.0
5.3
4.2
2.8 | 3.9
4.1
3.3
3.6
3.4 | | 6
7
8
9 | 3.3
3.4
3.3
3.4
4.4 | 7.6
7.1
7.0
6.6
7.3 | 5.6
5.5
5.4
5.3
5.2 | 3.9
3.7
3.8
4.0
4.6 | 3.7
3.9
4.0
4.2
4.4 | 4.6
4.8
5.0
5.1
5.3 | 12
19
23
17
18 | 75
62
55
49
48 | 581
588
570
534
534 | 38
30
25
21
19 | 2.1
2.9
4.2
2.7 | 3.3
1.0
.28
.45
1.6 | | 11
12
13
14
15 | 3.9
3.0
5.5
12
9.0 | 6.8
6.7
6.3
6.7
6.8 | 5.1
5.0
4.9
4.8
5.3 | 4.6
4.6
4.2
4.8
4.4 | 4.5
3.6
3.7
4.0 | 5.0
4.8
4.8
4.9
4.7 | 17
26
40
54
65 | 52
78
122
179
215 | 492
427
405
425
438 | 16
15
12
11
7.6 | 4.6
5.1
6.5
5.4
4.4 | 5.0
6.7
6.7
6.1
5.6 | | 16
17
18
19
20 | 7.3
5.9
5.5
4.8 | 5.8
6.1
6.2
6.4
6.9 | 6.1
6.3
4.9
4.6
4.4 | 4.4
3.9
3.8
4.1
4.4 | 4.0
4.0
4.1
3.8
3.9 | 4.6
4.5
4.3
4.2
4.6 | 84
86
85
86
76 |
245
287
349
308
189 | 434
383
369
367
351 | 8.0
7.0
5.9
5.9
7.9 | 6.3
6.5
5.9
4.7
4.3 | 5.4
6.1
4.8
4.1
4.0 | | 21
22
23
24
25 | 4.8
4.7
4.8
5.8
9.9 | 6.7
6.2
6.1
6.4
6.5 | 4.8
4.8
4.8
6.2
4.4 | 4.1
3.8
3.9
3.6
3.3 | 4.1
3.5
3.5
3.7
4.3 | 5.7
7.0
6.3
6.2
6.1 | 73
59
47
43
39 | 137
119
134
218
287 | 316
284
242
212
186 | 6.9
5.6
4.8
5.0
5.0 | 6.4
6.5
5.1
4.0
4.1 | 3.8
3.7
3.0
3.4
3.2 | | 26
27
28
29
30
31 | 6.9
6.3
5.8
5.8
8.9 | 6.0
5.9
5.8
6.0
5.9 | 4.6
5.3
4.1
3.4
4.1
3.9 | 3.8
3.5
3.7
3.9
3.9 | 4.1
4.6
5.1
4.9 | 6.8
9.9
10
8.9
7.1
7.3 | 37
33
37
49
72 | 314
323
348
403
457
327 | 156
150
143
169
123 | 3.8
6.2
5.4
5.5
6.5 | 3.9
4.4
4.7
4.6
4.2
4.1 | 3.1
3.4
3.7
3.4
3.5 | | TOTAL
MEAN
MAX
MIN
AC-FT
a | 170.6
5.50
12
3.0
338 | 211.9 1
7.06
14
5.8
420
140 | 57.0
5.06
6.3
3.4
311 | 125.3
4.04
4.8
3.3
249 | 117.4
4.05
5.1
3.5
233
187 | 176.9 1
5.71
10
4.2
351
207 | 238.5
41.3
86
7.0
2460
146 | 5728
185
457
48
11360
169 | 11069
369
612
123
21960
352 | 596.3
19.2
86
3.8
1180
416 | 143.7
4.64
6.7
1.1
285
368 | 113.63
3.79
6.7
.28
225
252 | CAL YR 1987 TOTAL 15708.8 MEAN 43.0 MAX 478 MIN 1.3 AC-FT 31160 WTR YR 1988 TOTAL 19848.23 MEAN 54.2 MAX 612 MIN .28 AC-FT 39370 a-Diversions, in acre-feet, by Mount Werner Water and Sanitation District, and City of Steamboat Springs. 213 09240900 ELK RIVER ABOVE CLARK, CO LOCATION.--Lat 40°44'38", long 106°51'13", in SW4SE4 sec.13, T.9 N., R.85 W., Routt County, Hydrologic Unit 14050001, on right bank 0.4 mi upstream from Willow Creek, 1.8 mi downstream from Coulton Creek and 3.3 mi northeast of Clark, CO. DRAINAGE AREA . -- 122 mi2. PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 7,525 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 16-17, Oct. 19 to Dec. 3, Dec. 9-10, Dec. 12-22, Dec. 24-31, Jan. 2-5, and Jan. 12 to Mar. 16. Records fair except for estimated daily discharges, which are poor. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,320 ft³/s, May 18, 1988, gage height, 6.03 ft; minimum daily, 17 ft³/s, Nov. 9, 10, 13, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,320 $\rm ft^3/s$ at 0200 May 18, gage height, 6.03 ft; minimum daily, 17 $\rm ft^3/s$, Nov. 9, 10, 13. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA
EAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|---------------------------------|--|-------------------------------------|--|----------------------------------|-------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 36 | 20 | 28 | 38 | 31 | 38 | 41 | 207 | 648 | 557 | 125 | 60 | | 2 | 36 | 36 | 32 | 39 | 30 | 38 | 39 | 172 | 669 | 504 | 135 | 62 | | 3 | 33 | 33 | 33 | 39 | 31 | 38 | 38 | 183 | 977 | 463 | 124 | 57 | | 4 | 34 | 22 | 34 | 40 | 32 | 38 | 40 | 249 | 1390 | 436 | 132 | 56 | | 5 | 34 | 19 | 36 | 40 | 33 | 38 | 42 | 326 | 1600 | 418 | 118 | 55 | | 6 | 34 | 20 | 37 | 41 | 33 | 38 | 46 | 220 | 1610 | 370 | 106 | 54 | | 7 | 33 | 20 | 39 | 41 | 34 | 38 | 69 | 204 | 1650 | 337 | 110 | 52 | | 8 | 31 | 24 | 39 | 41 | 34 | 38 | 87 | 204 | 1600 | 296 | 111 | 50 | | 9 | 33 | 17 | 40 | 40 | 34 | 38 | 69 | 257 | 1460 | 268 | 97 | 49 | | 10 | 31 | 17 | 41 | 38 | 34 | 38 | 65 | 273 | 1450 | 247 | 86 | 50 | | 11
12
13
14
15 | 31
32
30
27
30 | 19
20
17
19 | 42
42
41
40
40 | 38
38
37
37
36 | 35
35
35
35
35 | 38
38
38
38
38 | 63
80
102
111
110 | 331
353
566
910
1090 | 1500
1250
1130
1010
951 | 237
228
208
198
192 | 80
81
80
79
75 | 85
106
106
100
88 | | 16 | 39 | 22 | 40 | 36 | 36 | 38 | 118 | 1160 | 967 | 187 | 95 | 78 | | 17 | 32 | 24 | 40 | 35 | 36 | 39 | 121 | 1580 | 1140 | 174 | 86 | 78 | | 18 | 25 | 27 | 40 | 34 | 36 | 40 | 124 | 1900 | 1120 | 164 | 94 | 74 | | 19 | 29 | 28 | 39 | 34 | 36 | 39 | 127 | 1450 | 1250 | 155 | 81 | 70 | | 20 | 23 | 27 | 39 | 33 | 36 | 38 | 135 | 761 | 1360 | 150 | 76 | 67 | | 21 | 23 | 28 | 38 | 33 | 37 | 40 | 139 | 625 | 1370 | 127 | 79 | 63 | | 22 | 23 | 28 | 38 | 33 | 37 | 40 | 127 | 563 | 1200 | 125 | 82 | 66 | | 23 | 23 | 28 | 38 | 32 | 37 | 40 | 122 | 615 | 1120 | 138 | 74 | 69 | | 24 | 31 | 27 | 37 | 32 | 37 | 38 | 127 | 756 | 1040 | 134 | 69 | 65 | | 25 | 57 | 26 | 36 | 32 | 37 | 37 | 133 | 839 | 1040 | 129 | 66 | 63 | | 26
27
28
29
30
31 | 43
32
28
26
22
22 | 25
26
26
26
27 | 37
38
38
38
39
38 | 32
32
32
32
32
32 | 37
37
37
37 | 37
38
43
50
43
40 | 124
134
150
182
260 | 870
1020
1200
1310
1210
813 | 969
868
862
743
650 | 126
126
127
153
130
122 | 63
64
63
62
61
58 | 62
60
66
68
75 | | TOTAL | 963 | 717 | 1177 | 1109 | 1014 | 1210 | 3125 | 22217 | 34594 | 7226 | 2712 | 2054 | | MEAN | 31.1 | 23.9 | 38.0 | 35.8 | 35.0 | 39.0 | 104 | 717 | 1153 | 233 | 87.5 | 68.5 | | MAX | 57 | 36 | 42 | 41 | 37 | 50 | 260 | 1900 | 1650 | 557 | 135 | 106 | | MIN | 22 | 17 | 28 | 32 | 30 | 37 | 38 | 172 | 648 | 122 | 58 | 49 | | AC-FT | 1910 | 1420 | 2330 | 2200 | 2010 | 2400 | 6200 | 44070 | 68620 | 14330 | 5380 | 4070 | WTR YR 1988 TOTAL 78118 MEAN 213 MAX 1900 MIN 17 AC-FT 154900 #### 09239500 YAMPA RIVER AT STEAMBOAT SPRINGS, CO LOCATION.--Lat 40°29'01", long 106°49'54", in NW4NE4 sec.17, T.6 N., R.84W., Routt County, Hydrologic Unit 14050001, on right bank 30 ft downstream from Fifth Street Bridge in Steamboat Springs and 0.6 mi upstream from Soda Creek. DRAINAGE AREA. -- 604 mi2 PERIOD OF RECORD.--May 1904 to October 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 764: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 6,695.47 ft above National Geodetic Vertical Datum of 1929. Prior to May 8, 1905, nonrecording gage at bridge 0.2 mi upstream at datum 4.16 ft, higher. May 8, 1905, to Oct. 31, 1906, nonrecording gage on bridge 30 ft upstream at datum 0.44 ft, higher. Mar. 8, 1910, to Sept. 11, 1934, water-stage recorder at present site at datum 0.44 ft, higher. REMARKS.--Estimated daily discharges: Apr. 14-25, Aug. 1-9, and Aug. 17 to Sept. 30. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by two diversions for irrigation to Egeria Creek in Colorado River basin, one diversion for irrigation from Trout Creek drainage to Oak Creek drainage, irrigation of about 19,700 acres upstream from station, and by storage reservoirs. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 81 years, 471 ft3/s; 341,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,820 ft³/s, June 14, 1921, gage height, 7.08 ft, present datum, from rating curve extended above 4,800 ft⁵/s; maximum gage height, 7.12 ft, June 25, 1984; minimum daily discharge, 4.0 ft³/s, Sept. 8, 1934, Sept. 10-13, 1944. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|---------|--------------|----------------------|---------------------| | June 7 | 2130 | *3,140 | *5.48 | No othe | er peak grea | ter than base di | scharge. | DISCHARGE, CURIC FEET PER SECOND. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 52 ft³/s, Sept. 8. | | | DISCHARG | E, CUBI | C FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBE | R 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|-------------------------------------|--|---------------------------------------|--|-----------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 68
70
68
68
67 | 155
168
164
163
167 | 68
64
65
64
64 | 67
79
80
72
71 | 73
73
74
88
92 | 77
78
79
77
75 | 104
117
132
136
138 | 1030
1040
899
818
777 | 1950
1910
2270
2580
2740 | 468
394
364
346
343 | 120
115
112
110
108 | 68
66
64
60
58 | | 6
7
8
9
10 | 65
66
65
65 | 164
164
161
150
165 | 65
65
64
64
64 | 71
72
70
70
69 | 83
79
77
75
70
 78
73
77
80
77 | 158
204
238
199
198 | 839
854
729
703
634 | 2640
2760
2700
2430
2380 | 341
297
254
217
202 | 106
105
104
103
103 | 56
53
52
66
70 | | 11
12
13
14
15 | 66
64
66
85
93 | 161
160
164
165
168 | 66
63
63
90
73 | 70
68
78
76
75 | 70
70
73
73
71 | 75
74
75
77
78 | 281
523
787
850
900 | 578
592
801
1160
1530 | 2200
1970
1840
1740
1570 | 204
200
179
170
159 | 101
101
104
102
99 | 75
80
84
90
100 | | 16
17
18
19
20 | 94
94
92
89
100 | 150
155
145
118
120 | 60
65
66
65
61 | 77
74
76
77
86 | 73
72
74
73
74 | 77
77
81
80
83 | 875
890
820
780
760 | 1710
1860
2030
2470
2610 | 1460
1300
1230
1240
1130 | 142
140
132
125
120 | 104
102
100
98
98 | 120
120
120
120
120 | | 21
22
23
24
25 | 117
127
128
132
153 | 118
86
80
77
76 | 55
59
60
62
65 | 79
77
76
77
76 | 71
72
74
75
76 | 88
92
92
89
86 | 760
750
750
760
750 | 2180
1720
1430
1350
1890 | 1020
940
853
730
659 | 111
105
105
105
105 | 96
96
94
94
92 | 125
125
120
125
127 | | 26
27
28
29
30
31 | 142
146
144
145
150 | 69
65
67
67
68 | 66
66
65
67
65 | 77
79
80
81
82
78 | 76
76
76
76
 | 88
108
110
102
91
94 | 751
692
655
683
822 | 2070
2180
2290
2520
2610
2170 | 581
560
583
724
626 | 106
110
118
126
128
125 | 90
87
86
85
84
83 | 129
128
126
125
125 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3050
98.4
155
64
6050 | 3900
130
168
65
7740 | 2016
65.0
90
55
4000 | 2340
75.5
86
67
4640 | 2179
75.1
92
70
4320 | 83.5
110
73 | 16463
549
900
104
32650 | 46074
1486
2610
578
91390 | 47316
1577
2760
560
93850 | 6041
195
468
105
11980 | 3082
99.4
120
83
6110 | 2897
96.6
129
52
5750 | CAL YR 1987 TOTAL 108303 MEAN 297 MAX 1910 MIN 42 AC-FT 214800 WTR YR 1988 TOTAL 137946 MEAN 377 MAX 2760 MIN 52 AC-FT 273600 215 09241000 ELK RIVER AT CLARK, CO LOCATION.--Lat 40°43'03", long 106°54'55", in NW4NW4 sec.27, T.9 N., R.85 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft downstream from bridge on State Highway 129, 0.8 mi north of Clark, and 2.0 mi upstream from Cottonwood Gulch. DRAINAGE AREA . -- 216 mi² (revised). PERIOD OF RECORD.--May 1910 to September 1922 (published as "near Clark"), April 1930 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS .-- WSP 1733: 1956. GAGE.--Water-stage recorder. Datum of gage is 7,267.75 ft, (State Highway Department bench mark). May September 1922, nonrecording gage at site 30 ft upstream at datum 0.15 ft, lower. Apr. 23, 1930, to Sept. 27, 1934, water-stage recorder at present site at datum 0.15 ft, lower. May 1910 to REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 8, Apr. 16 to May 12, and May 16 to June 6. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 230 acres upstream from and about 460 acres downstream from station. Natural flow of stream affected by storage in Lester Creek Reservoir (known also as Pearl Lake), capacity, 5,660 acre-ft, since 1963, and Steamboat Lake, capacity, 23,060 acre-ft, since 1968. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 70 years, 338 ft3/s; 244,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,910 ft³/s, May 23, 1984, gage height, 6.12 ft; minimum daily determined, 22 ft³/s, Dec. 12, 1963, but a lesser discharge may have occurred during periods of no gage-height record prior to 1939. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,900 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|-----------------------------------|---------------------| | May 18 | | a2,100 | | June 6 | 2300 | *2,540 | *4.72 | DISCHARGE. CURIC FEET PER SECOND. WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 33 ${\rm ft}^3/{\rm s}$, Sept. 9-10. a-mean daily discharge | | | DISCHARC | æ, CUBIC | FEET P | ER SECOND, | WATER IE
EAN VALUE | S OCTOB | ЕК 1987 ТС | SEPTEMBE | SK 1986 | | | |--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---|---------------------------------------|--|-----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | ма ч | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 75
63
62
64
68 | 76 | 42
46
47
48
50 | 57
58
58
59
59 | 57
56
57
58
59 | 53
53
53
50
50 | 47
45
44
47
48 | 469
431
386
533
622 | 822
789
1030
1480
1670 | 481
431
404
387
376 | 120
128
110
116
101 | 47
66
82
78
76 | | 6
7
8
9
10 | 68
67
67
67 | 60
60
54
47
47 | 51
53
53
54
55 | 60
60
60
59
57 | 59
60
60
60 | 50
50
47
47
47 | 48
62
74
80
73 | 509
494
499
563
586 | 1780
1820
1720
1610
1550 | 343
319
288
268
247 | 94
100
105
90
83 | 73
43
36
33
33 | | 11
12
13
14
15 | 66
66
71
110
93 | 47
55 | 57
57
56
55
55 | 57
57
56
56
55 | 59
59
59
59 | 45
45
45
45 | 80
111
161
205
263 | 653
531
891
1100
1400 | 1470
1250
1170
1090
1100 | 255
246
222
210
201 | 78
76
76
72
69 | 57
80
81
77
67 | | 16
17
18
19
20 | 79
72
70
69
63 | 51
46
41
42
41 | 56
56
56
56
55 | 55
55
55
56
56 | 58
58
58
58
58 | 45
46
45
44 | 278
289
297
306
326 | 1460
1850
2100
1720
1100 | 1110
1160
1150
1210
1240 | 193
181
171
160
152 | 91
81
89
75
67 | 59
58
53
50
48 | | 21
22
23
24
25 | 63
63
71
97 | 42
42
41
40 | 55
54
54
54
54 | 57
57
58
58
58 | 57
57
57
57
57 | 46
46
44
44
43 | 335
325
326
337
348 | 980
920
960
1070
1120 | 1200
1160
1070
950
925 | 143
137
132
129
- 124 | 71
72
64
59
54 | 46
51
53
48
47 | | 26
27
28
29
30
31 | 83
72
68
66
57
62 | 40
40
41 | 54
55
56
56
57
56 | 58
58
58
58
58
58 | 57
57
57
57
 | 43
44
49
56
49 | 344
360
384
431
522 | 1140
1280
1450
1500
1400
983 | 888
753
728
651
566 | 123
122
120
149
129
118 | 52
52
50
48
45 | 45
48
49
53 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2192
70.7
110
57
4350 | 1479
49.3
76
39
2930 | 1663
53.6
57
42
3300 | 1781
57.5
60
55
3530 | 1684
58.1
60
56
3340 | 1462
47.2
56
43
2900 | 5596
220
522
44
13080 | 30700
990
2100
386
60890 | 35112
1170
1820
566
69640 | 6961
225
481
118
13810 | 2436
78.6
128
45
4830 | 1682
56.1
82
33
3340 | | CAL YR
WTR YR | | TOTAL 69945
TOTAL 93748 | MEAN 19
MEAN 25 | | | | 136700
185900 | | | | | | #### 09243700 MIDDLE CREEK NEAR OAK CREEK, CO LOCATION.--Lat 40°23'08", long 106°59'33", in SWdSWd sec.13, T.5 N., R.86 W., Routt County, Hydrologic Unit 1450001, on left bank 1.1 mi above mouth of Foidel Creek and 13.5 mi northwest of Oak Creek. DRAINAGE AREA . -- 23.5 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1975 to September 1981, April 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,720 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 23 to Mar. 9, and Apr. 6-12. Records good except for estimated daily discharges, which are poor. AVERAGE DISCHARGE.--12 years (water years 1976-81, 83-88), 4.77 ft3/s; 3,460 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 329 ft³/s, May 14, 1984, gage height, 4.08 ft, from rating curve extended above 77 ft³/s; no flow many days each year. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 15 ft 3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|-----------------------------------|---------------------| | Apr. 17
May 2 | 0045
2245 | 19
17 | 2.05
2.03 | May 20 | 0145 | *20 | *2.09 | No flow many days. | | | DISCHAI | RGE, CUBIC | FEET PE | R SECOND,
M | WATER YEA
EAN VALUES | R OCTOBER | R 1987 TO
| SEPTEMBE | R 1988 | | | |--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------|-----------------------------------|--|-----------------------------------|-------------------------------------|------------------------------------|----------------------------------|-----------------------------------|---------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .08
.06
.06
.06 | .56
.69
.66
.55 | .50
.49
.49
.48 | .49
.50
.50
.52 | .66
.68
.68
.67 | .82
.84
.86
.92 | 5.7
6.2
6.5
6.8
7.1 | 16
17
16
16
16 | 9.2
8.5
7.9
7.5
7.1 | 2.3
2.1
2.1
2.4
3.0 | .01
.00
.00
.00 | .00
.00
.00 | | 6
7
8
9
10 | .06
.07
.09
.11 | .50
.48
.53
.42 | .50
.53
.51
.49 | •54
•54
•56
•56 | .66
.66
.65
.65 | .98
1.0
1.1
1.3 | 7.3
7.5
7.8
8.1
8.5 | 15
15
15
16
14 | 6.8
6.0
5.9
5.5 | 2.5
2.4
1.9
1.6
1.4 | .00
.00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .09
.09
.14
.26
.36 | .44
.49
.51
.57 | .50
.51
.46
.42 | .58
.58
.60
.60 | .64
.64
.63
.63 | 1.3
1.4
1.6
1.7 | 8.8
9.3
12
12 | 14
14
14
14
14 | 5.3
5.2
4.9
4.7 | 1.4
1.3
1.1
.78
.54 | .00
.00
.17
.10 | .00
.12
.61
.51 | | 16
17
18
19
20 | .27
.24
.23
.23 | .52
.46
.45
.43 | .41
.43
.43
.43 | .62
.62
.63
.64 | .64
.65
.64 | 2.0
2.2
2.3
2.6
2.8 | 15
17
16
16
18 | 13
13
15
16
17 | 4.6
4.5
4.4
4.2
3.8 | .44
.36
.28
.26
.23 | .54
.29
.17
.23
.14 | .51
.49
.44
.38 | | 21
22
23
24
25 | .26
.23
.30
.25
.85 | . 43
. 37
. 40
. 42
. 44 | . 44
. 45
. 45
. 46 | .64
.65
.65
.66 | .63
.63
.65
.68 | 2.9
3.1
3.3
3.5
3.7 | 18
17
15
14
14 | 16
16
15
15 | 3.5
3.1
2.1
1.5
1.2 | .15
.14
.13
.11 | .11
.05
.01
.00 | .26
.26
.28
.28 | | 26
27
28
29
30
31 | .60
.41
.38
.40
.53 | .46
.43
.46
.48
.51 | . 47
. 47
. 47
. 48
. 48 | .68
.69
.68
.68 | .72
.74
.76
.78 | 4.1
4.3
4.7
5.0
5.2
5.5 | 14
14
13
13 | 14
13
11
9.6
9.5
9.5 | 1.2
2.1
3.1
3.0
2.4 | .06
.06
.05
.05 | .00
.00
.00
.00 | .26
.26
.26
.27 | | TOTAL
MEAN
MAX
MIN
AC-FT | 7.70
.25
.85
.06
15 | 14.61
.49
.69
.37
29 | 14.55
.47
.53
.41
29 | 18.71
.60
.69
.49
37 | 19.31
.67
.78
.63
.38 | 74.98
2.42
5.5
.82
149 | 354.6
11.8
18
5.7
703 | 442.6
14.3
17
9.5
878 | 140.0
4.67
9.2
1.2
278 | 29.35
.95
3.0
.05
58 | 1.97
.064
.54
.00
3.9 | 6.57
.22
.61
.00
13 | CAL YR 1987 TOTAL 658.61 MEAN 1.80 MAX 11 MIN .00 AC-FT 1310 WTR YR 1988 TOTAL 1124.95 MEAN 3.07 MAX 18 MIN .00 AC-FT 2230 217 09243700 MIDDLE CREEK NEAR OAK CREEK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- September 1975 to September 1988 (discontinued). PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1976 to September 1981. WATER TEMPERATURES: April 1976 to September 1981. INSTRUMENTATION.--Water-quality monitor April 1976 to September 1981. MAY 10... AUG 18... 1030 1025 15 0.18 520 808 9.0 8.9 10.0 18.0 REMARKS.--Unpublished maximum and minimum specific-conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,880 microsiemens May 29, 1981; minimum, 117 microsiemens Aug. 10, 1978. WATER TEMPERATURES: Maximum, 31.5°C July 31, 1976; minimum, freezing point on many days during winter WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SPE- HARD- MAGNE- SODIUM POTAS- |--|---|------------------|---|---|----------|---|----------------------------|---|--|--|--|------------------------|--|-------------------------------|---|---------------------------------------|---|---|---|---|------------------------| | DATE | TIME | FL
INS
TAN | EAM-
OW,
TAN-
EOUS
FS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ra)
A | PH
CAND-
LRD
LTS) | TEME
ATU
WAT
(DEC | JRE
CER | OXYGEN
DIS-
SOLVE!
(MG/L | ,
D | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | DI
SO
(M | CIUM
S-
LVED
G/L
CA) | SI
DI
SOI
(M) | GNE-
IUM,
IS-
LVED
G/L
MG) | DI
SOL
(M | | | D-
P-
ON | POTA
SIU
DIS
SOLV
(MG/
AS K | IM,
S-
YED
'L | | OCT
29 | 1045 | | 0.38 | 971 | | 8.7 | | 5.5 | 9. | 8 | 430 | 9 | 9 | 45 | 5 | 5 | 0 | | 1 | 4. | 0 | | FEB
22 | 1400 | | 0.63 | 855 | | 8.4 | | 0.0 | 12. | | 400 | 9 | | 40 | | 4 | 5 | | 1 | 3. | . 1 | | APR
19 | 1335 | 1 | 6 | | | 8.1 | | | 9.0 | 0 | 260 | 6 | 1 | 27 | 7 | 1 | 9 | | 0.5 | 3. | 1 | | JUL
27 | 0950 | | 0.07 | 911 | | 8.4 | | 15.5 | 7. | 7 | 380 | 8 | 2 | 43 | 3 | 4 | 2 | | 1 | 3. | 3 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | DI
SO
(M | FATE
S-
LVED
G/L
SO4) | ATE RIDE, RIDE DIS- DI VED SOLVED SOL (MG/L (MG O4) AS CL) AS | | .UO-
IDE,
DIS-
DLVED
MG/L
S F) | DIS | CA, I
S- I
LVED
G/L | SOLIDS
RESIDUI
AT 180
DEG. DIS-
SOLVEI | É S
C
C T | OLIDS,
SUM OF
CONSTI-
CUENTS,
DIS-
SOLVED
(MG/L) | D
SO:
(T | IDS,
IS-
LVED
ONS
ER
-FT) | SOI
(TO | LS-
LVED | TOT.
AT
DEG
SU:
PEN
(M | 105
. C,
S-
DED
G/L) | NIT
GE
NITR
DI
SOL
(MG
AS | N,
ITE
S-
VED
/L | NITR
GEN
NO2+N
DIS
SOLV
(MG/
AS N | 1,
103
ED
L | | OCT | 074 | 25 | 0 | | | 0.0 | , | o 11 | (0) | | (00 | | 0 0- | , | | | ,
 | | 0.4 | 20 1 | | | 29
FEB | 274 | 25 | | | | 0.2 | | 3.4 | 62 | | 628 | | 0.85 | | 0.64 | | 14 | <0. | | <0.1 | | | 22
APR
19 | 2 7 7
148 | 20
18 | | 5.1
4.2 | | 0.3 | | 9.9
3.4 | 578
408 | | 564
393 | | 0.79 | | 0.98
7.7 | 3 | 5
60 | <0. | | 0.1 | | | JUL 27 | 256 | 22 | | 6.0 | | 0.1 | | 5.1 | 580 | | 555 | | 0.79 | | 0.11 | | 33 | <0. | | <0.1 | | | DAT | GE
AMMO
DI
SOL | S-
VED
/L | PHOSOPHOROUS ORTHOUS DIS-SOLVEI (MG/L AS P) | JS
D, BOF
DI | | CADMI
TOTA
RECC
ERAR
(UG/ | AL
OV-
BLE
/L | IRON
TOTAL
RECOVERABL
(UG/I | , NI
L TO
V - RI
LE EI
L (I | ANGA
ESE,
OTAL
ECOV
RABL
UG/L
S MN | MERC
TOT
- REC
E ERA | AL
OV-
BLE
/L | MOLI
DENU
TOTA
RECO
ERAB
(UG/
AS N | IM,
LL
OV-
SLE
'L | SELE
NIUN
TOTA
(UG. | Λ,
AL
/L | SILVE
TOTA
RECO
ERAB
(UG/
AS A | L
V –
SLE
L | ZIN
TOTA
RECO
ERAI
(UG.
AS 2 | AL
OV-
BLE
/L | | | OCT 29 | 0. | 040 | <0.0 | 1 | 50 | | <1 | 50 | 00 | 20 | 0 <0 | . 1 | | 1 | | <1 | | <1 | | <10 | | | FEB 22 | 0. | 059 | <0.0 | 1 | 30 | | 1 | 2 | 30 | 21 | 0 <0 | . 1 | | 2 | | <1 | | <1 | | 10 | | | APR
19
JUL | 0. | 034 | 0.02 | 2 | 30 | | <1 | 950 | 00 | 47 | 0 <0 | . 1 | | 1 | | 1 | | <1 | | 50 | | | 27 | 0. | 083 | 0.0 | 1 | 50 | | <1 | 16 | 60 | 10 | 0 <0 | . 1 | | 3 | | 1 | | <1 | | <10 | | | | | | | DAT | Е | TIM | 1E | STREAM
FLOW
INSTAM
TANEOU
(CFS) | M- C:
, C:
N- DI
US AI | PE-
IFIC
ON-
JCT-
NCE
S/CM | PH
(STAI
AR | ND-
D | TEMPE
ATUF
WATE
(DEG | R | | | | | | | | | | | | | OCT
02 | | 091 | 1 5 | 0.0 | 05 | 84 | 5 8 | .8 | 1 | .0 | | | | | | | | | | | | | 23
DEC | | 133 | 35 | 0. | 40 | 99 | 3 8 | .9 | C | .5 | | | | | | | | | | | | | 14
JAN | | 110 | 00 | 0.3 | 37 | 84 | 7 8 | . 1 | C | .5 | | | | | | | | | | | | | 28 | | 133 | 30 | 0.0 | 69 | 78 | 0 8 | .7 | C | .5 | | | | | | | | | | | | | 08 | | 111 | 15 | 1. | 1 | 74 | 2 8 | .2 | C | .5 | | | | | | | | | | | | | 12 | | 110 | 0 | 9.9 | 9 | - | 8 | .8 | | | | | | | | | | #### 09243800 FOIDEL CREEK NEAR OAK CREEK, CO LOCATION.--Lat 40°20'45", long 107°05'04", in NW4SW4 sec.31, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on right bank 2.3 mi downstream from Reservoir No. 1, 6.9 mi upstream from mouth, and 8.7 mi northwest of Oak Creek. DRAINAGE AREA. -- 8.61 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1975 to October 1981, April 1982 to September 1983, October 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,880 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily
discharges: Nov. 2 to Apr. 7, Apr. 21 to May 10, and June 12-13. Records fair except for estimated daily discharges, which are poor. AVERAGE DISCHARGE.--11 years (water years 1976-81, 1983, 1985-88), 1.46 ft³/s; 1,060 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55 ft³/s, Apr. 21, 1980, gage height, 3.38 ft; no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 41 ft³/s, at 1300 Apr. 16, gage height, 2.89 ft; minimum daily, 0.09 ft³/s, Oct. 6-7. | | | DISCHARGE | E, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---------------------------------|--------------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .36
.32
.32
.37
.28 | .51
.53
.54
.51 | .48
.48
.50
.51 | .48
.47
.46
.46 | .36
.37
.38
.38 | .49
.47
.46
.43 | 6.0
6.0
7.0
9.0 | 5.8
6.8
6.6
6.4
6.2 | 2.7
2.5
2.4
2.2
2.0 | 3.1
2.8
2.7
2.9
3.9 | .49
.45
.43
.50 | .28
.24
.24
.26
.25 | | 6
7
8
9
10 | .09
.09
.10
.11 | .50
.50
.50
.49
.45 | .52
.52
.52
.54
.53 | .45
.45
.44
.43 | .39
.42
.42
.40 | .60
.70
.80
1.0 | 12
10
8.7
7.4
7.5 | 5.8
6.2
5.8
5.5 | 1.7
1.5
1.4
1.3 | 3.1
2.6
2.2
2.1
2.0 | .47
.55
.54
.44 | .26
.25
.22
.21 | | 11
12
13
14
15 | .13
.15
.17
.24 | .55
.46
.50
.50 | .54
.55
.56
.60 | .43
.42
.42
.41
.40 | .43
.42
.44
.43 | 1.6
1.7
1.8
1.9
2.0 | 8.0
10
20
23
23 | 6.4
6.0
5.9
5.7
5.4 | 1.3
1.2
1.3
1.2 | 1.8
1.7
1.5
1.3 | .35
.44
.72
.57
.49 | .38
1.9
2.2
1.4
.87 | | 16
17
18
19
20 | .26
.27
.25
.26 | .45
.43
.42
.45 | .56
.56
.55
.54 | .40
.40
.39
.38 | .45
.46
.46
.47 | 2.2
2.3
2.5
2.7
2.8 | 26
15
13
12
7.7 | 5.2
5.7
6.3
5.7 | 1.1
1.1
1.1
1.1 | .97
.87
.77
.63 | .59
.52
.44
.40
.38 | .56
.45
.39
.35 | | 21
22
23
24
25 | .28
.27
.28
.33
.61 | .44
.41
.43
.43 | •54
•53
•53
•52
•51 | .36
.35
.35
.34 | .50
.54
.52
.55 | 3.0
3.2
3.5
3.6
3.8 | 6.6
7.6
6.5
5.8
5.2 | 5·3
4·9
4·3
4·2
4·1 | 1.2
1.7
1.3
1.2 | .48
.44
.49
.48 | .43
.40
.36
.32 | .34
.33
.32
.31 | | 26
27
28
29
30
31 | .54
.49
.42
.39
.44 | . 44
. 45
. 47
. 47
. 47 | .51
.51
.50
.50 | .33
.32
.31
.33
.34 | .70
.60
.55
.50 | 4.2
4.4
4.8
5.0
5.0 | 5.0
5.0
4.9
4.8
4.8 | 3.8
3.7
3.5
3.4
3.2
3.0 | 1.7
2.7
3.4
4.0
3.6 | .42
.56
.41
.41
.44 | .29
.31
.33
.33
.30 | .31
.31
.31
.31 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8.98
.29
.61
.09 | 14.27
.48
.60
.41
28 | 16.35
.53
.60
.48
32 | 12.26
.40
.48
.31
24 | 13.45
.46
.70
.36
27 | 73.83
2.38
5.0
.43
146 | 297.5
9.92
26
4.8
590 | 161.3
5.20
6.8
3.0
320 | 52.8
1.76
4.0
1.1
105 | 43.63
1.41
3.9
.41
87 | 13.28
.43
.72
.28
.26 | 14.44
.48
2.2
.21
29 | CAL YR 1987 TOTAL 407.34 MEAN 1.12 MAX 6.5 MIN .09 AC-FT 808 WTR YR 1988 TOTAL 722.09 MEAN 1.97 MAX 26 MIN .09 AC-FT 1430 #### 09243800 FOIDEL CREEK NEAR OAK CREEK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- September 1975 to September 1983, October 1984 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: May 1976 to September 1981, April 1982 to September 1983. March 1986 to current year. WATER TEMPERATURES: May 1976 to September 1981, April 1982 to September 1983. March 1986 to current year. INSTRUMENTATION. -- Water-quality monitor May 1976 to September 1981, April 1982 to September 1983. March 1986 to REMARKS.--Unpublished maximum and minimum specific conductance data for periods of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 3,080 microsiemens Dec. 16, 1987; minimum, 200 microsiemens Apr. 21, 22, WATER TEMPERATURES: Maximum, 31.5°C July 30, 1983; minimum, 0.0°C during winter period when flowing each year. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum, 3,080 microsiemens Dec. 16; minimum, 620 microsiemens Apr. 16. WATER TEMPERATURES: Maximum, 27.0°C June 24; minimum, 0.0°C several days during winter period. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS -
SIUM,
DIS -
SOLVED
(MG/L
AS K) | |------------------|---|---|--|--|---|--|---|---|--|---|---|---| | OCT
29 | 1315 | 0.40 | 2610 | 8.4 | 7.0 | 9.5 | 1500 | 290 | 190 | 64 | 0.7 | 5.9 | | FEB 22 | 1450 | 0.55 | 2560 | 8.4 | 0.0 | 12.1 | 1300 | 280 | 150 | 160 | 2 | 5.2 | | APR | | | | | | | _ | | | | | | | 19
JUL | 1018 | 12 | 976 | 8.0 | 7.0 | 9.1 | 510 | 110 | 56 | 24 | 0.5 | 4.2 | | 27 | 1215 | 0.48 | 2690 | 8.1 | 20.5 | 7.0 | 1700 | 310 | 220 | 52 | 0.6 | 5.6 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | ост
29 | 170 | 1500 | 13 | 0.2 | 7.6 | 2330 | 2170 | 3.22 | 2.56 | 9 | <0.01 | <0.1 | | FEB
22 | 117 | 1400 | 38 | 0.2 | 10 | 2170 | 2120 | 2.95 | 3.22 | 15 | 0.01 | 0.58 | | APR
19 | 158 | 390 | 4.4 | 0.2 | 7.5 | 721 | 694 | 0.98 | 23.4 | 34 | <0.01 | 0.62 | | JUL
27 | 257 | 1500 | 6.7 | 0.2 | 3.4 | 2400 | 2250 | 3.26 | 3.11 | 20 | <0.01 | <0.1 | | | | | | | | | | | | | | | | DAT | GH
AMMO
Di
SOI
E (MO | TRO- PHOREN, PHOREN, PHOREN ONIA ORTIS- DISLUVED SOLVED (MG/N) AS P | OUS HO, BOR DI ED SOL L (UG | S- RECO
VED ERAB
/L (UG/ | L TOT. V - REC LE ERA L (UG | AL TOT
OV - REC
BLE ERA
/L (UG | E, MERC AL TOT OV- REC BLE ERA /L (UG | AL TOT
OV- REC
BLE ERA
/L (UG | UM, AL SELI OV- NIUI BLE TOTA /L (UG | M, REC
AL ERA
/L (UG | AL TOT
OV- REC
BLE ERA
/L (UG | AL
OV-
BLE
/L | | OCT
29
FEB | 0 | .18 <0. | 01 | 120 | <1 | 290 | 160 <0 | . 1 | <1 | <1 | <1 | <1 | | 22 | 0 | .28 0. | 11 | 120 | 2 | 480 | 370 <0 | . 1 | 4 | <1 | <1 | <1 | | APR
19
JUL | 0 | .03 0. | 02 | 50 | <1 1 | 100 | 160 <0 | . 1 | <1 | 1 | 1 | 1 | | 27 | 0 | .27 0. | 01 | 120 | < 1 | 110 | 130 <0 | . 1 | 4 | <1 | <1 | <1 | 09243800 FOIDEL CREEK NEAR OAK CREEK, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | | |------|------|------|---|---|--------------------------------|--------------------------------------|--| | OCT | | | | | | | | | | 2 | 1120 | 0.34 | 2600 | 8.8 | 5.0 | | | NOV | | | | | | • | | | 2 | 3 | 1200 | 0.43 | 2670 | 8.8 | 0.5 | | | DEC | | | | | _ | | | | | 4 | 1145 | 0.60 | | 7.8 | 0.5 | | | JAN | 0 | 1205 | 0.24 | | 0 6 | 0.0 | | | MA R | 8 | 1205 | 0.31 | | 8.6 | 0.0 | | | | 8 | 1345 | 0.81 | | 8.1 | 0.5 | | | APR | | 1545 | 0.01 | | 0.1 | 0.5 | | | | 1 | 1440 | 8.0 | | 8.5 | | | | MA Y | | | | | | | | | | 0 | 1250 | 4.9 | | 8.8 | | | | JUN | _ | | _ | | | | | | | 3 | 1330 | 1.3 | 2550 | 9.2 | 18.0 | | | AUG | | 1210 | 0 51 | 2600 | 8.4 | 10 0 | | | 1 | 8 | 1210 | 0.54 | 2690 | 0.4 | 18.0 | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG.
C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN FEB APR MAY MAR 2740 **7**30 2390 2380 2500 2730 2530 2770 2730 13 14 2510 2520 2750 2820 **78** 946 883 2700 2590 2710 2560 2710 2570 844 ------2710 20 ------2530 2710 2710 2590 2800 2690 2680 2420 1570 2390 ___ 2600 ------___ 2720 2730 3ó TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |----------------------------------|--|--|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------| | | OCTO | BER | NOVE | MBER | DE CE | EMBER | JANU | JARY | FEBI | RUARY | MA | R CH | | 1
2
3
4
5 | 12.2
12.3
11.9
14.7
12.0 | 3.2
3.5
3.5
3.6
4.5 | 9.5
10.4
9.0
9.2
8.2 | 6.0
6.4
6.4
4.0
2.2 | .1
.1
.1
.2 | .0
.1
.1
.1 | .2
.1
.1 | .1
.0
.0
.0 | .1
.1
.2
.2 | .0
.0
.0
.1 | .4
.4
.5
.4 | .0 .4 .3 .0 .0 | | 6
7
8
9
10 | 11.5
11.5
11.2
11.1
11.5 | 3.0
2.5
3.5
3.5
5.0 | 8.5
5.9
7.6
5.9
3.8 | 5.0
4.3
3.2
.0 | 1.0
1.0
.5
.3 | .2
.0
.0
.1 | .1
.1
.1
.1 | .0
.0
.0 | .2
.2
.2
.2 | .1
.2
.1
.1 | . 4
. 4
. 4
. 4 | .0 | | 11
12
13
14
15 | 10.2
9.0
9.4
9.0
11.4 | 2.1
1.2
7.6
6.0
7.4 | 4.4
4.3
5.4
4.9
3.0 | .0
.1
1.1
2.4 | 1.0
.1
.3
.3 | .1
.0
.0
.1 | .1
.1
.2
.2 | .1
.0
.1
.1 | .2
.3
.3
.3 | .2
.2
.2
.2 | . 4
. 4
. 4
. 4 | .0 | | 16
17
18
19
20 | 10.2
9.2
8.3
8.0
7.2 | 5.1
2.0
2.5
2.0 | .5
.2
.3
.3 | .0
.1
.1
.1 | .2
.3
.4 | .0
.1
.2
.2 | .4
.1
.1
.2 | .1
.1
.1
.1 | .3
.4
.9
.5 | .3
.0
.0 | . 4
. 4
. 4
. 4 | .0 | | 21
22
23
24
25 | 7.1
7.5
6.7
8.6
9.2 | .0
.0
.0
4.5
6.1 | .2
.2
.3
.1 | .1
.1
.1
.1 | .1
.1
.1
.1 | .1
.1
.0
.0 | .2
.2
.2
.2 | .1
.1
.1
.1 | .9
.9
.9 | .0 | .4
.4
.4
.3 | .0
.0
.0 | | 26
27
28
29
30
31 | 9.1
8.4
8.0
8.3
7.1
9.5 | 4.0
2.0
1.0
2.0
5.6
5.3 | .2
.1
.1
.2
.1 | .0
.1
.1
.1 | .1
.1
.1
.1 | .0
.0
.1
.1 | .2 .2 .2 .2 .2 .2 | .1
.1
.1
.1 | .5
.4
.4 | .0 | .4
.4
.3
.3 | .0
.0
.0
.3 | | MONTH | 14.7 | .0 | 10.4 | .0 | 1.0 | .0 | . 4 | .0 | .9 | .0 | •5 | .0 | | | APR | IL | MA | ΛY | Jt | JNE | JŲ | JLY | AUG | BUST | SEPTI | EMBER | | 1
2
3
4
5 | .3
.3
.3
.5 | .0 | 10.9
10.2
13.8
14.6
14.2 | 7.4
5.6
4.5
6.0
6.6 | 17.2
21.4
23.2
23.9
22.0 | 10.3
11.6
12.0
13.4
15.4 | 25.5
24.4
23.3
21.5
22.7 | 15.6
16.2
16.3
16.9
15.1 | 21.5
21.5
22.8
23.4
23.0 | 15.2
14.5
17.4
16.8
14.3 | 20.7
20.7
20.6
20.4
19.4 | 11.9
11.9
11.0
11.4
9.8 | | 6
7
8
9 | .6
.7
1.8
2.6
4.0 | .0
.2
.0
.0 | 11.5
12.2
9.4
11.9
12.2 | 6.7
5.3
5.7
5.7
7.3 | 24.4
23.9
24.8
23.2
23.5 | 13.7
13.5
13.6
13.2
14.7 | 23.7
23.4
24.3
22.4
20.2 | 16.7
16.3
15.9
15.4
14.8 | 20.0
21.1
20.5
20.9
21.4 | 16.6
14.9
14.1
13.3
13.2 | 18.2
18.6
19.1
18.1
15.7 | 9.0
10.6
10.1
8.9
10.7 | | 11
12
13
14
15 | 5.3
5.9
5.0
6.5
7.4 | .1
.0
.0
1.0 | 16.8
18.4
19.6
19.1
20.1 | 6.1
8.2
9.5
10.6
10.5 | 19.6
22.8
20.0
21.6
22.6 | 14.4
12.7
14.2
12.3
12.9 | 21.9
20.8
24.1
24.6
22.4 | 14.0
15.0
14.9
16.8
16.0 | 22.0
19.8
20.9
22.0
19.4 | 13.9
16.1
13.3
13.7
15.0 | 13.2
12.6
14.1
13.1
13.6 | 10.8
10.1
10.7
9.9
9.2 | | 16
17
18
19
20 | 9.8
7.9
11.5
11.7
12.0 | 1.5
3.2
3.3
6.3
5.7 | 20.4
18.4
17.1
12.9
14.2 | 11.0
13.0
12.5
10.7
9.7 | 23.7
20.0
23.5
23.8
25.3 | 13.2
13.6
13.8
14.9
15.4 | 23.8
23.1
23.5
23.4
23.5 | 15.5
15.4
14.4
14.3
13.8 | 22.6
20.2
21.9
22.6
19.0 | 16.5
16.3
14.5
14.2
13.4 | 15.1
15.4
12.6
12.5
14.1 | 7.6
8.9
8.5
5.5
6.5 | | 21
22
23
24
25 | 10.1
10.3
10.7
9.8
8.4 | 6.6
6.3
4.5
5.0
3.9 | 15.4
17.8
20.1
21.0
17.4 | 8.6
8.8
9.5
11.0
11.5 | 25.6
25.0
26.6
27.0
26.7 | 16.0
16.7
16.1
16.7
17.6 | 23.7
23.8
22.2
23.8
23.6 | 13.0
13.0
14.4
13.9
14.5 | 20.7
21.8
22.4
22.3
22.2 | 16.1
15.0
12.7
12.7
12.5 | 14.5
12.4
14.0
14.2
13.9 | 9.8
9.7
7.8
7.9
8.3 | | 26 | 11.6 | 2.3 | 17.4 | 10.8 | 24.1
26.2 | 17.0
16.8 | 23.3
22.7 | 16.5
15.6 | 20.2
22.1 | 12.4
14.1 | 12.7
12.5 | 7.7
8.7 | | 27
28
29
30
31 | 12.3
11.6
14.6
16.5 | 5.1
5.5
6.7
7.1 | 19.3
20.0
19.3
15.2
16.4 | 11.3
11.4
11.5
11.3
9.7 | 22.9
23.8
25.0 | 18.0
17.8
16.1 | 22.9
24.5
24.4
24.2 | 15.4
15.1
14.9
16.9 | 21.1
20.9
20.3
19.7 | 12.8
12.3
13.0
12.1 | 10.5
10.6
12.1 | 7.2
4.6
6.0 | YEAR MAXIMUM 27.0 MINIMUM .0 #### 09243900 FOIDEL CREEK AT MOUTH, NEAR OAK CREEK, CO LOCATION.--Lat 40°23'25", long 106°59'39", in SELSEL sec.14, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on left bank 0.9 mi upstream from mouth and 13.6 mi northwest of Oak Creek. DRAINAGE AREA. -- 17.5 mi2. 222 #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1975 to September 1981, June 1982 to current year. REVISED RECORDS. -- WDR CO-78-3: 1976 (M), 1976. GAGE.--Water-stage recorder. Elevation of gage is 6,730 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 21 to Apr. 7. Records fair except for estimated daily discharges, which are poor. AVERAGE DISCHARGE.--12 years (water years 1976-81, 1983-88), 3.61 ft³/s; 2,620 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90 ft³/s, Apr. 22, 1980, gage height, 5.18 ft; no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 60 $\rm ft^3/s$ at 2200 Apr. 14, gage height, 4.34 ft; minimum daily, 0.02 $\rm ft^3/s$, Sept. 10. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND | , WATER YEA
MEAN VALUES | R OCTOBE | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------|------------------------------------|--|------------------------------------|-----------------------------------|--|----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .27
.47
.53
.38 | 1.1
1.2
1.1
1.1 | •77
•77
•77
•76
•76 | .83
.86
.87
.87 | .96
.94
.98
.99 | .98
.94
.92
.87 | 12
13
15
18
24 | 8.4
8.9
9.9
8.8
8.2 | 3.6
3.0
2.4
2.0 | 3.7
2.5
2.3
1.9
5.1 | .52
.68
.56
.65 | .25
.21
.14
.10 | | 6
7
8
9
10 | .63
.65
.66
.60 | 1.2
1.1
1.0
.95
.90 | .76
.75
.75
.75 | .84
.84
.85
.86
.87 | 1.0
1.1
1.2
1.2 | 1.7
2.0
2.2
3.4
3.0 | 28
29
30
22
17 | 7.8
7.6
8.2
9.2
8.6 | 1.7
1.5
1.3
1.7 | 4.0
2.7
1.8
1.5 | .57
.55
.63
.53 | .22
.31
.12
.04 | | 11
12
13
14
15 | .55
.57
.72
.96 | 1.1
.95
1.0
1.0 | .74
.73
.73
.72
.70 | .89
.91
.91
.91 | 1.1
1.1
1.2
1.1 | 3.2
3.4
3.6
3.8
4.0 | 20
27
36
43
43 | 7.8
7.4
7.0
6.5
6.1 | 1.4
1.5
1.4
1.5 | 1.5
1.2
.92
.76
.67 | .47
.38
.55
.71
.89 | .18
1.1
2.9
2.4
1.6 | | 16
17
18
19
20 | 1.0
.96
.89
.84
.82 | .89
.99
.84
.93 | .70
.74
.78
.81
.83 | .91
.91
.91
.91 | 1.1
1.1
1.0
1.0 | 4.4
4.6
5.0
5.4
5.6 | 37
30
21
19 | 5.7
5.8
7.9
11 | 1.5
1.1
1.1
1.1
.91 | .69
.61
.54
.49 | 1.3
.82
.76
.66 | 1.0
.85
.75
.70 | | 21
22
23
24
25 | .78
.82
.83
.92 | .87
.82
.79
.80
.80 | .83
.83
.83
.83 | .93
.95
.96
.98 | 1.0
1.0
1.1
1.1 | 6.0
6.4
7.0
7.4
7.8 | 16
15
13
12 | 8.4
7.1
6.3
5.5
5.0 | 1.0
2.2
2.4
1.6
1.3 | .38
.40
.39
.33 | .60
.57
.59
.44
.43 | .59
.60
.61
.61 | | 26
27
28
29
30
31 | 1.2
1.0
.98
1.2
1.1 | .80
.79
.79
.78
.78 | .83
.83
.83
.83
.83 | .99
.99
1.0
1.0
1.0 | 1.5
1.3
1.1
1.0 | 8.4
8.8
9.8
10
11 | 13
12
10
9.4
8.8 | 5.2
4.6
3.9
3.7
3.8
3.8 | 1.4
5.4
9.9
9.0
5.6 |
.27
.66
.55
.43
.49 | .32
.35
.27
.30
.32
.28 | .56
.56
.56
.54 | | TOTAL
MEAN
MAX
MIN
AC-FT | 24.81
.80
1.4
.27
49 | 28.65
.95
1.2
.78
57 | 24.19
.78
.83
.70
48 | 28.39
.92
1.0
.83
56 | 31.67
1.09
1.5
.94
63 | 153.71
4.96
11
.87
305 | 623.2
20.8
43
8.8
1240 | 220.1
7.10
12
3.7
437 | 73.31
2.44
9.9
.91
145 | 39.29
1.27
5.1
.27
78 | 17.52
•57
1.3
•27
35 | 19.37
.65
2.9
.02
38 | CAL YR 1987 TOTAL 1062.28 MEAN 2.91 MAX 35 MIN .03 AC-FT 2110 WTR YR 1988 TOTAL 1284.21 MEAN 3.51 MAX 43 MIN .02 AC-FT 2550 223 09243900 FOIDEL CREEK AT MOUTH NEAR OAK CREEK, CO--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1976 to September 1981, June 1982 to September 1988, (discontinued). PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: April 1976 to September 1981. WATER TEMPERATURE: April 1976 to September 1981. SUSPENDED SEDIMENT DISCHARGE: April 1976 to September 1981. INSTRUMENTATION. -- Water-quality monitor April 1976 to September 1981. Automatic pumping sampler April 1976 to September 1981. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 3,520 microsiemens Aug. 10, 11, 1980; minimum, 255 microsiemens July 1, 1980. WATER TEMPERATURES: Maximum, 28.5°C July 22, 1980; minimum, 0.0°C several days during winter period each year. SEDIMENT CONCENTRATIONS: Maximum daily, 3,650 mg/L Apr. 2, 1981; no flow many days most years. SEDIMENT LOADS: Maximum daily, 702 tons Apr. 23, 1980; no flow many days most years. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | CON -
DUCT - | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |--------------------------------------|---|---|-----------------------------------|--|---|--|---|---|---|---|---|---| | ост
29 | 1000 | 1.2 | 2850 | 8.2 | 5.5 | 10.0 | 1400 | 260 | 180 | 150 | 2 | 6.2 | | FEB 22 | 1230 | 1.0 | 2780 | 8.2 | 0.0 | 13.1 | 1500 | 340 | 170 | 62 | 0.7 | 5.2 | | APR
19 | _ | | 1430 | 8.0 | | | 720 | | 83 | | | _ | | JUL | 1145 | 19 | _ | | 9.5 | 9.5 | • | 150 | _ | 45 | 0.8 | 5.0 | | 27 | 1045 | 0.66 | 3120 | 8.0 | 17.5 | 6.5 | 1700 | 290 | 230 | 180 | 2 | 7.9 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVEE
(MG/L
AS SO4) | DIS-
SOLVED
(MG/L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | OCT
29
FEB | 268 | 1500 | 17 | 0.2 | 4.2 | 2300 | 2280 | 3.35 | 7.97 | 8 | <0.01 | <0.1 | | 22 | 415 | 1400 | 29 | 0.2 | 12 | 2380 | 2270 | 3.24 | 6.49 | 3 | <0.01 | 0.50 | | APR
19 | 205 | 630 | 7.1 | 0.2 | 8.4 | 1100 | 1060 | 1.50 | 57.3 | 69 | 0.01 | 0.78 | | JՄL
27 | 214 | 1900 | 20 | 0.1 | 2.5 | 2220 | 2760 | 3.02 | 3.96 | 18 | <0.01 | 0.11 | | DAT
OCT
29
FEB
22
APR | GI
AMM
D
SOO
E (M
AS | EN, PHCONIA OF IS- DI LVED SOL (MC N) AS | S- D.VED SO. VED SO. VL (UP) AS | LVED ERA
G/L (UG
B) AS
140 | CD AS | N, NES AL TOT OV- REC BLE ERA K/L (UG FE) AS | AL TOT
OV - REC
BLE ERA
/L (UG
MN) AS
140 <0
450 <0 | CURY DEN TOT TOT ON | COV- NIU
BLE TOT
VL (UG
MO) AS | M, REC
AL ERA
//L (UG
SE) AS | AL TOT OV - REC BLE ERA /L (UG AG) AS | AL
OV-
BLE
E/L
ZN) | | 19
JUL | | | 0.02 | 80 | | 100 | 290 <0 | 1.1 | 1 | 1 | <1 | 30 | | 27 | 0 | .28 | 0.02 | 150 | <1 | 510 | 400 <0 | .1 | 5 | <1 | <1 | <10 | 09243900 FOIDEL CREEK AT MOUTH NEAR OAK CREEK, CO--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | |-----------|-------|---|---|--------------------------------|--------------------------------------| | OCT | | | | | | | 02 | 0845 | 0.38 | 2590 | 8.4 | 2.5 | | NOV
23 | 1415 | 0.79 | 2550 | 8.7 | 0.5 | | DEC | 11115 | 0.15 | 2330 | 0.7 | 0.5 | | 14 | 1000 | 0.74 | 1800 | 7.9 | 0.5 | | JAN
28 | 1410 | 1.0 | 2320 | 8.8 | 0.5 | | MAR | | ,,,, | -5-0 | 0.0 | 0.5 | | 04 | 1000 | 0.87 | 1840 | 8.6 | 2.0 | | APR
07 | 1420 | 29 | 1060 | 8.4 | 3.0 | | 12 | 1215 | 21 | 1000 | 8.5 | 7.0 | | MA Y | | | | 0.5 | , | | 10 | 0925 | 8.3 | 2260 | 8.4 | 9.5 | | AUG | 0007 | 0.50 | 0670 | 0 2 | 46 5 | | 18 | 0927 | 0.74 | 2670 | 8.3 | 16.5 | RAINFALL RECORDS PERIOD OF RECORD. -- July 19, 1978 to current year. INSTRUMENTATION. -- Belfort weighing bucket rain gage. REMARKS.--Unpublished rainfall data for water years 1978-86 are available in district office. | | | | RAINFALL | ACCUMULATED | (INCHES), | WATER | YEAR OCTO | DBER 1987 | TO SEPTE | MBER 1988 | | | |---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------| | DA Y | OCT | NOA | DE C | JAN | FEB | MAR | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2 | .00 | .23 | .00 | .07
.01 | .19
.22 | .00 | .00 | .13 | .00 | .00 | .00 | .00 | | 3
4 | .00 | .00 | .00 | .01 | .02
.02 | .07 | .00 | .00 | .00 | .00
.19 | .15 | .00 | | 5
6 | .00 | .00 | .18 | .14 | .00 | .08 | .06 | .00 | .00 | .00 | .00 | .00 | | 7
8 | .00 | .00 | .08 | •27
•05
•23 | .00 | .02 | .00 | .13 | .00 | .00 | .02 | .00 | | 9
10 | .00 | .00 | .03 | .40
.16 | .15 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 11
12 | .00 | .12
.00 | .00 | •23
•05 | .01 | .03 | .00 | .00 | .02 | .00 | .00 | .90
.64 | | 13
14 | .14 | .00
.02 | .00 | .02
.04 | .04 | .00 | .00 | .00 | .03
.01 | .00 | .00 | .05
.02 | | 15
16 | .04 | .04 | .00 | .02 | .00 | .00 | .00 | .00 | .00 | .00 | .65 | .00 | | 17
18 | .00 | .05 | .00
.05 | .15
.43 | .01 | .00 | .00 | .58
.44 | .01 | .01 | .00 | .00 | | 19
20 | .00 | .01 | .07
.00 | .01
.01 | .00 | .03 | .09
.00 | .53
.00 | .00 | .00 | .00 | .00 | | 21
22 | .00 | .00 | .07
.48 | .09
.01 | .00 | .00 | .05
.01 | .00 | .25
.00 | .04 | .00 | .00 | | 23
24
25 | .00
.44
.08 | .16
.04
.00 | .25
.04
.01 | .01
.00
.00 | .00
.07
.03 | .00
.00
.06 | .04
.04
.28 | .00
.00
.04 | .00
.00
.00 | .00
.00 | .00
.00 | .00
.00 | | 26
27 | .00 | .00 | .00 | .12 | .19 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 2 8
29 | .00 | .00 | .02
.01 | .00
.03 | .04 | .00 | .00 | .00 | 1.28 | .00 | .00 | .00 | | 30
31 | .16
.01 | | .05
.05 | .05
.43 | | .00 | .00 | .08
.00 | .00 | .00 | .00 | .00 | | TOTAL
MAX
MIN | 0.96
.44
.00 | 0.86
.23
.00 | 1.66
.48
.00 | 3.24
.43
.00 | 1.11
.22
.00 | 0.42
.08
.00 | 0.57
.28
.00 | 2.00
.58
.00 | 1.70
1.28
.00 | 0.28
.19
.00 | 0.93
.65
.00 | 1.62
.90
.00 | WTR YR 1988 TOTAL 15.35 MEAN .04 MAX 1.28 MIN .00 225 09245000 ELKHEAD CREEK NEAR ELKHEAD, CO LOCATION.--Lat 40°40'11", long 107°17'04", in NW4NE4 sec.8, T.8 N., R.88 W., Routt County, Hydrologic Unit 14050001, on right bank 0.2 mi upstream from North Fork Elkhead Creek, 4.5 mi northwest of Elkhead, and 12 mi north of Hayden. DRAINAGE AREA . -- 64.2 mi². PERIOD OF RECORD.--January to November 1910 and May to November 1920 (monthly discharge only, published in WSP 1313; published as "at Hayes Ranch"), April 1953 to current year. REVISED RECORDS. -- WSP 1733: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,845 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 30, 1920, nonrecording gage or water-stage recorder 675 ft upstream at different datum. REMARKS.--Estimated daily discharges: Dec. 16 to Jan. 7. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of specific conductance and water temperature were obtained and are published
elsewhere in this report. AVERAGE DISCHARGE. -- 35 years (water years 1954-88), 57.7 ft3/s; 41,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,850 ft³/s, May 20, 1984, gage height, 7.58 ft, from rating curve extended above 1,500 ft³/s, on basis of slope area determination of peak flow; no flow Sept. 1, 1954, Sept. 12-19, 24, 1955, Aug. 27-29, 1961, Aug. 14-19, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | May 18 | 0300 | *784 | *5.66 | | | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 0.68 ft3/s, Sept. 9. | | | DISCHA | NGE, CODI | C FEET FE | | EAN VALUE | | N 1907 10 | SET TEFIDE | .n 1900 | | | |--------------------------------------|-----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|--|-----------------------------------|--|------------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.0
3.3
3.1
3.0
2.9 | 7.5
15
16
9.2
7.0 | 7.7
8.7
9.5
9.8
8.7 | 6.0
6.5
7.0
7.5
8.0 | 6.4
6.3
6.5
6.4 | 12
11
8.7
8.6
9.7 | 23
26
27
13
15 | 455
276
213
252
377 | 134
123
117
118
118 | 15
13
12
12
16 | 3.7
3.5
3.5
3.8
3.5 | .90
.95
.90
.85 | | 6
7
8
9
10 | 3.0
3.1
3.2
3.4 | 7.1
8.3
7.8
6.2
6.0 | 8.2
8.1
7.9
8.7
6.8 | 8.5
9.0
9.3
8.9
8.5 | 6.5
6.5
6.4
6.4 | 8.4
11
8.5
8.1
8.0 | 18
22
22
37
46 | 428
270
219
220
263 | 110
100
91
83
77 | 12
11
10
8.7
9.5 | 2.8
3.3
4.3
3.3
2.5 | .74
.77
.71
.68
.79 | | 11
12
13
14
15 | 3.3
3.1
4.3
8.0
5.9 | 6.2
7.5
6.4
6.9
7.1 | 7.0
6.7
9.0
6.7
7.0 | 7.8
7.4
6.9
6.8
6.8 | 6.3
6.0
6.0
5.9
5.8 | 7.8
8.1
8.7
8.3
8.2 | 48
54
84
164
221 | 348
482
595
613
539 | 71
67
61
57
50 | 13
11
8.6
7.0
6.2 | 2.0
1.8
1.7
1.6
1.5 | 1.5
6.4
7.6
6.4
4.6 | | 16
17
18
19
20 | 4.7
4.0
3.7
3.7
3.6 | 6.2
9.0
9.6
7.1
7.2 | 7.0
6.0
6.0
6.0
6.5 | 7.0
7.0
7.2
7.2
7.2 | 5.8
5.7
5.8
5.9 | 7.9
8.2
8.6
8.4
8.5 | 264
308
258
343
352 | 507
491
666
530
392 | 45
40
36
32
29 | 5.9
5.7
4.4
4.2 | 1.6
2.4
2.0
1.8
1.5 | 3.3
2.6
2.2
2.0
1.9 | | 21
22
23
24
25 | 3.4
3.4
3.6
4.7
9.7 | 6.7
6.9
6.6
7.0
8.2 | 7.0
7.5
7.0
7.0
7.5 | 7.3
7.1
6.8
6.8
6.5 | 6.0
6.2
6.2
6.5 | 9.6
11
11
9.1 | 356
260
183
145
131 | 311
267
250
248
252 | 26
26
24
22
19 | 3.8
3.5
3.4
3.3
3.2 | 1.7
2.4
2.0
1.5 | 2.0
2.6
2.9
2.7
2.5 | | 26
27
28
29
30
31 | 7.6
5.7
4.8
4.4
6.1 | 6.3
6.2
5.2
5.8
6.7 | 7.0
6.0
5.0
5.0
5.5
6.0 | 6.4
6.5
6.5
6.5
6.5 | 6.7
7.6
16
16 | 9.3
19
23
31
10 | 111
109
143
203
370 | 235
228
216
201
187
159 | 17
16
16
26
19 | 3.1
3.2
3.2
5.5
7.4
5.1 | 1.1
1.1
1.0
.91
.91 | 2.3
2.2
2.6
2.9
2.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 138.7
4.47
10
2.9
275 | 228.9
7.63
16
5.2
454 | 222.5
7.18
9.8
5.0
441 | 223.9
7.22
9.3
6.0
444 | 200.7
6.92
16
5.7
398 | 337.7
10.9
31
7.8
670 | 4356
145
370
13
8640 | 10690
345
666
159
21200 | 1770
59.0
134
16
3510 | 234.8
7.57
16
3.1
466 | 66.71
2.15
4.3
.79
132 | 72.15
2.40
7.6
.68
143 | CAL YR 1987 TOTAL 13933.0 MEAN 38.2 MAX 472 MIN 1.6 AC-FT 27640 WTR YR 1988 TOTAL 18542.06 MEAN 50.7 MAX 666 MIN .68 AC-FT 36780 09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO LOCATION.--Lat 40°44'38", long 107°32'25", in NW4NW4 sec. 18, T.9 N., R.90 W., Moffat County, Hydrologic Unit 14050001, on right bank, 4.5 mi south of Fortification. DRAINAGE AREA . -- 40.0 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 16 to Apr. 8, and Aug. 30 to Sept. 30. Records fair except for estimated daily discharges, which are poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 465 ft³/s, March 25, 1985, gage height, 4.64 ft; no flow, July 12 to Sept. 5, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 205 ft³/s at 0900 May 13, gage height, 3.22 ft; no flow, July 12 to Sept. 5. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|---------------------------------|----------------------------------|--|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|--------------------------|----------------------------------| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .77
.82
.80
.81 | 2.9
4.4
3.4
2.5
2.3 | 1.4
1.3
1.3
1.2 | 1.3
1.3
1.3
1.3 | 1.3
1.3
1.4
1.4 | 1.8
1.8
1.8
1.8 | 4.0
5.0
8.0
11 | 51
32
22
26
30 | 16
12
14
19
26 | .72
.56
.41
.24 | .00
.00
.00
.00 | .00
.00
.00 | | 6
7
8
9
10 | .82
.81
.85
.90 | 2.3
2.5
2.6
2.2
3.0 | 1.2
1.2
1.1
1.1 | 1.3
1.3
1.3
1.3 | 1.4
1.4
1.5
1.5 | 1.8
1.8
1.8
1.8 | 16
28
41
33
31 | 43
26
23
30
37 | 25
24
22
18
17 | .09
.05
.03
.02 | .00
.00
.00
.00 | .15
.22
.27
.30
.80 | | 11
12
13
14
15 | .96
1.0
1.1
1.9 | 3.4
3.4
2.5
2.4
4.1 | 1.0
.96
.93
.89 | 1.3
1.3
1.3
1.3 | 1.5
1.6
1.6
1.6 | 1.8
1.9
2.0
2.1
2.2 | 9.1
18
26
28
28 | 38
49
119
156
107 | 16
14
12
9.9
6.3 | .01
.00
.00
.00 | .00
.00
.00
.00 | 1.8
1.4
1.5
1.3 | | 16
17
18
19
20 | 1.3
1.3
1.3
1.3 | 1.9
1.8
1.7
1.6 | .92
.94
.94
.96 | 1.3
1.3
1.2
1.2 | 1.7
1.7
1.7
1.7 | 2.4
2.6
2.9
2.8
2.5 | 32
38
26
34
29 | 67
75
102
77
50 | 4.5
3.7
3.5
3.1
2.7 | .00
.00
.00 | .00
.00
.00
.00 | .84
.76
.68
.60 | | 21
22
23
24
25 | 1.3
1.6
2.0
1.7
3.1 | 1.6
1.6
1.6
1.6 | 1.1
1.1
1.1
1.1 | 1.2
1.3
1.3
1.3 | 1.7
1.7
1.6
1.6 | 3.0
3.5
3.8
3.6
4.0 | 28
27
21
19
20 | 37
33
29
33
39 | 2.5
2.3
2.0
1.9 | .00
.00
.00 | .00
.00
.00
.00 | .58
1.2
1.3
.90
.68 | | 26
27
28
29
30
31 | 2.6
2.1
2.0
2.0
2.5
3.4 | 1.5
1.5
1.5
1.4 | 1.2
1.3
1.3
1.3 | 1.3
1.3
1.3
1.3
1.3 | 1.8
1.8
1.8 | 5.8
6.8
5.0
4.2
3.6
3.5 | 16
15
17
24
35 | 38
39
40
39
36
25 | 1.4
1.3
1.1
.95
.79 | .00
.00
.00
.00 | .00
.00
.00
.00 | .60
.60
.70
.70 | | TOTAL
MEAN
MAX
MIN
AC-FT | 46.43
1.50
3.4
.77
92 | 67.8
2.26
4.4
1.4
134 | 34.64
1.12
1.4
.89
69 | 39.9
1.29
1.3
1.2 | 45.9
1.58
1.8
1.3
91 | 88.0
2.84
6.8
1.8
175 | 680.1
22.7
41
4.0
1350 | 1548
49.9
156
22
3070 | 284.64
9.49
26
.79
565 | 2.28
.074
.72
.00
4.5 | 0.0
.00
.00 | 20.12
.67
1.8
.00
40 | CAL YR 1987 TOTAL 4250.29 MEAN 11.6 MAX 113 MIN .01 AC-FT 8430 WTR YR 1988 TOTAL 2857.81 MEAN 7.81 MAX 156 MIN .00 AC-FT 5670 ### 09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--December 1985 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |----------|-----------|--|---|--|---
--|---|---|---|---|---| | | 8 | 1250 | 1.8 | 370 | 8.4 | 12.0 | 9.2 | 130 | 35 | 11 | 31 | | | 1 | 1330 | 27 | 183 | 8.3 | 6.5 | 8.4 | 69 | 19 | 5.3 | 12 | | SEP
1 | 3 | 1545 | 1.5 | 391 | 8.2 | 14.0 | 7 - 4 | 98 | 23 | 9.8 | 30 | | | DATE | A
Sor | D- SI
P- DI
ON SOL | VED (MG | TY SULF
B DIS
5/L SOL | DIS
VED SOL | DE, RID
- DI
VED SOL | E, DIS
S- SOL
VED (MO
/L AS | CONS
VED TUEN
L/L DI
SOL | OF SOLI | S-
VED
NS
R | | | OCT
28 | | 1 2 | .0 164 | 33 | . 7 | .8 0 | .2 15 | ; | 233 0 | .32 | | | APR
21 | | 0.7 1 | .4 75 | 24 | . 3 | .3 0 | .2 12 | | 122 0 | . 17 | | | SEP
13 | | 1 1 | .4 165 | 41 | 7 | .7 0 | .2 10 | | 222 0 | .30 | | | DATE OCT | SOL
(TO
PE
DA | S- GE
VED NO2+
NS TOT | N, NO2+
NO3 DI
AL SOL
/L (MG
N) AS | N, NIT NO3 GE S- AMMO VED TOT I/L (MG N) AS 1 0. 1 0. | N, GE NIA ORGA AL TOT C/L (MG N) AS | AL TOT (MG N) AS <0 | AM- A + PHC NIC PHOR AL TOT /L (MC N) AS | OUS ORT TOT AL TOT (MG P) AS | CARBHO, ORGA AL TOT A/L (MG P) AS 03 5 | NIC
AL
/L
C) | | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ANTI-
MONY,
TOTAL
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | | | в | 480 | <1 | 1 | <100 | <10 | <1 | < 1 | 1 | 2 | 850 | | APR
2 | 1 | 8900 | <1 | 1 | 100 | <10 | <1 | 13 | 4 | 12 | 10000 | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | MANGA - NESE, TOTAL RECOV - ERABLE (UG/L AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | STRON -
TIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | | в | < 5 | 10 | 120 | <0.1 | <1 | <1 | 2 | <1 | 350 | <10 | | APR
2 | 1 | < 5 | 10 | 230 | <0.1 | <1 | 13 | <1 | <1 | 220 | 40 | GREEN RIVER BASIN # 09246920 FORTIFICATION CREEK NEAR FORTIFICATION, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------|------|---|--|--------------------------------------|------|------|---|--|--------------------------------------| | OCT | | | | | MA R | | | | | | 06 | 0900 | 0.66 | 538 | | 18 | 1145 | 2.9 | 445 | 0.5 | | NOV | | | | | APR | | | | | | 11 | 1130 | 2.0 | 412 | 4.5 | 07 | 1206 | 17 | 415 | 6.0 | | DE C | | | | | MA Y | | | _ | | | 14 | 1600 | 0.89 | 493 | 0.0 | 27 | 1500 | 36 | 98 | 10.0 | | JAN | | | | | J UN | | | | | | 19 | 1313 | 1.2 | 500 | 0.0 | 15 | 1425 | 7.1 | 165 | 23.5 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-------------------|--------------|---|--|--|---| | 0 CT
28
APR | 1250 | 1.8 | 32 | 0.16 | | | 07
21
SEP | 1206
1330 | 17
27 | 721
499 | 33
36 | 85
67 | | 13 | 1545 | 1.5 | 119 | 0.49 | 88 | #### 09247600 YAMPA RIVER BELOW CRAIG, CO. LOCATION.--Lat 40°28'51", long 107°36'49", in SW4NW4 sec. 16, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank 0.5 mi downstream from state highway 13-789 bridge, and 3.3 mi southwest of Craig. DRAINAGE AREA. -- 1,750 mi² PERIOD OF RECORD .-- June 1975 to September 1980 (discharge measurements only), October 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 15-25, 27-28, Dec. 1-13, and Dec. 17 to Mar. 31. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions for irrigation, transbasin diversion, storage reservoirs, and return flow from irrigated areas. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,300 ft³/s, May 6, 1985, gage height, 9.68 ft; minimum daily, 1.3 ft³/s, Sept. 1, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,890 ft³/s at 2230 May 19, gage height, 8.82 ft; minimum daily, 1.3 ft³/s, Sept. 1. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEA
EAN VALUES | R OCTOBER | 1987 T | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|--|--|------------------------------------|--|--------------------------------------|--|--|--|----------------------------------|-------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 116
116
120
122
109 | 297
301
334
331
308 | 180
180
170
165
165 | 175
180
180
185
190 | 185
190
185
185
190 | 225
225
220
215
215 | 452
505
689
1050
1050 | 3680
3720
3030
2650
2750 | 4420
3760
4030
4970
6010 | 1430
1170
1030
957
934 | 241
240
244
223
218 | 1.3
4.2
9.6
6.2 | | 6
7
8
9 | 97
84
114
127
131 | 309
304
309
299
269 | 160
160
150
145
140 | 195
190
185
185 | 190
190
190
190
185 | 220
220
210
210
210 | 1100
1260
1630
1350
1070 | 3310
3060
2410
2240
2170 | 6510
6460
6370
6070
5650 | 863
778
695
612
542 | 226
217
224
218
181 | 37
42
17
11
23 | | 11
12
13
14
15 | 109
108
115
127
159 | 280
301
299
314
290 | 140
140
135
134
111 | 180
180
190
185
185 | 190
190
195
200
205 | 215
205
200
200
205 | 978
1290
2000
2800
3730 | 2270
2770
3760
4890
5710 | 5570
4940
4450
3960
3800 | 521
518
509
468
434 | 164
152
144
150
152 | 35
71
150
203
187 | | 16
17
18
19
20 | 202
214
195
173
169 | 290
220
195
180
190 | 107
110
115
120
125 | 185
190
185
185
180 | 210
210
205
200
205 | 210
215
220
230
220 | 4350
5210
4540
4500
4750 | 6010
6400
7290
8600
7960 | 3650
3650
3410
3460
3410 | 408
388
368
337
324 | 147
159
149
146
148 | 166
196
176
180
168 | | 21
22
23
24
25 | 192
192
201
221
268 | 200
200
195
190
190 | 130
135
145
150
150 | 180
180
180
190
195 | 210
205
205
210
210 | 210
200
210
215
210 | 4440
3940
3180
2540
2250 | 5730
4500
3930
3980
4570 | 3310
3060
2920
2580
2260 | 302
276
265
246
244 | 134
137
135
133
109 | 169
165
171
176
167 | | 26
27
28
29
30
31 | 335
313
286
264
257
280 | 195
195
190
184
186 | 150
155
160
160
170
170 | 190
190
190
190
190
190 | 215
215
220
220 | 230
250
290
280
320
390 | 2310
1980
1880
1990
2540 | 4950
5160
5450
5890
6210
5640 | 2110
1860
1700
1770
1780 | 217
204
220
245
273
256 | 92
90
79
65
53
11 | 169
179
192
193
204 | | TOTAL
MEAN
MAX
MIN
AC-FT | 5516
178
335
84
10940 | 7545
251
334
180
14970 | 4527
146
180
107
8980 | 5760
186
195
175
11420 | 5800
200
220
185
11500 | 7095
229
390
200
14070 | 2378
5210
452 | 140690
4538
8600
2170
279100 | 117900
3930
6510
1700
233900 | 16034
517
1430
204
31800 | 4781
154
244
11
9480 | 3487.3
116
204
1.3
6920 | CAL YR 1987 TOTAL 287985 MEAN 789 MAX 4410 MIN 84 AC-FT 571200 WTR YR 1988 TOTAL 390489.3 MEAN 1067 MAX 8600 MIN 1.3 AC-FT 774500 #### 09249750 WILLIAMS FORK RIVER AT MOUTH NEAR HAMILTON, CO. LOCATION.--Lat 40°26'14",
Long 107°38'50", in SE4NW4 sec.31, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank at coal mine service road crossing, 2,300 ft upstream from confluence with Yampa River, and 6.1 mi north-northeast of Hamilton, Co. DRAINAGE AREA . - 419 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1984 to current year. GAGE.--Water stage recorder. Elevation of gage is 6,170 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge 4,750 ft³/s, May 16, 1984, gage height, 9.96 ft; minimum daily, 15 ft³/s, Aug. 31, 1988. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*): | Date | Time | Discharge (ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|--------------------------------|---------------------|----------|-------------|----------------------|---------------------| | May 18 | 1030 | *1,930 | *6.90 | No other | peak greate | r than base disc | charge. | Minimum daily, 15 ft³/s, Aug. 31. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------------|-----------------------------------|---|--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 46 | 65 | 55 | 55 | 61 | 67 | 95 | 644 | 661 | 223 | 64 | 17 | | 2 | 45 | 70 | 61 | 58 | 60 | 70 | 95 | 586 | 601 | 193 | 64 | 20 | | 3 | 45 | 83 | 66 | 58 | 60 | 72 | 116 | 480 | 738 | 171 | 62 | 21 | | 4 | 45 | 75 | 65 | 58 | 60 | 74 | 153 | 465 | 880 | 167 | 71 | 21 | | 5 | 44 | 67 | 70 | 57 | 58 | 70 | 164 | 473 | 1010 | 175 | 77 | 19 | | 6 | 44 | 65 | 75 | 55 | 55 | 62 | 160 | 614 | 1030 | 156 | 65 | 19 | | 7 | 44 | 68 | 69 | 54 | 54 | 73 | 174 | 577 | 995 | 144 | 64 | 20 | | 8 | 44 | 68 | 64 | 55 | 56 | 66 | 233 | 535 | 933 | 130 | 66 | 19 | | 9 | 43 | 67 | 63 | 56 | 57 | 61 | 217 | 523 | 850 | 118 | 63 | 19 | | 10 | 44 | 62 | 70 | 58 | 58 | 71 | 177 | 476 | 840 | 107 | 55 | 18 | | 11 | 44 | 63 | 75 | 61 | 57 | 73 | 164 | 503 | 833 | 103 | 50 | 22 | | 12 | 45 | 68 | 60 | 59 | 57 | 66 | 189 | 685 | 709 | 100 | 47 | 63 | | 13 | 45 | 72 | 51 | 58 | 58 | 55 | 259 | 983 | 674 | 95 | 47 | 104 | | 14 | 51 | 79 | 41 | 58 | 57 | 54 | 320 | 1330 | 589 | 88 | 47 | 89 | | 15 | 58 | 86 | 41 | 58 | 56 | 56 | 342 | 1490 | 554 | 83 | 43 | 69 | | 16 | 60 | 71 | 42 | 60 | 57 | 64 | 361 | 1470 | 518 | 77 | 39 | 55 | | 17 | 57 | 57 | 45 | 63 | 58 | 62 | 442 | 1560 | 496 | 74 | 42 | 54 | | 18 | 54 | 49 | 49 | 63 | 56 | 57 | 435 | 1740 | 469 | 70 | 41 | 53 | | 19 | 54 | 52 | 55 | 62 | 53 | 55 | 480 | 1730 | 440 | 66 | 40 | 52 | | 20 | 52 | 62 | 57 | 64 | 52 | 67 | 531 | 1320 | 431 | 61 | 37 | 44 | | 21 | 48 | 67 | 57 | 62 | 54 | 82 | 558 | 920 | 403 | 61 | 33 | 44 | | 22 | 47 | 73 | 57 | 60 | 55 | 106 | 510 | 748 | 379 | 58 | 39 | 45 | | 23 | 50 | 77 | 56 | 60 | 56 | 110 | 418 | 687 | 374 | 55 | 40 | 50 | | 24 | 52 | 71 | 56 | 61 | 55 | 106 | 362 | 810 | 342 | 53 | 35 | 49 | | 25 | 65 | 59 | 56 | 61 | 53 | 91 | 331 | 952 | 300 | 54 | 33 | 44 | | 26
27
28
29
30
31 | 74
64
58
55
60
65 | 74
73
54
58
58 | 54
55
55
56
56 | 61
60
61
61
61 | 54
54
57
60 | 90
123
160
126
112
101 | 312
316
309
342
442 | 930
932
1060
1120
1030
819 | 276
298
277
320
276 | 53
56
60
62
68
66 | 31
27
28
26
19
15 | 42
42
42
44
45 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1602
51.7
74
43
3180 | 67.1 5
86
49 | 1787
57.6
75
41
8540 | 1839
59•3
64
54
3650 | 1638
56.5
61
52
3250 | 2502
80.7
160
54
4960 | 9007
300
558
95
17870 | 28192
909
1740
465
55920 | 17496
583
1030
276
34700 | 3047
98.3
223
53
6040 | 1410
45.5
77
15
2800 | 1245
41.5
104
17
2470 | CAL YR 1987 TOTAL 62353 MEAN 171 MAX 1130 MIN 41 AC-FT 123700 WTR YR 1988 TOTAL 71778 MEAN 196 MAX 1740 MIN 15 AC-FT 142400 #### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1975 to September 1980, December 1985 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | |--|--|---|---|---|--|--|---|---|---| | OCT 28 | 1520 | 57 | 657 | 8.7 | 9.0 | 10.4 | 300 | 60 | 37 | | APR
21 | 1110 | 598 | 366 | 8.4 | 7.5 | 9.6 | 170 | 39 | 17 | | AUG
04 | 1017 | 70 | 567 | 8.5 | 20.5 | 6.1 | 240 | 48 | 29 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) |
SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT 28 | 26 | 0.7 | 2.0 | 189 | 160 | 7.2 | 0.2 | 11 | 417 | | APR
21
AUG | 11 | 0.4 | 1.7 | 129 | 67 | 2.6 | 0.2 | 11 | 227 | | 04 | 30 | 0.9 | 1.9 | 185 | 120 | 5.1 | 0.2 | 10 | 355 | | OCT
28.
APR
21.
AUG
04. | E SC (T P AC | DIS- D
DLVED SO
ONS (T
ER P
C-FT) D | IDS, GIS- NIT LVED DONS SO (MAY) AS | EN, CORRITE NO2 IS- E ILVED SG (G/L (M. N) AS .01 <0 | HEN, COMMINSTANCE OF THE PROPERTY PROPE | GEN, GEN, MONIA MO | ÍA + PHO ANIC E S. SO G/L (M N) AS | OS - PHO | VED
/L | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | | 21 | 14000 | 3 | 100 | <10 | 1 | 20 | 9 | 26 | 10 | | D <i>i</i>
APR
21 | TO
RE
ER
ATE (U
AS | HIUM NE: TAL TO COV - RE ABLE ER G/L (U | TAL TO
COV- RE
ABLE ER
G/L (U
MN) AS | CURY DE
TAL TO
COV- RE
ABLE ER
G/L (U | TAL TO
COV- RE
ABLE ER | EKEL, TAL SEI COV- NIC ABLE TOT G/L (UC NI) AS | JE- TO
JM, RE
JAL ER
J/L (U | ABLE TO
G/L (M
ZN) AS | NIDE
TAL
G/L
CN) | GREEN RIVER BASIN # 09249750 WILLIAMS FORK AT MOUTH NEAR HAMILTON, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------|------|---|---|--------------------------------------|------|------|---|--|--------------------------------------| | OCT | | | | | MA Y | | | | | | 08 | 1330 | 45 | 720 | 12.0 | 23 | 0945 | 701 | 294 | 11.0 | | 27 | 1230 | 60 | 650 | 9.0 | JUN | | | | | | NOV | | | | | 16 | 1005 | 510 | 235 | 16.0 | | 19 | 1300 | 52 | 894 | 0.5 | JUL | | | | | | JAN | | | | | 22 | 1345 | 55 | 365 | 24.0 | | 20 | 1045 | 62 | 405 | 0.5 | AUG | | | | | | MAR | | | | | 18 | 1100 | 41 | 584 | 23.5 | | 18 | 1515 | 60 | 698 | 4.0 | 31 | 1439 | 12 | 758 | 24.0 | | APR | | | | | SEP | | | | | | 20 | 1101 | 571 | 382 | 9.5 | 08 | 1320 | 19 | 569 | 20.5 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED. SUSP. SIEVE DIAM. FINER THAN .062 MM | |------------------|------|---|--|--|---| | OCT
28
APR | 1520 | 57 | 361 | 56 | | | 21 | 1110 | 598 | 5100 | 8230 | 20 | 09250507 WILSON CREEK ABOVE TAYLOR CREEK, NEAR AXIAL, CO LOCATION.--Lat 40°18'53", long 107°47'58", in NWdSW4 sec.14, T.4 N., R.93 W., Moffatt County, Hydrologic Unit 14050002, on left bank about 200 ft upstream from Moffat County Road 17, about 50 ft upstream from confluence of Taylor Creek, and 2.4 mi north of Axial. DRAINAGE AREA .-- 20.0 mi2. PERIOD OF RECORD. -- October 1980 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,315 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 16 to March 29, June 13 to July 15, and Sept. 6-14. Records fair. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 8 years, 6.15 ft 3/s; 4,460 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 352 ft³/s, May 14, 1984, gage height, 8.71 ft, on basis of indirect measurement of peak flow; minimum daily, 0.12 ft³/s, July 20, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 19 ft³/s at 0030 May 19, gage height, 2.04 ft; minimum daily, 0.12 ft³/s, July 20. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, | WATER YE
IEAN VALUE | AR OCTOBE | R 1987 TC | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|--|-----------------------------------|--|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------| | DAY | OCT | vov | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.1
1.1
1.1
1.1 | 1.6
1.7
1.5
1.4 | 1.1
1.1
1.2
1.1 | .88
.90
.92
.90 | 1.0
1.1
1.1
1.1 | 1.0
1.0
1.1
1.1 | 2.9
2.9
2.8
2.5
2.1 | 14
13
13
13
12 | 4.3
3.7
3.4
3.3
3.0 | .50
.43
.48
.54 | 1.2
1.1
1.2
1.2
.75 | 1.1
.95
.97
.75 | | 6
7
8
9
10 | 1.1
1.2
1.1
1.1 | 1.7
1.7
1.7
1.9
2.0 | 1.0
1.0
1.0
.90 | .90
.90
.90
.90 | 1.2
1.3
1.2
1.2 | 1.0
1.0
1.0
1.0 | 2.2
2.3
2.3
2.6 | 14
13
14
13 | 2.6
2.7
3.0
2.6
2.7 | .52
.56
.61
.58
.78 | .71
1.2
.70
.50 | .94
.88
.86
.90 | | 11
12
13
14
15 | 1.1
1.1
1.2
1.3 | 1.8
2.3
1.5
1.7 | .90
.80
.80
.80 | .92
.92
.92
.94 | 1.2
1.1
1.1
1.1 | 1.0
.98
.98
.98 | 3.1
2.9
2.9
2.1
2.9 | 12
12
13
13 | 2.6
1.4
.64
.54 | 1.0
1.2
1.1
.60 | .68
.56
.52
.44
.51 | .98
1.1
.96
1.0 | | 16
17
18
19
20 | 1.1
1.1
1.2
1.1 | 1.9
1.8
1.6
1.5 | .75
.75
.75
.80 | .96
.98
1.0
.98 | 1.1
1.0
1.0
1.0 | 1.0
1.0
1.0
1.1 | 3.5
3.8
3.8
6.2
8.1 | 10
11
15
15
12 | .30
.28
.30
.29
.66 | .26
.19
.16
.13 | .50
.60
.64
.88 | 1.0
1.1
1.0
1.1 | | 21
22
23
24
25 | 1.6
1.1
1.1
1.2
1.5 | 1.4
1.3
1.3
1.4 | .75
.80
.90
.90 | 1.1
1.0
1.0
1.0 | 1.0
1.0
.98
.98 | 1.3
1.5
1.4
1.3 | 9.1
10
9.6
9.3
9.8 | 9.2
8.9
7.2
6.6
6.4 | .30
.32
.30
.28
.50 | .25
.26
.23
.34
.55 | 1.2
1.1
1.1
.88
.56 | 1.2
1.3
1.2
1.2 | | 26
27
28
29
30
31 | 1.3
1.3
1.2
1.3
1.4 | 1.2
1.2
1.2
1.1
1.1 | .90
.90
.95
.95
.90 | .98
1.0
1.0
1.1
1.0 | 1.0
1.0
1.0
1.0 | 1.3
1.5
1.8
2.2
2.7
3.1 | 9.0
8.7
8.8
9.8
12 | 6.3
5.7
5.2
5.2
5.3
5.0 | .40
.66
1.1
1.0
.70 | .68
.66
.84
.86 | 1.1
1.2
1.2
1.2
.93 | 1.4
.90
1.4
1.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 37.3
1.20
1.6
1.0
74 | 46.5
1.55
2.3
1.1
92 | 28.00
.90
1.2
.70
56 | 29.72
.96
1.1
.88
59 | 31.24
1.08
1.3
.98
62 | 39.74
1.28
3.1
.98
79 | 168.0
5.60
12
2.1
333 | 327.0
10.5
15
5.0
649 | 44.43
1.48
4.3
.28
88 | 17.11
.55
1.2
.12
34 | 27.05
.87
1.2
.44
54 | 32.02
1.07
1.4
.75
64 | CAL YR 1987 TOTAL 1449.64 MEAN 3.97 MAX 38 MIN .40 AC-FT 2880 WTR YR 1988 TOTAL 828.11 MEAN 2.26 MAX 15 MIN .12 AC-FT 1640 LOCATION.--Lat 40°18'48", long 107°47'57", in NW4SW4 sec.14, T.4 N., R.93 W., Moffatt County, Hydrologic Unit 14050002, on right bank 475 ft upstream from confluence with Wilson Creek, about 1,000 ft southwest of Gossard ranch house, and 2 mi north of Axial. DRAINAGE AREA . -- 7.22 mi2. REVISED RECORDS. -- WDR CO-87-2; 1986 (M). PERIOD OF RECORD.--Streamflow records, July 1975 to current year. Water-quality data available, July 1975 to September 1981. GAGE.--Water-stage recorder. Elevation of gage is 6,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 28, 1980, gage 25 ft upstream at datum 1.00 ft, higher, Mar. 28, 1980 to Apr. 1, 1985 at same site at datum 1.08 ft, higher, Apr. 1, 1985 to Sept. 17, 1986 at same site at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Nov. 14 to Dec. 10, Dec. 16 to Mar. 21, and Apr. 27 to May 23. Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Low dam to prevent erosion, 75 ft upstream. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 13 years, 0.63 ft3/s; 456 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41 ft³/s, May 15, 1984, gage height, 3.33 ft, present datum; no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3.7 ft³/s at 1200 May 24, gage height,
1.93 ft; no flow many days. | DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | DISCHARG | E, CUBIC | C FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|-------|------|----------|----------|------------|---------|--------------------------|---------|---------|-----------|------|------|------| | 2 | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 3 | 1 | .00 | .09 | .04 | .00 | .00 | .00 | .28 | .05 | .35 | - 14 | .26 | .00 | | 3 | 2 | .00 | .10 | .04 | .00 | .00 | .00 | .27 | .06 | .31 | .19 | .23 | .00 | | 4 00 00 00 03 00 00 00 00 025 13 30 029 37 099 5 000 000 03 000 000 000 225 113 30 29 37 099 6 000 000 000 000 000 22 116 26 29 277 15 7 000 000 002 000 000 000 20 113 24 26 54 54 002 8 000 009 02 000 000 000 18 11 19 000 02 03 11 000 004 001 000 000 000 113 13 02 33 14 015 11 000 04 00 000 000 000 113 13 02 033 14 015 11 000 04 000 000 000 000 113 19 002 33 14 005 11 000 07 000 000 000 000 113 19 002 45 08 48 13 000 07 000 000 000 000 113 19 003 33 06 322 14 221 07 000 000 000 000 12 14 003 33 06 322 14 21 07 000 000 000 000 000 12 14 03 33 06 322 17 000 07 08 000 000 000 000 12 14 03 33 06 322 17 000 07 08 000 000 000 000 12 14 03 33 06 322 17 000 07 000 000 000 000 100 12 14 03 03 13 06 322 17 000 07 08 000 000 000 000 10 23 000 27 08 13 16 08 08 08 05 000 00 00 00 10 23 000 27 08 13 16 08 08 08 05 00 00 00 00 10 23 000 27 08 13 17 000 07 06 000 00 00 00 08 17 01 32 09 02 04 18 000 07 00 000 000 000 00 10 12 14 003 33 00 22 05 08 18 000 07 00 000 00 00 00 00 10 23 00 02 02 04 19 000 066 000 000 000 000 000 10 16 01 32 09 02 04 19 000 066 000 000 000 000 000 000 000 00 | 3 | .00 | .01 | .04 | .00 | .00 | .00 | .27 | .08 | .30 | .26 | .22 | | | 5 .00 .00 .03 .00 .00 .00 .00 .24 .30 .27 .31 .20 .33 66 .00 .02 .03 .00 .00 .00 .00 .22 .16 .26 .29 .27 .15 7 .00 .00 .00 .02 .00 .00 .00 .20 .13 .24 .26 .54 .02 8 .00 .09 .02 .00 .00 .00 .18 .19 .14 .33 .31 .01 9 .00 .07 .02 .00 .00 .00 .15 .15 .02 .32 .16 .10 10 .00 .04 .01 .00 .00 .00 .13 .13 .02 .33 .14 .05 11 .00 .04 .00 .00 .00 .00 .13 .19 .02 .33 .14 .05 11 .00 .04 .00 .00 .00 .00 .13 .19 .02 .45 .08 .48 13 .00 .07 .00 .00 .00 .00 .13 .19 .02 .45 .08 .48 13 .00 .07 .00 .00 .00 .00 .12 .14 .03 .33 .06 .32 14 .21 .07 .00 .00 .00 .00 .00 .12 .14 .03 .33 .06 .32 14 .21 .07 .00 .00 .00 .00 .00 .12 .22 .02 .03 .21 .11 .13 15 .37 .08 .00 .00 .00 .00 .00 .10 .23 .00 .27 .08 .13 16 .08 .08 .08 .05 .00 .00 .00 .00 .10 .16 .01 .32 .19 .12 17 .00 .07 .06 .00 .00 .00 .00 .08 .17 .01 .32 .19 .12 18 .00 .07 .06 .00 .00 .00 .00 .08 .17 .01 .32 .05 .08 19 .00 .06 .00 .00 .00 .00 .00 .00 .38 .17 .01 .32 .05 .08 19 .00 .06 .00 .00 .00 .00 .00 .38 .17 .01 .32 .05 .08 19 .00 .06 .00 .00 .00 .00 .00 .38 .17 .01 .32 .05 .08 22 .00 .07 .00 .00 .00 .00 .00 .38 .36 .04 .00 .02 .05 20 .00 .06 .00 .00 .00 .00 .00 .38 .36 .04 .00 .02 .05 20 .00 .06 .00 .00 .00 .00 .30 .33 .00 .27 .00 .00 21 .00 .06 .00 .00 .00 .00 .35 .47 .11 .00 .02 .05 22 .00 .07 .00 .00 .00 .00 .00 .35 .47 .11 .00 .02 .05 23 .00 .07 .00 .00 .00 .00 .00 .35 .47 .11 .00 .02 .05 24 .00 .07 .00 .00 .00 .00 .00 .35 .47 .11 .00 .00 .00 .00 24 .00 .07 .00 .00 .00 .00 .00 .35 .47 .11 .00 .00 .00 .00 25 .05 .06 .00 .00 .00 .00 .35 .47 .11 .00 .00 .00 .00 26 .03 .06 .00 .00 .00 .00 .34 .48 .48 .36 .00 .00 .00 .00 27 .00 .06 .00 .00 .00 .00 .35 .47 .11 .00 .00 .00 .00 28 .00 .07 .00 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 30 .00 .05 .00 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 31 .0000 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 31 .0000 .00 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 31 .0000 .00 .00 .00 .00 .35 .00 .35 .45 .54 .48 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | 4 | .00 | .00 | .03 | .00 | .00 | .00 | .25 | .13 | .30 | .29 | •37 | .09 | | 7 | 5 | | | | | | | | | .27 | | | •33 | | \$\begin{array}{cccccccccccccccccccccccccccccccccccc | | .00 | .02 | .03 | .00 | .00 | .00 | | | | | | | | 9 | 7 | .00 | .00 | | .00 | .00 | | | | | | | | | 10 | | | | | | | | | | | | | | | 11 | 9 | | | | | | | .15 | .15 | | | | | | 12 | 10 | .00 | .04 | .01 | .00 | .00 | .00 | .13 | .13 | .02 | •33 | . 14 | .05 | | 13 | | | | | | | | | | | | | . 34 | | 1 | | | | | | | | | | | •45 | .08 | .48 | | 15 | | | | | | | | | | | | | | | 16 | | | | .00 | | | .00 | | | | | | | | 17 | 15 | • 37 | .08 | .00 | .00 | .00 | .00 | .10 | .23 | .00 | .27 | .08 | .13 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | •32 | | | | 20 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | 22 | 20 | .00 | .06 | .00 | .00 | .00 | .20 | .05 | .47 | .11 | .00 | .02 | .04 | | 23 | | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 26 .03 .06 .00 .00 .00 .55 .15 .44 .08 .00 .00 .01 .27 .00 .06 .00 .00 .00 .46 .10 .43 .17 .05 .09 .01 .28 .00 .05 .00 .00 .00 .35 .09 .40 .32 .19 .03 .00 .29 .00 .05 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 .30 .00 .05 .00 .00 .00 .00 .33 .08 .39 .27 .40 .01 .03 .30 .00 .05 .00 .00 .00 .00 .00 .00 .16 .31 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | | | | | | | .70 | | | | | | | | 26 | 25 | | .06 | .00 | .00 | .00 | .65 | .28 | •45 | .10 | .11 | .00 | .01 | | 27 | 26 | | .06 | .00 | .00 | .00 | •55 | .15 | . 44 | .08 | .00 | .00 | | | 28 | 27 | | .06 | .00 | .00 | .00 | | .10 | .43 | . 17 | •05 | .09 | | | 29 | | | | .00 | | .00 | | .09 | .40 | • 32 | .19 | •03 | .00 | | 30 | 29 | | | | | | .33 | .08 | .39 | .27 | .40 | .01 | .03 | | 31 .0000 .00334031 .00 TOTAL 0.74 1.71 0.39 0.00 0.00 5.60 4.35 8.73 3.77 6.89 3.60 2.82 MEAN .024 .057 .013 .00 .00 .18 .14 .28 .13 .22 .12 .094 MAX .37 .10 .06 .00 .00 .71 .28 .60 .35 .45 .54 .48 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | | | | | | | | .07 | | | .30 | .00 | .16 | | MEAN .024 .057 .013 .00 .00 .18 .14 .28 .13 .22 .12 .094 MAX .37 .10 .06 .00 .00 .71 .28 .60 .35 .45 .54 .48 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | 31 | | | | | | •33 | | .40 | | •31 | .00 | | | MEAN .024 .057 .013 .00 .00 .18 .14 .28 .13 .22 .12 .094 MAX .37 .10 .06 .00 .00 .71 .28 .60 .35 .45 .54 .48 MIN .00 .00 .00 .00 .00 .00 .00 .00 .00 .0 | TOTAL | 0.74 | 1.71 | 0.39 | 0.00 | 0.00 | 5.60 | 4.35 | 8.73 | 3.77 | 6.89 | | | | MAX .37 .10 .06 .00 .00 .71 .28 .60 .35 .45 .54 .48 MIN .00 .00 .00 .00 .00 .00 .05 .05 .00 .00 | | | | | | | | | | | .22 | .12 | .094 | | MIN .00 .00 .00 .00 .00 .05 .05 .00 .00 .00 | | | | | | | | | | | | • 54 | . 48 | | | | | | | | | | | | | | .00 | .00 | | | AC-FT | | | | | | | | | 7.5 | 14 | 7.1 | 5.6 | CAL YR 1987 TOTAL 205.19 MEAN .56 MAX 3.2 MIN .00 AC-FT 407 WTR YR 1988 TOTAL 38.60 MEAN .11 MAX .71 MIN .00 AC-FT 77 #### 09251000 YAMPA RIVER NEAR MAYBELL, CO LOCATION.--Lat 40°30'10", long 108°01'45", in NW4 sec.2, T.6 N., R.95 W., Moffat County, Hydrologic Unit 14050002, on left bank 100 ft downstream from bridge on U.S. Highway 40, 2.0 mi downstream from Lay Creek, and 3.0 mi east of Maybell. DRAINAGE AREA. -- 3,410 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1904 to October 1905, June 1910 to November 1912, April 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. No winter records prior to 1917. GAGE.--Water-stage recorder. Datum of gage is 5,900.23 ft above National Geodetic Vertical Datum of 1929. See WSP 1733 for history of changes prior to Mar. 9, 1937. REMARKS.--Estimated daily discharges: Nov. 14-Mar. 31, July 25-29. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs, and diversions upstream from station for irrigation of about 65,000 acres upstream from, and about 800 acres downstream from station. AVERAGE DISCHARGE.--72 years (water years 1917-88), 1,584 ft³/s; 1,148,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,100 ft³/s, May 17, 1984, gage height, 12.42 ft; minimum daily, 2.0 ft³/s, July 17-19, 1934. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 7,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage
height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | |------------------|--------------|----------------------|---------------------|--------|------|-----------------------------------|------------------| | May 19
May 31 | 1400
0500 | *10,200
7,320 | *8.46
7.24 | June 8 | 0330 | 7,450 | 7.30 | Minimum daily discharge, 37 ft³/s, Sept. 3-7, 10-12. | | | DISCHARGE, | , CUBIC | FEET PER | | WATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|------------------------------------|--|--------------------------------------|--|--|--|------------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 140
137
136
140
141 | 369
402
403
434
425 | 200
190
190
180
170 | 185
190
190
190
200 | 240
240
240
250
240 | 320
330
340
340
330 | 708
695
798
1160
1490 | 3830
4700
3980
3440
3320 | 5370
4590
4430
5250
6390 | 1980
1630
1380
1260
1210 | 283
275
262
268
269 | 54
39
37
37
37 | | 6
7
8
9
10 | 143
128
117
128
165 | 405
393
394
398
379 | 170
170
160
160
150 | 210
215
215
215
220 | 230
230
230
225
220 | 320
300
290
300
320 | 1450
1490
1880
2040
1560 | 3680
4130
3370
3070
2880 | 7250
7130
7100
6820
6430 | 1170
1070
958
831
731 | 262
264
266
261
259 | 37
37
44
49
37 | | 11
12
13
14
15 | 176
174
167
173 | 364
371
390
370
350 | 150
150
140
140
140 | 230
230
230
240
230 | 220
220
225
230
230 | 350
330
320
320
330 | 1280
1350
2020
2870
3640 | 2920
3310
4380
5760
7000 | 6130
5800
4980
4630
4240 | 664
621
618
579
520 | 221
189
167
153
160 | 37
37
69
236
318 | | 16
17
18
19
20 | 212
264
272
265
250 | 340
290
210
215
220 | 130
135
140
140
145 | 230
230
230
235
230 | 235
240
245
240
235 | 320
330
320
310
300 | 4250
4850
5140
4550
5120 | 7210
7650
8350
9800
9590 | 4130
3980
3880
3660
3730 | 474
447
419
377
332 | 182
170
174
170
160 | 291
245
237
232
230 | | 21
22
23
24
25 | 238
253
257
262
322 | 230
230
220
220
220 | 150
150
160
160
160 | 230
225
225
230
230 | 240
245
240
235
240 | 300
300
310
320
340 | 4850
4730
4020
3300
2890 | 7430
5680
4860
4660
5120 | 3620
3490
3300
3110
2750 | 321
299
289
269
261 | 163
153
146
152
142 | 214
222
222
220
227 | | 26
27
28
29
30
31 | 365
424
386
353
336
341 | 225
225
230
220
215 | 165
170
175
180
180
180 | 240
230
230
230
235
240 | 250
260
280
300 | 380
420
500
440
400
450 | 2850
2630
2420
2450
2760 | 5730
5820
6270
6610
6930
6850 | 2480
2360
2520
2200
2240 | 260
260
260
251
252
280 | 128
113
96
83
73
65 | 213
208
214
227
238 | | TOTAL
MEAN
MAX
MIN
AC-FT | 7055
228
424
117
13990 | 312
434
210 | 1980
161
200
130
9880 | 6890
222
240
185
13670 | 6955
240
300
220
13800 | 341
500
290 | 2708
5140
695 | 168330
5430
9800
2880
333900 | 133990
4466
7250
2200
265800 | 20273
654
1980
251
40210 | 5729
185
283
65
11360 | 4545
151
318
37
9020 | CAL YR 1987 TOTAL 374181 MEAN 1025 MAX 5970 MIN 117 AC-FT 742200 WTR YR 1988 TOTAL 459925 MEAN 1257 MAX 9800 MIN 37 AC-FT 912300 ## 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued (National Stream-Quality Accounting Network Station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1950 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: November 1950 to August 1973, July 1975 to current year. WATER TEMPERATURES: November 1950 to August 1973, July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: December 1950 to May 1958, October 1975 to September 1976, October 1977 to September 1978, October 1981 to September 1982. INSTRUMENTATION: -- Water-quality monitor since July 1975. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,260 microsiemens Nov. 17, 1985; minimum, 89 microsiemens June 27, 1983. WATER TEMPERATURES: Maximum, 33.0°C Aug. 29, 1976; minimum, freezing point on many days during winter months each year. SEDIMENT CONCENTRATIONS: Maximum daily, 6,180 mg/l, Aug. 16, 1981; minimum daily, 1 mg/l, several days during December 1975 to February 1976, Jan. 6, 1980. SEDIMENT LOADS: Maximum daily, 47,100 tons May 9, 1958; minimum daily, 0.04 ton Oct. 2,3, 1982 EXTREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum, 1,190 microsiemens Apr. 2; minimum, 120 microsiemens June 12. WATER TEMPERATURES: Maximum, not determined; minimum, freezing point on many days during winter months. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | ST RE
FLC
INST
TANE
(CF | EAM- COW, CAN- E | SPE-
CIFIC
CON-
DUCT-
INCE
US/CM) | PH
(STAND-
ARD
UNITS) | TEMPE
ATUR
WATE
(DEG | E
R | TUR-
BID-
ITY
'TU) | OXYGEN
DIS-
SOLVEI
(MG/L | FOI
FE
O.7
UM-
D (COI | CAĹ,
7 I
-MF
LS./ | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------------------|--|--|---|--|---|-------------------------------------|---|--|---|--|---|--|---|--|---| | OCT
21 | 1145 | 241 | | 763 | 8.8 | 6 | .5 | 2.8 | 10 | | K2 | 41 | 280 | 54 | 36 | | FEB
09 | 1100 | 246 | | 875 | 8.6 | 0 | .0 | 2.0 | 9.8 | | K 1 | K2 | 340 | 65 | 43 | | MAY
16 | 1100 | 7470 | | | 8.1 | 12 | .0 1 | 150 | 7.3 | | 200 | к8 | 82 | 21 | 7.2 | | AUG
03 | 1100 | 260 | | 429 | 8.2 | 21 | .5 | 4.2 | 7.3 | | 110 | K15 | 160 | 35 | 18 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | A
Sor | AD-
RP-
ION S | OTAS-
SIUM,
DIS-
SOLVED
MG/L
S K) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | CAR-BONATI WATE DIS I FIEL MG/L CO3 | E LI
R WA
T TO
D F
AS MG | LKA-
INITY
IT DIS
OT IT
TIELD
G/L AS
CACO3 | SULFATH
DIS-
SOLVEI
(MG/L
AS SO4 | E RII
DIS
D SOI
(MO | .0-
DE,
S-
LVED
G/L
CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT
21
FEB | 60 | | 2 | 3.0 | 178 | | 17 | 174 | 200 | 2 | 3 | 0.3 | 2.3 | 502 | 482 | | 09
MAY | 63 | | 2 | 3.4 | 230 | | | 190 | 260 | 23 | 2 | 0.3 | 13 | 592 | 591 | | 16
AUG | 8.3 | | 0.4 | 5.0 | 70 | | | 58 | 33 | ; | 3.5 | 0.3 | 9.9 | 128 | 125 | | 03 | 32 | | 1 | 2.5 | 144 | | 5 | 126 | 88 | 1 | 1 | 0.2 | 1.2 | 271 | 264 | | DAT | D:
SOI
(T)
E PI | IDS,
IS-
LVED
ONS
ER
-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | GE
NITR
DI | N, GITE NO2
S- D
VED SO | +NÓ3
IS- A
LVED
G/L | NITRO-
GEN,
MMONIA
TOTAL
(MG/L
AS N) | AMMO | N, NI
NIA ORI
S- ORI
VED TO
/L (I | ITRO-
GEN,
GANIC
OTAL
MG/L
S N) | NITROGEN, AND MONIA ORGANI TOTAL (MG/IAS N) | M-
+ PHO
IC PHOR
TOT
(MG | OUS DI
AL SOL
/L (MG | OUS ORT
S- DIS
VED SOLV
/L (MG/ | OUS
HO,
ED
L | | 0CT
21 | ı | 0.68 | 327 | <0. | 01 <0 | .10 | <0.01 | <0. | 01 | | 0.1 | 4 0. | 01 <0. | 01 <0. | 01 | | FEB
09
MAY | (| 0.81 | 393 | <0. | 01 0 | .84 | 0.17 | 0. | 14 | 0.33 | 0.5 | 5 0. | 07 0. | 04 0. | 03 | | 16
AUG | 1 | 0.17 | 2580 | <0. | 01 <0 | . 10 | 0.11 | 0. | 11 | 0.69 | 0.8 | в о. | 07 0. | 06 <0. | 01 | | 03 | 1 | 0.37 | 190 | <0. | 01 <0 | .10 | 0.06 | 0. | 05 | 0.64 | 0. | 7 0. | 03 0. | 03 0. | 01 | K BASED ON NON-IDEAL COLONY COUNT. | | | WATER | QUALITY D | PATA, WATE | R YEAR O | CTOBER | 1987 TO | SEPTE | MBER 198 | 8 | | | |------------------------------------|--------------------------------------|---
--|---|--|--|---|-----------------------------------|--------------------------------------|---|--|--| | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMI
DIS
SOLV
(UG/
AS (| OM MIN
S- DIS
JED SOI
L (UC | S - | COBALT, DIS- SOLVED (UG/L AS CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON, DIS- SOLVED (UG/L AS FE) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | ОСТ
21 | 1145 | 20 | <1 | 46 | <0.5 | | <1 | 2 | < 3 | 4 | 33 | < 5 | | FEB
09 | 1100 | <10 | <1 | <100 | <0.5 | | <1 | <1 | < 3 | 2 | 12 | < 5 | | MA Y
16 | 1100 | 80 | 1 | 28 | <0.5 | | <1 | 5 | < 3 | 18 | 120 | 6 | | AUG
03 | 1100 | 20 | 1 | 51 | <0.5 | | <1 | 1 | < 3 | 5 | 33 | < 5 | | DATE | D
SO
(U | HIUM NE
IS- I
LVED SO
G/L (U | DIS- D
DLVED SO
JG/L (U | CURY DEI
DIS- DI
DLVED SOI
G/L (U | IS- D
LVED S
G/L (1 | CKEL,
IS-
OLVED
UG/L
S NI) | SELE -
NIUM,
DIS -
SOLVED
(UG/L
AS SE) | SILVI
DI:
SOL'
(UG
AS | ER, T
S- D
VED SO
/L (U | | M, ZIN
S- DI
VED SOL
J/L (UG | S-
VED | | ОСТ
21 | | 40 | 10 | 0.2 | <10 | 2 | 1 | < | 1.0 | 500 | <6 | 5 | | FEB
09 | | 42 | 27 | <0.1 | <10 | <1 | 2 | < | 1.0 | 550 | <6 | <3 | | MAY
16 | | 7 | 11 | <0.1 | <10 | 2 | <1 | < | 1.0 | 150 | < 6 | 6 | | AUG
03 | | 22 | 6 | <0.1 | 10 | 3 | <1 | < | 1.0 | 290 | < 6 | <3 | | | q | เเออะห บะบ | SEDIMENT | DISCHARGE | UATED | AEVB UU | ጥለይፎቹ 10 | 387 ተ በ | GEDTEMB | FR 1088 | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | , WAILA | TEAR OC | | ATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PEN DE D
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | | OCT 21 | 1145 | 241 | 15 | 9.8 | | | JUN
05 | | 0630 | 6270 | 454 | 7680 | | NOV
18 | 1245 | 198 | 23 | 12 | | | 12 | | 0945
0640 | 5910
3720 | 154
88 | 2460
884 | | MAR
06
13
19
28
APR | 1120
1530
1455
0840 | 320
320
1000
833 | 43
36
37
215 | 37
31
100
484 | | | 25
JUL
03
10
22 | • | 0715
0640
0825
0640
1110 | 2900
1390
740
455
314 | 61
70
19
8
13 | 478
263
38
9.8 | | 01
06
13
20
27 | 1505
1540
1735
1305
1545 | 651
1370
2130
4980
2500 | 81
372
247
681
162 | 142
1380
1420
9150
1100 | | | 24 AUG 03 14 | | 1110
0725
1100
1425
1225 | 260
268
158 | 9
35
4 | 6.3
25 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 08... 15... 16... 22... 29... MA Y 221 2010 1190 23000 1070 21600 458 6640 397 6960 03... 07... 14... 23... 24... 11... 17... 27... SEP 03... 1745 1555 1305 1440 1805 268 158 143 154 6.3 25 1.7 1.5 1.7 0.50 0.40 5.8 2.3 5494 | | | | | SEDI - | SED. | |------|------|---------|--------|---------|---------| | | | | | MENT, | SUSP. | | | | STREAM- | SEDI - | DIS- | SIEVE | | | | FLOW, | MENT, | CHARGE, | DIAM. | | | | INSTAN- | SUS- | SUS- | % FINER | | DATE | TIME | TANEOUS | PENDED | PENDED | THAN | | | | (CFS) | (MG/L) | (T/DAY) | .062 MM | | July | | | | | | | 31 | 1050 | 275 | 8 | 5.9 | 64 | 873 814 --- 09251000 YAMPA RIVER NEAR MAYBELL, CO -- Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV MA Y JUL AUG SEP DE C MA R APR JUN JAN FEB 765 804 743 750 203 186 674 818 280 816 816 876 1040 294 753 7 8 1020 644 827 835 994 ---710 708 291 253 535 552 14 948 608 395 17 18 580 576 580 304 195 192 208 654 685 841 1000 425 621 20 762 730 886 22 23 24 744 755 741 779 769 798 901 974 237 238 824 362 158 465 596 595 773 801 616 976 --- --- --- 700 TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |----------------------------------|--|--|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------| | | осто | DBE R | NOVE | EMBE R | DE CE | EMBER | JANU | JARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 16.2
16.5
16.2
15.3
15.8 | 10.2
10.3
10.1
9.8
10.1 | 11.1
10.7
10.2
9.6
9.3 | 9.7
9.3
8.1
7.4
6.9 | .4
.7
1.1
1.0 | .0 | .1
.1
.1
.1 | .0
.0
.0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | | 6
7
8
9 | 15.7
15.5
15.7
14.9
14.0 | 9.8
9.6
9.6
9.1
9.4 | 9.8
8.1
7.9
7.1
5.6 | 8.0
6.8
5.7
4.7
4.4 | 1.0
.9
.5
.2 | .0
.0
.0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | | 11
12
13
14
15 | 13.7
12.3
11.8
10.4
12.5 | 8.7
8.2
10.1
9.3
8.9 |

 |

 | 1.0
.4
.3
.5 | .0
.0
.0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | | 16
17
18
19
20 | 12.1
11.2
9.9
10.0
9.4 | 8.3
7.4
7.5
6.3
5.6 | 1.5
1.1
1.1 | .0 | .2
.2
.1
.2 | .0 | .1
.1
.1
.1 | .0
.0
.0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | | 21
22
23
24
25 | 9.0
9.2
8.5
10.1
11.0 | 5.0
5.2
5.6
7.4
8.3 | .6
.7
.9
1.2 | .0
.0
.0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | .2
.6
1.0
1.2 | .0 | | 26
27
28
29
30
31 | 10.7
10.1
9.2
10.6
9.8
10.9 | 8.0
7.6
6.7
7.5
8.9
8.4 | .6
.4
.4
.7 | .0 | • 1
• 1
• 1
• 1
• 1 | .0 | .1
.1
.1
.1 | .0 | .1
.1
.1
.1 | .0 | 3.0
2.1
2.8
2.0
1.6
4.3 | .0
.1
.4
.0
.9 | | HTNOM | 16.5 | 5.0 | | | 1.1 | .0 | .1 | .0 | .1 | .0 | 4.3 | .0 | | | API | RIL | M. | ΥY | Jı | JNE | JI | JLY | AU | GUST | SEPT | EMBER | | 1
2
3
4
5 | 6.3
8.2
8.9
8.2
7.4 | 1.5
3.7
5.5
6.3
4.3 | 12.3
8.9
8.9
10.0 | 9.1
6.7
5.5
7.2
8.5 | 12.0
13.9
15.5
15.8
15.6 | 9.3
11.1
12.6
14.3
14.1 | 22.2
22.4
22.0
21.1
21.9 | 18.5
18.2
15.0
19.2
18.5 | 23.6
23.4
24.1
24.7
24.8 | 19.7
19.2
19.5
19.8
19.4 | 23.9
23.1
21.9
22.9
22.9 | 16.0
15.6
14.4
13.3
13.4 | | 6
7
8
9
10 | 9.0
10.8
9.4
6.9
7.0 | 4.7
6.5
7.1
5.0
3.2 | 10.6
8.4
8.1
9.6
11.7 | 8.1
6.7
6.9
6.9 | 15.2
14.4
14.5
14.7
14.6 | 13.6
12.1
12.5
12.7
13.3 | 21.4
22.5
 | 18.7
18.4
 | 22.9
22.1
23.3
23.1
23.1 | 20.2
19.0
18.9
17.8
18.2 | 21.0
21.1
21.6
21.5
19.5 | 12.4
12.9
12.5
12.9
15.2 | | 11
12
13
14
15 | 9.2
11.2
11.7
10.2
9.0 | 4.4
6.7
8.5
8.6
7.7 | 13.4
14.6
14.9
13.6
12.9 | 9.6
11.2
11.9
11.8
11.0 | 14.7
14.4
14.4
15.0
16.0 | 13.6
13.0
13.1
12.9
13.4 | 22.7
22.3
23.8
24.7
23.8 | 19.2
19.5
18.5
20.9
20.2 | 23.6
22.1
22.4
23.4
22.8 | 18.3
18.8
17.0
17.0 | 15.5
12.1
15.1
12.7
15.1 | 12.2
11.2
10.3
11.3 | | 16
17
18
19
20 | 8.8
8.3
7.7
9.4
9.3 | 7.3
7.4
6.6
7.2
8.1 | 12.7
12.4
11.5
9.8
8.7 | 11.0
11.4
9.8
8.9
7.7 | 16.5
16.4
17.4
18.1
19.2 | 14.6
14.6
15.2
15.1
16.6 | 24.4
23.3
24.2
23.3
23.2 | 20.0
19.2
18.9
19.0
18.1 | 24.6
24.2
24.5
24.9
22.9 | 18.7
16.7
19.0
18.5
18.8 | 16.8
17.2
15.2
13.9
15.2 | 12.1
13.1
11.2
8.8
10.4 | | 21
22
23
24
25 | 8.7
7.6
7.6
8.4
8.1 | 7.6
6.3
5.7
6.0
6.3 | 10.0
11.0
12.8
14.0
14.4 | 8.0
8.9
10.4
11.6
12.7 | 19.5
20.8
20.9
21.6
21.7 | 16.9
17.4
17.9
18.2
19.1 | 23.7
23.9
23.5
24.5 | 18.8
19.0
20.0
18.9 | 23.9
25.3
24.7
24.4
24.6 | 18.5
19.7
18.1
18.2
18.3 | 14.6
14.9
16.6
16.9
16.5 | 11.8
11.7
12.0
12.4
12.8 | | 26 | 8.3 | 4.9 | 13.4 | 12.1 | 21.7
22.4 | 19.0
19.2 | | | 23.4
23.9 | 18.1
17.4 | 14.9
16.4 | 12.0
12.2 | | 27
28
29
30
31 | 9.4
10.7
12.0
13.2 | 6.3
7.9
9.0
10.3 | 13.0
13.6
12.9
11.9
10.3 | 11.7
11.8
11.7
10.5
8.8 | 20.8
19.8
21.1 | 14.6
17.4
17.5 | 25.0
26.0 | 20.2
21.5 | 24.2
24.3
24.5
24.6 | 16.4
16.2
16.2
16.5 | 13.0
12.9
14.4 | 9.7
8.1
9.5 | #### 09253000 LITTLE SNAKE RIVER NEAR SLATER, CO LOCATION.--Lat 40°59'58", long 107°08'34", in SW4NW4 sec.15, T.12 N., R.87 W., Routt
County, Hydrologic Unit 14050003, on left bank just downstream from highway bridge at Focus Ranch, 0.2 mi downstream from Spring Creek, and 12 mi east of Slater. DRAINAGE AREA . - - 285 mi2. PERIOD OF RECORD. -- October 1942 to September 1947, October 1950 to current year. REVISED RECORDS .-- WSP 1733: 1960. GAGE .-- Water-stage recorder. Datum of gage is 6,831.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Dec. 17 to March 31. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 43 years, 236 ft 3/s; 171,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,780 ft³/s, May 23, 1984, gage height, 8.78 ft; maximum gage height, 8.95 ft, Apr. 25, 1974; minimum daily discharge, 4.2 ft³/s, Sept. 9, 1988. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,600 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|-----------------------------------|---------------------| | May 18 | 0400 | *2,430 | *7.19 | May 28 | 2200 | 1,810 | 6.63 | Minimum daily discharge, 4.2 ft³/s, Sept. 9. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------|----------------------------------|---------------------------------|--|---------------------------------|----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 21 | 40 | 24 | 24 | 25 | 25 | 72 | 759 | 983 | 154 | 24 | 12 | | 2 | 18 | 67 | 25 | 24 | 25 | 27 | 77 | 538 | 946 | 140 | 24 | 14 | | 3 | 18 | 77 | 24 | 25 | 25 | 28 | 89 | 420 | 1050 | 131 | 24 | 13 | | 4 | 17 | 48 | 23 | 25 | 25 | 30 | 88 | 422 | 1230 | 124 | 27 | 8.8 | | 5 | 17 | 39 | 21 | 25 | 25 | 30 | 84 | 544 | 1410 | 125 | 25 | 6.1 | | 6 | 17 | 44 | 19 | 25 | 25 | 29 | 89 | 686 | 1400 | 108 | 22 | 6.8 | | 7 | 18 | 47 | 16 | 25 | 24 | 27 | 122 | 473 | 1340 | 96 | 26 | 6.7 | | 8 | 19 | 37 | 14 | 25 | 23 | 30 | 138 | 435 | 1240 | 88 | 32 | 5.0 | | 9 | 19 | 27 | 12 | 25 | 23 | 29 | 114 | 447 | 1110 | 78 | 24 | 4.2 | | 10 | 20 | 28 | 13 | 25 | 23 | 27 | 104 | 491 | 1030 | 77 | 21 | 5.8 | | 11 | 18 | 36 | 10 | 25 | 24 | 27 | 112 | 535 | 978 | 81 | 22 | 21 | | 12 | 15 | 32 | 6.2 | 25 | 24 | 29 | 156 | 756 | 870 | 78 | 23 | 49 | | 13 | 22 | 36 | 13 | 25 | 24 | 28 | 214 | 1070 | 776 | 74 | 22 | 45 | | 14 | 15 | 27 | 19 | 25 | 24 | 26 | 267 | 1330 | 689 | 64 | 20 | 52 | | 15 | 12 | 14 | 9.5 | 25 | 24 | 23 | 336 | 1430 | 649 | 54 | 17 | 39 | | 16 | 21 | 11 | 13 | 25 | 24 | 24 | 449 | 1540 | 652 | 50 | 22 | 30 | | 17 | 29 | 28 | 19 | 25 | 24 | 24 | 481 | 1650 | 616 | 48 | 28 | 24 | | 18 | 28 | 36 | 21 | 26 | 24 | 24 | 451 | 2130 | 567 | 44 | 34 | 21 | | 19 | 27 | 28 | 23 | 27 | 24 | 24 | 519 | 1950 | 540 | 41 | 28 | 19 | | 20 | 20 | 23 | 25 | 27 | 24 | 25 | 520 | 1360 | 504 | 39 | 22 | 19 | | 21 | 19 | 23 | 26 | 27 | 24 | 28 | 540 | 1100 | 462 | 36 | 29 | 18 | | 22 | 23 | 24 | 26 | 26 | 24 | 34 | 451 | 1040 | 424 | 33 | 46 | 26 | | 23 | 26 | 22 | 25 | 26 | 24 | 40 | 337 | 1080 | 376 | 31 | 31 | 33 | | 24 | 38 | 20 | 25 | 25 | 24 | 41 | 290 | 1200 | 301 | 28 | 23 | 25 | | 25 | 62 | 20 | 25 | 26 | 24 | 42 | 280 | 1250 | 260 | 27 | 20 | 21 | | 26
27
28
29
30
31 | 49
34
30
33
40
47 | 19
19
20
23
25 | 25
24
24
25
25
25 | 26
26
26
26
25
25 | 23
23
23
24 | 41
40
45
50
25
65 | 240
241
294
398
622 | 1280
1400
1530
1590
1490
1160 | 230
224
217
249
181 | 27
30
30
33
35
28 | 18
16
15
15
14
12 | 20
20
24
29
26 | | TOTAL | 792 | 940 | 624.7 | 787 | 696 | 987 | 8175 | 33086 | 21504 | 2032 | 726 | 643.4 | | MEAN | 25.5 | 31.3 | 20.2 | 25.4 | 24.0 | 31.8 | 272 | 1067 | 717 | 65.5 | 23.4 | 21.4 | | MAX | 62 | 77 | 26 | 27 | 25 | 65 | 622 | 2130 | 1410 | 154 | 46 | 52 | | MIN | 12 | 11 | 6.2 | 24 | 23 | 23 | 72 | 420 | 181 | 27 | 12 | 4.2 | | AC-FT | 1570 | 1860 | 1240 | 1560 | 1380 | 1960 | 16220 | 65630 | 42650 | 4030 | 1440 | 1280 | CAL YR 1987 TOTAL 42987.7 MEAN 118 MAX 855 MIN 6.2 AC-FT 85270 WTR YR 1988 TOTAL 70993.1 MEAN 194 MAX 2130 MIN 4.2 AC-FT 140800 #### 09255000 SLATER FORK NEAR SLATER, CO LOCATION.--Lat 40°58'57", long 107°22'56", in SW4NE4 sec.21, T.12 N., R.89 W., Moffat County, Hydrologic Unit 14050003, on right bank 15 ft downstream from highway bridge, 1.0 mi upstream from mouth, and 1.5 mi south of Slater. DRAINAGE AREA. -- 161 mi². PERIOD OF RECORD.--May to October, December 1910, March to October 1911, and April to May 1912 (published as Slater Creek), July 1931 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 618: 1910-11. WSP 764: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,600 ft, from river-profile map. May 28, 1910, to May 25, 1912, nonrecording gage at site 1.5 mi upstream at different datum. July 9, 1931, to May 6, 1932, nonrecording gage at site 0.2 mi downstream at different datum. REMARKS.-Estimated daily discharges: Nov. 17 to Mar. 4, and Mar. 8 to Mar. 30. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--57 years (water years 1932-88), 78.5 ft3/s; 56,870 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,250 ft³/s May 16, 1984, gage height, 11.78 ft (from floodmark), from rating curve extended above 1,000 ft³/s.; no flow Aug. 2-10, 1934, Aug. 18, 25-27, 1936, Aug. 29 to Sept. 3, 1954, Aug. 3, 4, 15, 16, 1977. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 430 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height (ft) | |-----------------|--------------|-----------------------|---------------------|--------|------|----------------------|------------------| | May 1
May 18 | 0230
0900 | 439
* 1,000 | 5.80
*8.20 | May 28 | 0030 | 554 | 6.38 | Minimum daily discharge, 2.2 ft³/s, Sept. 9-10. | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|--------------------------------|--------------------------------|---------------------------------|---------------------------------|----------------------------------|----------------------------------|--|----------------------------------|--|------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 16
16
17
15
12 | 24
33
28
23
18 | 14
15
15
14
14 | 18
18
17
17
16 | 17
17
17
17
17 | 16
16
16
15 | 43
51
40
47
43 | 340
214
162
170
226 | 200
196
223
280
328 | 27
23
21
20
19 | 4.5
3.9
3.9
4.9
5.5 | 2.9
3.3
3.4
3.2
3.2 | | 6
7
8
9
10 | 12
14
16
18
20 | 18
18
17
16
17 | 14
14
13
13 | 16
16
16
16
16 | 17
17
17
17
18 | 17
17
17
17 | 43
59
77
59
47 | 320
192
167
177
210 | 320
274
241
205
193 | 16
16
13
12
11 | 4.4
4.9
5.9
6.6
5.7 | 2.5
2.4
2.3
2.2
2.2 | | 11
12
13
14
15 | 20
21
23
30
25 | 17
16
21
19
19 | 13
13
13
13
13 | 16
16
16
16
16 | 18
19
19
19
20 | 17
17
17
17
17 | 49
65
88
105
133 | 239
377
509
594
557 | 180
165
139
120
101 | 11
12
9.9
7.7
6.3 | 4.4
3.4
2.6
2.9
2.3 | 4.4
13
20
24
20 | | 16
17
18
19
20 | 21
21
21
22
21 | 14
13
13
13 | 13
14
14
14
14 | 16
17
17
17
18 | 20
20
20
20
19 | 17
17
17
17
18 | 170
198
162
233
226 | 555
580
841
741
450 | 88
90
85
82
79 | 5.7
5.3
5.0
5.0
4.6 | 3.7
4.0
2.7
3.5
3.0 | 15
12
10
9.0
9.4 | | 21
22
23
24
25 | 20
23
23
25
29 | 14
14
14
13 | 14
15
16
17
17 | 18
17
17
17
17 | 19
18
18
18
18 | 19
23
26
27
28 | 265
207
145
122
116 | 317
281
304
357
413 | 79
77
68
54
43 | 3.9
4.1
3.4
3.7
3.9 | 3.2
3.8
4.3
3.8
3.3 | 9.2
10
13
13 | | 26
27
28
29
30
31 | 26
23
20
17
17
26 | 13
13
13
13 | 16
16
17
17
17 | 18
17
17
17
17 | 17
17
17
16 | 26
26
27
30
33
37 | 92
98
105
147
236 | 414
457
446
412
360
243 | 40
36
36
38
33 | 3.9
3.6
3.8
6.0
8.9
5.9 | 2.6
2.9
2.9
2.6
2.6 | 11
11
12
14
14 | | TOTAL
MEAN
MAX
MIN
AC-FT |
630
20.3
30
12
1250 | 503
16.8
33
13
998 | 453
14.6
18
13
899 | 520
16.8
18
16
1030 | 523
18.0
20
16
1040 | 636
20.5
37
15
1260 | 3471
116
265
40
6880 | 11625
375
841
162
23060 | 4093
136
328
33
8120 | 301.6
9.73
27
3.4
598 | 117.3
3.78
6.6
2.3
233 | 283.6
9.45
24
2.2
563 | CAL YR 1987 TOTAL 21828.8 MEAN 59.8 MAX 464 MIN 4.1 AC-FT 43300 WTR YR 1988 TOTAL 23156.5 MEAN 63.3 MAX 841 MIN 2.2 AC-FT 45930 #### 09257000 LITTLE SNAKE RIVER NEAR DIXON, WY LOCATION.--Lat 41°01'42", long 107°32'55", in SE4 NW4 sec.8, T.12 N., R.90 W., Carbon County, Hydrologic Unit 14050003, on left bank 200 ft upstream from highway bridge, 1,000 ft upstream from Willow Creek, and 0.8 mi west of Dixon. DRAINAGE AREA .-- 988 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1910 to September 1923, March 1938 to current year (no winter records since 1971). Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1243: 1920(M). WDR WY-85-1: 1984(M). GAGE.--Water-stage recorder. Datum of gage is 6,331.22 ft above National Geodetic Vertical Datum of 1929. May 27, 1910, to Sept. 30, 1923, nonrecording gage on highway bridge 200 ft downstream at datum 2.98 ft higher; Mar. 15, 1938, to Sept. 30, 1957, water-stage recorder at site 225 ft downstream at datum 2.98 ft higher; Oct. 1, 1957, to June 6, 1968, at site 850 ft downstream at present datum; and June 7 to Sept. 30, 1968, at site 225 ft downstream at present datum. REMARKS.--Estimated daily discharges: May 21-24, July 5-12, and Aug. 17 to Sept. 26. Records fair except those for flow of less than 100 ft³/s, which are poor. Diversions for irrigation of about 9,500 acres upstream fromstation. One diversion upstream from station for irrigation of about 3,000 acres downstream. Transbasin iversions upstream from station. National Weather Service satellite telemeter at station. AVERAGE DISCHARGE.--46 years (water years 1911-23, 1939-71), 514 ft3/s, 372,400 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s, May 16, 1984, gage height, 13.56 ft, from floodmark, from rating curve extended above 10,000 ft³/s, some increase in peak due to dam failure; no flow, Sept. 19, 20, 22, 1977, Aug. 7, 17, 18, 27-29, 1981. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,200 ft3/s and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 19 | 1100 | * 4,850 | * 9.26 | May 29 | 0500 | 3,760 | 8.08 | Minimum daily discharge during period of record, 0.14 ft³/s, Oct. 2. | | | DISCHARGE, | CUBIC | FEET PER | | WATER YEAR
CAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-------------------------------------|------------|-------|----------|-----|--------------------------|---|--|--|--|------------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4 | .18
.14
.19
.18 | | | | | | 204
233
340
560 | 1950
1290
1010
949 | 2240
2030
2130
2380 | 176
122
91
77
68 | 1.1
.73
.61
.73 | 1.8
2.1
1.6
1.4 | | 5
6
7
8
9 | .76
.59
.59 | | | | | | 461
429
697
1040
596
447 | 1110
1610
1030
926
1020
1220 | 2730
2740
2630
2430
2170
1930 | 48
36
27
19 | .73
.70
.46
.34
1.3 | .90 2.3 2.7 2.4 1.6 1.0 | | 11
12
13
14
15 | 27
17
17
33
59 | | | | | | 429
546
734
858
955 | 1250
1570
2140
2700
2870 | 1840
1670
1450
1250
1110 | 18
13
9.7
7.3
6.4 | 1.1
1.0
2.7
2.2
2.4 | 4.0
13
12
13
12 | | 16
17
18
19
20 | 50
41
38
38
39 | | | | | | 1200
1450
1200
1520
1400 | 2990
3240
4260
4470
3560 | 1010
925
847
810
768 | 5.7
4.5
5.3
4.5
4.1 | 3.1
3.3
3.1
2.7
2.4 | 8.1
5.6
4.7
5.1
4.7 | | 21
22
23
24
25 | 35
34
37
44
58 | | | | | | 1480
1250
913
797
770 | 2730
2400
2420
2570
2680 | 716
640
607
476
369 | 4.3
4.1
3.9
3.5
3.4 | 2.7
4.9
3.2
2.7
2.4 | 4.6
5.2
6.6
7.8
7.1 | | 26
27
28
29
30
31 | 76
64
57
51
52
69 | | | | | 236 | 606
616
721
894
1420 | 2790
3070
3300
3430
3340
2650 | 307
282
243
290
221 | 3.0
2.9
2.6
2.4
2.9
2.9 | 2.3
2.1
2.0
1.8
1.8 | 6.5
6.3
6.4
7.4
8.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 974.99
31.5
76
.14
1930 | | | | | | 24766
826
1520
204
49120 | 72545
2340
4470
926
143900 | 39241
1308
2740
221
77830 | 795.4
25.7
176
2.4
1580 | 60.00
1.94
4.9
.34
119 | 166.40
5.55
13
.90
330 | ## 09257000 LITTLE SNAKE RIVER NEAR DIXON, WY--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1975 to current year. INSTRUMENTATION.--All bedload samples were collected using a Helley-Smith type sampler of sheet-metal construction, 3.22 flare, 3 inch square nozzle, and equipped with 0.25 mm mesh collection bag. | | | DATE | TIME | STRE
FLO
INST
TANE
(CF: | W, TEMP
AN- ATU
OUS WAT | (M
IE
PER- (B
JRE VEL
JER TO | TAL | PICLO-
RAM
(TOR-
DON)
(AMDON)
TOTAL
(UG/L) | 2,4-D,
TOTAL
(UG/L) | 2, 4-DF
TOTAL
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | | |--|--------------------------------------|--|--------------------------------------|---|--|--|--|---|--|--|--|--|---| | | AUG
03 | | 0840 | 0 | .64 1 | 18.5 <0 | 0.01 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | | | | SEP
27 | | 1825 | 6 | .2 1 | 15.0 <0 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | | | | | | | · · | | . , , , , | | | 3.31 | | 3,00 | 0.01 | | | | | DATI | 3 | TIME | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.004 MM | SED. SUSP. FALL DIAM. FINER THAN .008 MM | FAI
DIA
K % FIN
THA | SP. S
LL F
AM. I
NER % F | SUSP.
FALL
DIAM.
FINER % | THAN | SUSP. SFALL FOR START ST | SED.
SUSP.
FALL
DIAM.
FINER
THAN
DO MM | | | | | MAY
14
17
18 | | 1030
1630
1710 | 23
25
24 | 28
31
30 | | 35
39
37 | 58
62
61 | 76
83
84 | 94
99
100 | 100
100
100 | | | DATE | | TIME | TEMPER-
ATURE
WATER
(DEG C) | STRI
WID: | C
SA
EAM PLI
TH POI | NG PL | | GAGE
HEIGHT
(FEET) | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PEN DEI
(MG/L) | | SEDI -
MENT
DIS
-
CHARGE,
BEDLOAD
(TONS/
DAY) | SED. BEDLOAD SIEVE DIAM. % FINER THAN .062 MM | | MAY 11 11 12 12 14 17 17 17 17 18 18 JUN | | 2005
2055
0915
1010
0915
1030
1210
1315
1630
1730
1610 | | - 98
- 106
- 106
- 122
- 125
- 125
- 120
- 130 | .0 20
22
19 | | 10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | 5.84
5.84
6.81
8.03
8.08
7.976
7.68
9.11 | 1130
1130
1800
1800
3200
3110
3490
3380
3170
3100
4900
4820 | 189
189
371
371
873
873
386
386
357
791 | 577
577
1800
1800
7540
7330
3640
3520
3060
2800
10500
10300 | 55
43
54
69
67
121
71
277
246
106
73 | 0.2
0.2
0.3
0.6
0.4
0.3
0.1
0.2
0.2 | | 17
17 | | 1335
1420 | 15.5
15.5 | | 22
22 | | 10.0 | | 1060
1060 | 87 |
249 | 48
60 | 0.1 | | | DATE | SE
BEDL(
SIE'
DIA!
% FII
TH/
.125 | DAD BE
VE S
M. I
NER % | SIEVE
DIAM.
FINER
THAN | SIEVE
DIAM.
% FINER
THAN | SIEVE
DIAM.
% FINER
THAN | SIEV
DIAN
K FIN
THA | DAD BEI
VE SI
VI. DI
VER % F | DLOAD BE
LEVE S
IAM. D
FINER % | IEVE S
IAM. D
FINER %
THAN | DLOAD BEI
IEVE SI
IAM. DI
FINER % F | DLOAD BED
LEVE SI
LAM. DI
FINER % F
THAN T | EVE
AM.
INER
HAN | | 1
1
1
1
1
1
1
1 | 1
2
2
4
7
7
7
8 | 0
0
1
2
1
1
0 | . 6
. 5
. 8 | 7
6
6
12
6
4
3
2
5
8 | 72
56
246
80
45
72
25
37
565 | 94
97
70
88
98
76
78
86
74
71 | 99379982944
9937998994
9949966 | 9
9
9
9 | 000
99 1
99 1
000
94
95
97
98 1 | 98 1
98
99 1
00
83 |

00
00
99 10
00

89 9 |

10 |

0 | | 1 | 7
7 | | .2 | 2 | 48
33 | 95
91 | 100
99 | 10 | | | | | | ### 09258000 WILLOW CREEK NEAR DIXON, WY LOCATION.--Lat 40°54'56", long 107°31'16", on line between secs. 8 and 17, T.11 N., R.90 W., Moffat County, Co., Hydrologic Unit 14050003, on right bank 6.2 mi south of Colorado-Wyoming State line, 8.0 mi upstream from mouth, and 8.3 mi south of Dixon. DRAINAGE AREA. -- 24 mi², approximately. PERIOD OF RECORD. -- October 1953 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,700 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 29 to Apr. 2, and Sept. 14-15. Records good except for estimated daily discharges, which are poor. One small ditch diverts water upstream from station for irrigation. Regulation by Elk Lake, capacity, 400 acre-ft. AVERAGE DISCHARGE. -- 35 years, 10.7 ft 3/s; 7,750 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 476 ft³/s, May 10, 1984, gage height, 6.02 ft, from rating curve extended above 160 ft³/s; Maximum gage height, 7.08 ft, Apr.18, 1984 (backwater from ice); no flow Sept. 17-19, 1955, many days July through September 1977, and Aug. 8-16, 1982. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 70 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 18 | 0445 | 94 | 3.86 | June 5 | 2130 | *105 | *3.95 | Minimum daily discharge, 0.59 ft3/s, July 26. | | | DISCHAI | RGE, CUBIC | C FEET PEI | R SECOND,
M | WATER YE
EAN VALUE | AR OCTOBE
S | R 1987 TO | SEPTEMBI | ER 1988 | | | |--------------------------------------|--|----------------------------------|--|-----------------------------------|-----------------------------------|--|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.2
2.3
2.3
2.2
2.1 | 1.9
1.8
1.7
1.6 | 1.3
1.3
1.4
1.4 | 2.4
2.4
2.5
2.6
2.7 | 3.0
3.0
3.1
3.2
3.1 | 3.2
3.3
3.4
3.5
3.6 | 5.0
9.0
13
8.3
6.6 | 22
14
13
12
13 | 14
15
29
41
68 | 1.7
5.0
4.9
5.3 | 4.7
5.0
4.8
5.5
5.0 | 1.1
1.0
.99
.97 | | 6
7
8
9
10 | 2.2
2.2
2.2
2.2
2.3 | 1.4
1.3
1.3
1.2 | 1.4
1.4
1.5
1.6 | 2.8
2.8
2.9
3.0
3.0 | 3.0
3.0
3.0
2.9
2.8 | 3.5
3.4
3.3
3.2
3.2 | 11
31
26
10
7.4 | 15
8.4
12
31
21 | 79
72
62
53
53 | 4.9
6.5
4.4
4.2
4.3 | 4.1
5.1
4.8
4.0
3.5 | .63
.62
.75
.85 | | 11
12
13
14
15 | 2.4
2.3
3.0
4.7
2.6 | 1.2
1.2
1.3
1.2 | 1.6
1.6
1.6
1.5 | 3.0
3.0
3.0
3.0
3.1 | 2.9
2.9
2.9
2.9 | 3.1
3.0
2.9
2.8 | 11
21
27
27
29 | 13
15
19
25
22 | 51
42
34
25
21 | 4.2
8.7
6.9
2.8
2.5 | 3.2
3.0
3.0
2.7
2.4 | 5.0
3.8
4.1
3.4
2.8 | | 16
17
18
19
20 | 2.3
2.1
2.2
2.2
1.7 | 1.4
1.3
1.2
1.2 | 1.6
1.7
1.8
1.8 | 3.0
2.9
2.9
3.0
3.0 | 3.0
3.0
3.0
3.1
3.1 | 2.8
2.9
3.0
2.9 | 31
26
22
33
25 | 21
27
65
63
26 | 20
19
16
14
12 | 2.3
2.1
2.0
4.1
3.6 | 2.7
2.6
2.3
2.1
1.9 | 2.3
2.1
1.7
1.6
1.5 | | 21
22
23
24
25 | 2.1
2.2
2.3
3.1
4.7 | 1.2
1.3
1.4
1.5 | 2.0
2.0
2.0
2.1
2.1 | 3.0
2.9
2.9
2.9
2.9 | 3.0
3.0
3.0
3.0
3.0 | 2.9
2.8
2.8
2.9
3.0 | 24
22
19
16
16 | 16
13
11
18
23 | 10
10
6.8
5.1
3.2 | 1.4
.85
.75
.71
.66 | 2.5
2.9
1.9
1.5
1.3 | 1.6
3.3
3.6
2.1
1.8 | | 26
27
28
29
30
31 | 3.4
2.9
2.6
2.2
2.1
2.0 | 1.3
1.2
1.2
1.2
1.2 | 2.1
2.1
2.2
2.3
2.4
2.4 | 3.0
3.1
3.0
3.0
3.0 | 3.0
3.0
3.1
3.1 | 3.1
3.6
4.0
4.2
4.6
4.8 | 13
10
11
15
19 | 22
32
34
38
38 | 2.5
2.1
2.2
1.9
1.5 | .59
4.3
4.9
6.5
5.6 | 1.3
1.3
1.3
1.1
1.1 | 1.7
1.7
2.0
2.0
2.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 77.3
2.49
4.7
1.7 | 40.3
1.34
1.9
1.1
80 | 54.6
1.76
2.4
1.3
108 | 89.7
2.89
3.1
2.4
178 | 87.0
3.00
3.2
2.8
173 | 101.6
3.28
4.8
2.8
202 | 544.3
18.1
33
5.0
1080 | 720.4
23.2
65
8.4
1430 | 785.3
26.2
79
1.5
1560 | 116.86
3.77
8.7
.59
232 | 89.7
2.89
5.5
1.1
178 | 59.91
2.00
5.0
.62
119 | CAL YR 1987 TOTAL 2806.47 MEAN 7.69 MAX 83 MIN .10 AC-FT 5570 WTR YR 1988 TOTAL 2766.97 MEAN 7.56 MAX 79 MIN .59 AC-FT 5490 ## 09259050 LITTLE SNAKE RIVER BELOW BAGGS, WY LOCATION.--Lat 41°01'43", long 107°41'14", in SE4 NW4 NW4 sec.7, T.12 N., R.92 W., Carbon County, Hydrologic Unit 14050003, 0.8 mi downstream from Ledford Slough, 1.5 mi southwest of Baggs, and 3.5 mi downstream from bridge on State Highway 789 in Baggs. PERIOD OF RECORD. -- Water years 1981 to current year. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | AN CE | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | (MM) | XYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION) | |------------|---|---|------------------------------------|-------------------------------------|--|--|------------------------------------|--| | 0CT | 1235 | 0.90 | 635 | 8.2 | 14.0 | 610 | 11.2 | 137 | | FEB | 1235 | 0.,0 | 033 | 0.2 | 14.0 | 0.10 | 11.2 | 131 | | 01
MAY | 1720 | 91 | 378 | 8.2 | 0.0 | 600 | 11.4 | 99 | | 12
JUL | 1410 | 1690 | 204 | 7.9 | 12.0 | 607 | 8.8 | 103 | | 12 | 1630 | 5.6 | 405 | 8.2 | 23.0 | 616 | 9.9 | 144 | | DATE | COLI
FORI
FE CA
0.7
UM-1
(COLS | M, NIT AL, GE NO2+ MF TOT S./ (MG | NÓ3 AMMONI
AL TOTAI
/L (MG/I | GEN
IA ORGAN
L TOTA
L (MG/ | I, MONÍA
IIC ORGANI
IL TOTAI
IL (MG/I | M-
+ PHOS-
IC PHOROU
L TOTAL
L (MG/L | S DIS
SOLV
(UG/ | -
ED
L | | 01
FEB | | <1 <0. | 1 <0.0 | 1 | 0.0 | 6 0.01 | | <1 | | 01
MA Y | | <1 0. | 1 0.0 | 4 0. | 16 0.2 | 2 0.03 | | <1 | | 12
JUL | 1 | 420 <0. | 1 0.0 | 4 0. | 56 0.0 | 6 0.06 | | <1 | | 12 | | 170 <0. | 1 <0.0 | 1 | 0. | 5 0.03 | | <1 | | | | | | | | | | | ## PESTICIDE ANALYSIS, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | TEMPER-
ATURE
WATER
(DEG C) | (MED-
IBEN)
(BAN-
VEL D)
TOTAL
(UG/L) | RAM (TOR- DON) (AMDON) TOTAL (UG/L) | 2,4-D,
TOTAL
(UG/L) | 2, 4-DP
TOTAL
(UG/L) | 2,4,5-T
TOTAL
(UG/L) | SILVEX,
TOTAL
(UG/L) | |------------------|------|---|--------------------------------------|--|-------------------------------------
---------------------------|----------------------------|----------------------------|----------------------------| | JUN
22
JUL | 0800 | 639 | 17.0 | <0.01 | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | | 12 | 1630 | 5.6 | 23.0 | <0.01 | 0.02 | <0.01 | <0.01 | <0.01 | <0.01 | #### 09259990 SAND WASH NEAR SUNBEAM, CO LOCATION.--Lat 40°37'12", long 108°22'06", in NW\(\frac{1}{4}\) sec.26, T.8 N., R.98 W., Moffat County, Hydrologic Unit 14050003, on right upstream pier of triple box culvert on state highway 318, 2.3 mi upstream from confluence with Little Snake River, and 10.5 mi northeast of Sunbeam. DRAINAGE AREA . - - 239 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 5,790 ft, above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records excellent except for periods of flow, which are poor. No regulation or diversions upstream from station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25 ft³/s, March 21, 1988, gage height, 1.84 ft; no flow most days each year. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 25 ft³/s at 1100 March 21, gage height, 1.84 ft; no flow many days. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------------|------------------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|----------------------------------| | DA Y | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 14
11
5-7
4.5
4.8 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 5.1
5.5
5.4
5.1
5.0 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 5.1
5.3
5.3
5.3
5.1 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 1.1
1.4
1.3
.00 | | 16
17
18
19
20 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 5.2
5.3
5.2
5.8 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | 14
10
1.1
.10 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
2.6
14 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | .00 | 0.00
.00
.00
.00 | 16.60
•57
14
•00
33 | 149.90
4.84
14
.00
297 | 0.00
.00
.00
.00 | 0.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 0.00
.00
.00
.00 | 3.80
.13
1.4
.00
7.5 | WTR YR 1988 TOTAL 170.30 MEAN .47 MAX 14 MIN .00 AC-FT 338 ## 09259990 SAND WASH NEAR SUNBEAM, CO--Continued 247 ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1987 to September 1988. REMARKS.--Unpublished water-quality data from 1987 water year are published in this report. | | | | ., | AIDN WONL | III DAIA | , while a | DAND COIO | DDR 1700 | TO DEL IE. | 1,00 | | | | |------------|------------------|----------|---|---|---|------------------------------------|--------------------------|---|----------------------------|---|--|---|---| | | DATE | TI | STRE
FLO
INST
ME TANE
(CF | W, CON
AN- DUC
OUS ANC | IC
 - P
 T- (ST
 E A | AND- AT
RD WA | URE D | GEN, TO
IS- (M
LVED A | TAL D:
IG/L S(
IS (1 | LCIUM S
IS- D
OLVED SO
MG/L (M | GNE-
IUM, SODI
IS- DIS
LVED SOLV
G/L (MG
MG) AS | S- SORP-
VED TION | I | | | 2, 198 | 37 122 | 20 0 | .08 | 570 | 8.3 | 5.5 | 10.9 | 48 | 14 | 3.2 99 | 6 | | | | 3, 198 | 7 140 | 00 5 | •3 | 781 | 8.4 | 7.0 | 10.2 | 46 | 14 | 2.6 140 |) 9 | | | MAR
2 | , 198 | 18 13 | 15 15 | | 439 | | 12.5 | | 39 | 12 | 2.2 74 | 5 | | | | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | DIS-
SOLVED
(MG/L | (MG/L | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI | SOLIDS, DIS- SOLVED (TONS PER | (TONS
PER | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | | | FEB
12
MAR | 2, 1987 | 0.80 | 119 | 150 | 8.3 | 0.30 | 9.1 | 35' | 7 0.49 | 0.08 | 0.30 | | | | 18 | , 1987 | 1.0 | 133 | 220 | 18 | 0.40 | 7.6 | 48 | 7 0.66 | 6.96 | 0.73 | | | | MAR
21 | , 1988 | 1.9 | | 89 | 7.6 | 0.30 | 14 | 308 | 0.42 | 12.7 | 1.60 | | | | | | SUSPEND | ED SEDIME | NT DISCH | ARGE, WAT
SEDI | | OCTOBER 1 | 986 TO SI | EPTEMBER 1 | 988 | | SEDI- | | | | DATE | TIME | STREAM
FLOW,
INSTAN
TANEOU
(CFS) | MENT
SUS-
S PEND | , CHARG
SUS
ED PEND | E, | | DA | ľE TI | STREA
FLOW
INSTA
ME TANEO
(CFS | V, MENT,
N- SUS-
DUS PENDED | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | | | FEE | 2, 1987 | 1220 | 0.0 | 8 5 | 12 0. | 11 | | MAR
21, 19 | 988 13 | 55 15 | 9940 | 411 | | | FEE | | 1221 | 0.0 | | | 10 | | • | | | | | | | F | ARTICLE- | -SIZE DIS
STREAM- | TRIBUTION
SEDI- | OF SUSP
SEDI-
MENT,
DIS- | ENDED SED
SED.
SUSP.
FALL | SED. | TER YEARS SED. SUSP. FALL | SED. | SED. | EPTEMBER 1
SED.
SUSP.
FALL | 988 | | | DATE | ; | TIME | FLOW,
INSTAN-
TANEOUS
(CFS) | MENT,
SUS-
PENDED
(MG/L) | CHARGE,
SUS-
PENDED
(T/DAY) | DIAM.
% FINER
THAN | DIAM.
% FINER
THAN | DIAM.
% FINER
THAN | % FINE!
THAN | R % FINER
THAN | % FINER
THAN | | | | | 1987 | 1355 | 5.4 | 20300 | 295 | 66 | 79 | 91 | 9' | 7 99 | 100 | | | | APR
09, | 1987 | 1220 | 1.0 | 4130 | 11 | 90 | 97 | 98 | 99 | 9 100 | | | | ### 09260000 LITTLE SNAKE RIVER NEAR LILY, CO LOCATION.--Lat 40°32'50", long 108°25'25", in NW4NE4 sec.20, T.7 N., R.98 W., Moffat County, Hydrologic Unit 14050003, on left bank 170 ft downstream from highway bridge, 6.0 mi north of Lily, and 10 mi upstream from mouth. DRAINAGE AREA. -- 3,730 mi², approximately. PERIOD OF RECORD.--June to August 1904 (published as "near Maybell"), October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1713: 1959. GAGE.--Water-stage recorder. Elevation of gage is 5,685 ft, from river-profile map. June 9 to Aug. 14, 1904, nonrecording gage, and May 5, 1922, to Nov. 30, 1935, water-stage recorder, at site 300 ft upstream at different datums. REMARKS.--Estimated daily discharges: Oct. 5, and Dec. 14 to Mar. 21. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 21,000 acres upstream from station. AVERAGE DISCHARGE. -- 67 years, 590 ft3/s; 427,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,700 ft³/s, May 18, 1984, gage height, 9.85 ft; maximum gage height, 11.1 ft, Feb. 13, 1962, from floodmark (backwater from ice); no flow at times in most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | May 20 | 1100 | *4,870 | * 5.63 | | | | | Minimum daily discharge, 1.2 ft3/s, Sept. 6, 9. | | | DIS CHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|------------------------------------|------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--|--------------------------------------|--|---------------------------------------|--|--|-----------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | |
1
2
3
4
5 | 7.4
8.0
8.3
8.7
9.7 | 79
88
90
109
114 | 90
119
118
166
151 | 74
74
75
76
78 | 96
98
96
100
94 | 100
105
105
105
105 | 450
388
348
363
447 | 1180
1790
1760
1390
1180 | 2410
1970
1690
1670
1840 | 333
297
263
246
199 | 2.4
3.4
5.2
3.7
2.6 | 2.4
2.4
2.6
2.2
1.9 | | 6
7
8
9
10 | 8.4
8.6
9.0
9.9 | 154
147
133
122
131 | 143
151
137
122
148 | 80
83
86
88
88 | 92
92
90
92 | 100
100
105
100
95 | 670
589
554
875
876 | 1140
1450
1520
1210
1130 | 2240
2510
2440
2300
2090 | 155
204
200
120
87 | 2.6
4.5
3.6
3.3 | 1.2
1.3
1.6
1.2
2.0 | | 11
12
13
14
15 | 11
12
14
20
19 | 136
127
112
112
119 | 131
67
33
60
55 | 89
90
91
96
95 | 89
90
91
96
95 | 96
96
90
90 | 690
539
507
595
815 | 1220
1380
1590
2100
2680 | 1910
1770
1710
1570
1400 | 65
54
47
40
42 | 3.1
3.6
4.4
2.8
2.7 | 11
16
16
13
12 | | 16
17
18
19
20 | 20
50
59
60
52 | 79
89
7 5
73
69 | 50
55
56
58
60 | 90
93
94
95
93 | 90
93
94
95
93 | 92
94
96
95
120 | 968
1110
1390
1420
1430 | 2850
2880
3030
4020
4480 | 1240
1120
1070
1040
937 | 39
33
18
11 | 3.3
2.9
3.1
2.3
1.3 | 11
9.3
11
10
11 | | 21
22
23
24
25 | 37
36
36
41
44 | 71
103
130
144
155 | 60
62
64
66
66 | 92
91
90
92
90 | 92
91
90
92
90 | 400
1470
1980
1510
1280 | 1640
1610
1620
1390
1200 | 3410
2460
2090
1950
1990 | 881
807
738
674
634 | 7.5
7.5
6.6
3.9
4.6 | 4.1
4.4
5.3
4.6
3.7 | 13
16
17
14
12 | | 26
27
28
29
30
31 | 38
42
52
66
80
82 | 179
122
85
122
140 | 66
70
72
74
74
74 | 96
98
96
92
94
96 | 100
102
100
100 | 909
696
718
800
645
530 | 1070
997
836
830
886 | 2210
2320
2510
2760
2930
2890 | 507
414
394
392
342 | 4.5
3.8
5.3
4.6
2.7
7.1 | 3.5
3.3
3.5
3.7
3.1
2.5 | 12
11
11
9.9
10 | | TOTAL
MEAN
MAX
MIN
AC-FT | 958.0
30.9
82
7.4
1900 | 114
179
69 | 2718
87.7
166
33
5390 | 2755
88.9
98
74
5460 | 2725
94.0
102
89
5410 | 417
1980
90 | 27103
903
1640
348
53760 | 67500
2177
4480
1130
133900 | 40710
1357
2510
342
80750 | 2522.1
81.4
333
2.7
5000 | 105.5
3.40
5.3
1.3
209 | 265.0
8.83
17
1.2
526 | CAL YR 1987 TOTAL 128554.4 MEAN 252 MAX 2170 MIN 2.0 AC-FT 255000 WTR YR 1988 TOTAL 163687.6 MEAN 447 MAX 4480 MIN 1.2 AC-FT 324700 249 09260050 YAMPA RIVER AT DEERLODGE PARK, CO LOCATION.--Lat 40°27'02", long 108°31'20", in $SE_4^1SW_6^1$ sec.21, T.6 N., R.99 W., Moffat County, Funit 1405002, in Dinosaur National Monument, on left bank at Deerlodge Park, 1,250 ft upstream Disappointment Draw, and 5.5 mi downstream from Little Snake River. Hydrologic DRAINAGE AREA. -- 7,660 mi², approximately. PERIOD OF RECORD .-- August 1975 and January 1978 (discharge measurements only), April 1982 to current year. GAGE .-- Water-stage recorder. Elevation of gage is 5,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. AVERAGE DISCHARGE.--6 years, 2,916 ft^3/s ; 2,113,000 acre-ft/yr. The figure published in the report for 1987 was in error; the correct figure is 5 years, 3,145 ft^3/s ; 2,279,000 acre-ft/yr. REMARKS.--Estimated daily discharges: Nov. 21 to Apr. 12, and Sept. 1 to Sept. 13. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs, and diversions for irrigation of about 86,800 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,200 ft³/s, May 18, 1984, gage height, 19.13 ft; minimum daily, 43 ft³/s, Sept. 5-6, 1988. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 10,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 20
May 31 | 1630
1900 | *14,500
10,700 | *10.94
9.05 | June 8 | 1700 | 10,500 | 8.95 | Minimum daily discharge, 43 ft3/s, Sept. 5-6. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | R OCTOBER | R 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|--|--|--------------------------------------|--|---|--|-------------------------------------|---| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 188
188
190
192
194 | 425
447
480
496
534 | 300
295
290
290
285 | 210
215
217
220
222 | 250
255
260
2 6 5
265 | 350
355
360
355
350 | 900
1200
1500
1900
1700 | 4770
6200
6450
5320
4700 | 9180
7500
6340
6630
7910 | 2600
2260
1870
1640
1510 | 264
280
285
280
268 | 87
76
55
45
43 | | 6
7
8
9
10 | 196
196
196
199 | 569
562
541
521
530 | 285
280
280
280
280 | 225
230
234
238
240 | 255
250
245
240
235 | 340
330
340
350
3 7 5 | 2000
2300
2480
2350
2200 | 4640
5400
5630
4820
4500 | 9400
10200
10200
9930
9380 | 1400
1330
1190
1040
908 | 272
269
264
251
241 | 43
44
4 7
52
50 | | 11
12
13
14
15 | 201
205
211
205
208 | 540
523
499
523
590 | 275
270
260
260
257 | 243
250
250
250
250 | 235
235
235
240
250 | 385
370
360
350
350 | 2000
2100
2390
2750
4010 | 4450
4740
5500
7280
9330 | 8840
8640
7800
7240
6550 | 806
743
708
703
639 | 232
209
193
160
147 | 50
64
86
106
141 | | 16
17
18
19
20 | 214
231
324
332
323 | 617
580
478
385
351 | 260
264
260
255
250 | 245
245
245
240
240 | 250
260
260
260
250 | 350
350
350
380
420 | 4860
5150
6290
5990
5970 | 10400
10600
11200
12800
14300 | 6160
5730
6510
6220
5670 | 568
508
466
435
398 | 142
140
137
130
126 | 286
272
215
196
212 | | 21
22
23
24
25 | 303
280
283
307
334 | 330
320
318
320
318 | 250
240
237
235
230 | 235
235
237
240
245 | 255
260
260
260
260 | 650
1030
2350
1950
1550 | 6500
6320
5980
5680
5540 | 12800
9640
7950
7160
7200 | 5610
4920
4390
4110
3710 | 376
352
328
312
274 | 123
122
121
115
110 | 213
222
22 0
226
219 | | 26
27
28
29
30
31 | 357
382
453
442
431
433 | 318
318
310
305
300 | 230
225
220
220
215
210 | 250
245
240
240
245
250 | 270
290
305
290
 | 1200
1000
890
940
800
700 | 5140
4960
4300
3810
4270 | 8030
8550
8910
9480
10100
10300 | 3370
3020
2760
3140
2640 | 254
257
258
251
243
246 | 107
105
100
97
94
92 | 230
237
234
233
252 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8397
271
453
188
16660 | 445
617
300 | 7988
258
300
210
5840 | 7371
238
250
210
14620 | 7445
257
305
235
14770 | 653
2350
330 | 3 7 51
6500
900 | 243150
7844
14300
4450
482300 | 193700
6457
10200
2640
384200 | 24873
802
2600
243
49340 | 5476
177
285
92
10860 | 4456
149
286
43
8840 | CAL YR 1987 WTR YR 1988 TOTAL 507618 MEAN 1391 MAX 7800 MIN 140 AC-FT 1007000 TOTAL 648974 MEAN 1773 MAX 14300 MIN 43 AC-FT 1287000 #### 09302450 LOST CREEK NEAR BUFORD, CO LOCATION.--Lat 40°03'01", long 107°28'06", in SEASEA sec.15, T.1 N., R.90 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 15 ft downstream from highway bridge, 540 ft upstream from mouth, 0.5 mi downstream from Long Park Creek, and 9 mi northeast of Buford. DRAINAGE AREA . -- 21.5 mi 2. PERIOD OF RECORD. -- October 1964 to current year. REVISED RECORDS. -- WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,560 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1973, to Sept. 30, 1975, at site 150 ft upstream at present datum. REMARKS.--Estimated daily discharges: Dec. 9 to Mar. 4. Records fair except for estimated daily discharges, which are poor. No diversion upstream from station. Several observations of
specific conductance and water temperature were obtained and are published elsewhere in this report. AVERACE DISCHARGE. -- 24 years, 23.7 ft 3/s; 17,170 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 944 ft³/s, May 9, 1974, gage height, 7.53 ft, from rating curve extended above 260 ft³/s; minimum daily, 0.30 ft³/s, Jan. 9, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------------------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | Apr. 20
Apr. 30 | 1800
1800 | 179
25 7 | 2.76
3.11 | May 14 | 1900 | *504 | *3.92 | Minimum daily discharge, 1.3 ft³/s, Sept. 5, 8-10. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
AN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|-----------------------------------|--|-----------------------------------|--|--------------------------------------|-----------------------------------|------------------------------------|--|-----------------------------------|-----------------------------------| | DAY | OCT | иои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.7
2.8
2.7
2.7
3.0 | 4.9
7.9
6.2
5.5
4.9 | 4.0
3.9
3.6
3.6
3.6 | 2.5
2.5
2.5
3.0
3.0 | 3.0
3.0
2.5
2.5
2.5 | 3.0
3.0
3.0
3.0 | 4.4
4.7
5.4
6.0
6.3 | 150
94
81
94
149 | 54
53
58
61
59 | 7.1
5.8
5.4
5.4
6.2 | 2.3
2.2
2.5
3.8
2.4 | 1.7
1.6
1.5
1.4
1.3 | | 6
7
8
9
10 | 2.8
2.7
2.8
3.1
3.0 | 5.4
5.4
4.7
4.2 | 3.5
3.3
3.9
3.5
3.5 | 3.0
3.0
3.0
3.0 | 2.5
2.5
2.5
3.0
3.0 | 3.1
3.0
3.0
3.4
3.3 | 7.6
11
13
12
16 | 148
115
108
101
123 | 54
47
41
36
33 | 4.8
4.4
3.9
3.5
3.4 | 2.0
2.4
2.6
2.0
1.8 | 1.4
1.4
1.3
1.3 | | 11
12
13
14
15 | 3.0
2.8
3.4
4.8
4.7 | 4.4
4.6
3.8
4.2
4.1 | 3.5
3.5
3.0
3.0 | 3.0
2.5
2.5
2.5
2.5 | 3.0
3.0
3.0
3.0 | 3.0
3.3
3.2
3.8
3.3 | 18
23
43
55
63 | 185
250
306
329
290 | 31
27
23
20
18 | 3.3
3.3
3.0
2.7
2.6 | 1.7
1.8
1.9
1.7 | 3.2
6.6
6.0
4.6
3.4 | | 16
17
18
19
20 | 4.3
4.1
3.9
3.7
3.1 | 4.1
4.2
4.5
4.4
4.0 | 3.0
3.5
3.5
3.5
3.0 | 2.5
2.5
2.5
2.0
2.0 | 3.0
3.0
3.0
3.0 | 3.1
3.3
3.2
3.5
3.3 | 84
92
92
106
123 | 263
260
270
206
142 | 16
15
13
20
19 | 2.6
2.6
2.4
2.1
2.1 | 1.8
1.8
1.7
1.7 | 3.3
3.6
3.4
2.5
2.3 | | 21
22
23
24
25 | 3.2
3.3
3.3
4.1
7.0 | 4.0
4.0
4.0
3.9
3.9 | 3.5
3.5
3.5
3.0
2.5 | 2.0
2.0
2.5
2.5 | 3.0
3.0
3.0
3.0 | 3.8
4.3
4.1
4.0
3.8 | 115
76
61
50
44 | 110
102
106
111
110 | 13
11
13
9.2
7.7 | 2.0
1.9
1.9
1.9 | 2.0
2.2
1.8
1.6 | 2.4
3.0
2.6
2.2
2.1 | | 26
27
28
29
30
31 | 5.6
4.7
4.3
4.4
5.4
5.2 | 4.0
4.0
4.0
4.0 | 2.5
3.0
3.0
3.0
3.0 | 2.5
2.5
2.5
2.5
3.0
3.0 | 3.0
3.0
3.0
3.0 | 4.1
5.4
5.3
5.2
5.1
4.6 | 40
42
56
84
157 | 101
99
98
89
83
63 | 7.9
8.3
11
13
11 | 2.3
2.5
2.2
2.4
2.1
2.1 | 1.6
2.0
1.9
1.7
1.6 | 1.9
1.9
2.1
2.1
2.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 116.6
3.76
7.0
2.7
231 | | 01.9
3.29
4.0
2.5
202 | 80.5
2.60
3.0
2.0
160 | 84.0
2.90
3.0
2.5
167 | 113.5
3.66
5.4
3.0
225 | 1510.4
50.3
157
4.4
3000 | 4736
153
329
63
9390 | 803.1
26.8
61
7.7
1590 | 99.8
3.22
7.1
1.9
198 | 61.2
1.97
3.8
1.6
121 | 75.8
2.53
6.6
1.3
150 | CAL YR 1987 TOTAL 5783.4 MEAN 15.8 MAX 274 MIN 2.1 AC-FT 11470 WTR YR 1988 TOTAL 7918.2 MEAN 21.6 MAX 329 MIN 1.3 AC-FT 15710 #### 09303000 NORTH FORK WHITE RIVER AT BUFORD, CO LOCATION.--Lat 39°59'15", long 107°36'50", in NW4NW4 sec.9, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 600 ft east of Buford and 1.2 mi upstream from South Fork White River. DRAINAGE AREA . - - 260 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1910 to December 1915, July 1919 to December 1920, October 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as North Fork White River near Buford prior to 1951 and as White River at Buford 1951-67. Records for July 1903 to December 1906 at site 6.5 mi upstream not equivalent because of inflow between sites. REVISED RECORDS. -- WSP 1343: 1912. WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,010 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 24, 1910, to May 27, 1914, nonrecording gage at site 1.5 mi upstream at different datum. May 28, 1914, to Dec. 7, 1915, and July 1, 1919, to Oct. 9, 1920, nonrecording gage at present site at different datum. REMARKS.--Estimated daily discharges: Nov. 30, and Dec. 13 to Feb. 23. Records good except those for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 900 acres upstream from, and 300 acres downstream from station. AVERAGE DISCHARGE.--43 years (water years 1911-15, 1920, 1952-88), 322 ft3/s; 233,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,550 ft³/s, May 24, 1984, gage height, 6.76 ft; maximum gage height, 7.22 ft, Jan. 9, 1961 (backwater from ice); minimum daily discharge, 90 ft³/s, Feb. 21, 1955. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 14
May 29 | 2320
1905 | *1,590
1.080 | *5.71
5.29 | June 7 | 2335 | 1,310 | 5.48 | DISCUADCE CUDIC PEET DED SECOND. MATER VEAD OCTOBER 1027 TO SERTEMBER 1028 Minimum daily discharge, 110 ft3/s, Jan. 20. | | | DISCHARC | E, CUBI | C FEET PER | | WATER YEA
EAN VALUES | | R 1937 TC | SEPTEMBE | R 1988 | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NON | DEC | JAN | FEB | MAR | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 185 | 190 | 174 | 130 | 160 | 150 | 157 | 580 | 677 | 440 | 261 | 187 | | 2 | 181 | 219 | 183 | 130 | 160 | 147 | 164 | 449 | 672 | 416 | 250 | 186 | | 3 | 172 | 188 | 171 | 130 | 140 | 146 | 178 | 402 | 799 | 407 | 255 | 185 | | 4 | 168 | 172 | 163 | 130 | 140 | 146 | 184 | 415 | 864 | 405 | 292 | 182 | | 5 | 174 | 169 | 167 | 140 | 140 | 146 | 182 | 504 | 957 | 391 | 261 | 181 | | 6 | 174 | 173 | 165 | 150 | 140 | 145 | 190 | . 580 | 1040 | 389 | 249 | 181 | | 7 | 178 | 171 | 164 | 150 | 150 | 151 | 226 | 477 | 1060 | 380 | 262 | 179 | | 8 | 186 | 168 | 162 | 150 | 160 | 149 | 250 | 476 | 1080 | 359 | 243 | 178 | | 9 | 177 | 165 | 157 | 150 | 170 | 149 | 211 | 437 | 1050 | 354 | 226 | 177 | | 10 | 175 | 180 | 167 | 150 | 160 | 149 | 203 | 475 | 1060 | 351 | 218 | 181 | | 11 | 174 | 182 | 169 | 150 | 160 | 147 | 219 | 572 | 1050 | 341 | 215 | 215 | | 12 | 172 | 178 | 148 | 140 | 160 | 148 | 264 | 748 | 944 | 332 | 218 | 290 | | 13 | 178 | 180 | 140 | 120 | 160 | 146 | 329 | 981 | 925 | 308 | 212 | 276 | | 14 | 190 | 186 | 130 | 140 | 160 | 145 | 355 | 1200 | 834 | 284 | 190 | 229 | | 15 | 193 | 185 | 125 | 150 | 150 | 149 | 363 | 1240 | 793 | 283 | 194 | 201 | | 16 | 194 | 167 | 140 | 150 | 150 | 145 | 405 | 1230 | 764 | 299 | 202 | 199 | | 17 | 182 | 182 | 150 | 150 | 140 | 147 | 441 | 1250 | 754 | 301 | 194 | 198 | | 18 | 180 | 175 | 150 | 160 | 140 | 145 | 410 | 1390 | 710 | 298 | 194 | 194 | | 19 | 176 | 184 | 150 | 120 | 140 | 147 | 459 | 1200 | 708 | 289 | 185 | 186 | | 20 | 174 | 197 | 140 | 110 | 150 | 148 | 460 | 852 | 693 | 281 | 194 | 177 | | 21 | 175 | 193 | 150 | 130 | 150 | 155 | 484 | 693 | 669 | 270 | 205 | 174 | | 22 | 175 | 192 | 150 | 130 | 150 | 164 | 395 | 640 | 657 | 247 | 211 | 180 | | 23 | 175 | 182 | 140 | 150 | 150 | 159 | 358 | 665 | 660 | 245 | 193 | 177 | | 24 | 184 | 176 | 130 | 140 | 146 | 165 | 323 | 756 | 597 | 241 | 190 | 176 | | 25 | 220 | 178 | 130 | 140 | 147 | 152 | 317 | 836 | 569 | 225 | 195 | 181 | | 26
27
28
29
30
31 | 193
186
182
181
199
190 | 176
171
172
189
195 | 130
140
140
140
140
140 | 150
150
150
150
160
170 | 147
149
151
148 | 157
179
182
166
166
157 | 294
298
325
383
539 | 816
815
914
940
932
748 | 555
535
569
529
477 | 234
247
244
251
258
254 |
198
206
194
193
190
189 | 181
182
183
182
132 | | TOTAL | 5643 | 5435 | 4645 | 4420 | 4368 | 4747 | 9366 | 24213 | 23251 | 9624 | 6679 | 5780 | | MEAN | 182 | 181 | 150 | 143 | 151 | 153 | 312 | 781 | 775 | 310 | 215 | 193 | | MAX | 220 | 219 | 183 | 170 | 170 | 182 | 539 | 1390 | 1080 | 440 | 292 | 290 | | MIN | 168 | 165 | 125 | 110 | 140 | 145 | 157 | 402 | 477 | 225 | 185 | 174 | | AC-FT | 11190 | 10780 | 9210 | 8770 | 8660 | 9420 | 18580 | 48030 | 46120 | 19090 | 13250 | 11460 | CAL YR 1987 TOTAL 103813 MEAN 284 MAX 990 MIN 125 AC-FT 205900 WTR YR 1988 TOTAL 108171 MEAN 296 MAX 1390 MIN 110 AC-FT 214600 ## 09303000 NORTH FORK WHITE RIVER AT BUFORD, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to current year. | MAY 16 1240 1070 175 7.9 8.0 0.0 11.8 160 50 9.5 0.5 180 | 1 | DATE | TII | STRE
FLO
INST
ME TANE
(CF | EAM-
DW,
EAN-
EOUS | SPE -
CIFIC
CON -
DUCT -
AN CE
US/CM) | PH
(STA
AR
UNIT | N D -
D | TEMP:
ATU:
WAT:
(DEG | RE
ER | OXYGE
DIS
SOLV
(MG/ | N, TO | ARD-
ESS
OTAL
MG/L
AS
ACO3) | (MG | IUM
-
VED S | AGNE -
SIUM,
DIS -
OLVED
MG/L
S MG) | |---|------|--|----------------------------|--|--|--|---|---|---|--|---|---|---|---|---|--| | MAY | | | 10 | 45 215 | 5 | 330 | 8 | .5 | , | 0.0 | 11 | .8 | 160 | 50 | ı | 9.5 | | JUN 23 1045 675 195 8.1 11.5 8.7 92 27 5.9 AUG 25 1045 195 325 8.3 11.0 9.1 160 47 9.6 | MA Y | | | | | | | | | | | | | | | | | AUG 26 10N5 195 325 8.3 11.0 9.1 160 N7 9.6 SODIUM, SODIUM, AD SILVE SOLVED SO | | | 10 | 45 675 | 5 | | | | 1 | 1.5 | 8 | .7 | 92 | 27
| | 5.9 | | SOLIUM, SOLIUM | | | 10 | 45 195 | 5 | | | | 1 | 1.0 | | | 160 | 47 | | | | NOV 20 3.0 0.1 1.1 92 77 0.6 0.1 19 216 MAY 16 2.2 0.1 0.8 65 27 0.5 0.2 14 116 JUN 23 2.1 0.1 0.8 66 32 0.4 0.4 15 123 AUD 26 2.8 0.1 0.8 91 73 0.4 0.1 18 206 SOLIDS, DIS- DIS- SOLVED SOLVED DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | , | DATE | DIS
SOLVI
(MG | UM, A
- SOI
ED TI
/L RAT | AD-
RP-
ION
IIO | SIUM,
DIS-
SOLVED
(MG/L | LINI
LA
(MG
AS | TY
B
/L | DIS
SOL
(MG | VED
/L | RIDE
DIS-
SOLV
(MG/ | ED S | IDE,
DIS-
OLVED
MG/L | DIS
SOL
(MG
AS | CA, SU
- CO
VED TU | M OF
NSTI-
ENTS,
DIS-
OLVED | | 20 3.0 0.1 1.1 92 77 0.6 0.1 19 216 MAY 16 2.2 0.1 0.8 65 27 0.5 0.2 14 116 JUN 23 2.1 0.1 0.8 66 32 0.4 0.4 15 123 AUG 26 2.8 0.1 0.8 91 73 0.4 0.1 18 206 SOLIDS, DIS- SOLVED DIS- SOLVED SOLVED DIS- ORGAN, MONIA MONIA PHOROUS ORTHO, DIS- SOLVED DIS- SOLVED DIS- SOLVED DIS- SOLVED DIS- SOLVED DIS- ORGAN, MONIA MONIA MONIA PHOROUS ORTHO, DIS- DIS- ORGAN, AS N) | *** | | AS I | NA) | | AS K) | CAC | :03) | AS S | 04) | AS C | CL) A | SF) | SIO | 12) (| MG/L) | | 16 2.2 0.1 0.8 65 27 0.5 0.2 14 116 JUN 23 2.1 0.1 0.8 66 32 0.4 0.4 15 123 AUG 26 2.8 0.1 0.8 91 73 0.4 0.1 18 206 SOLIDS, DIS- SOLIDS, DIS- SOLVED SOLVED DIS- SOLVED DIS- SOLVED DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | 20 | • • • | 3 | .0 | 0.1 | 1.1 | 92 | | 77 | | 0. | 6 | 0.1 | 19 |) | 216 | | 23 2.1 0.1 0.8 66 32 0.4 0.4 15 123 AUG 26 2.8 0.1 0.8 91 73 0.4 0.1 18 206 SOLIDS SOLIDS DIS- GEN | 16 | • • • | 2 | . 2 | 0.1 | 0.8 | 65 | | 27 | | 0. | 5 | 0.2 | 14 | | 116 | | 26 2.8 | 23 | | 2 | . 1 | 0.1 | 0.8 | 66 | | 32 | | 0. | 4 | 0.4 | 15 | i | 123 | | NOV | | • • • | 2 | . 8 | 0.1 | 0.8 | 91 | | 73 | | 0. | 4 | 0.1 | 18 | 1 | 206 | | 20 40 <1 <1 <100 <10 <1 2 <1 1 60 MAY 16 1300 <1 1 <1 <100 <10 <1 2 3 3 3 1500 MANGA- MCLYB- STRON- LEAD, LITHIUM NESE, MERCURY DENUM, NICKEL, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL SELE- TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- RECOV- RECOV- NIUM, RECOV- RECOV- ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE DATE (UG/L (U | | NOV
20
MAY
16
JUN
23
AUC
26
TO
RE
ER | | DIS-
SOLVED
(TONS
PER
AC-FT)
0.29
0.16
0.17
0.28
ANTI-
MONY,
TOTAL
(UG/L | DIS
SOLV
(TON)
PER
DAY
125
335
225
109
ARSEN
TOTA:
(UG/ | S, OT NITE OF SCHOOL SC | EN, RITE IS-LVED G/L N) .01 .01 .01 .01 .01 .01 .01 .01 | SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL | EN,
+NO3
IS-
LVED
G/L
N)
.1
.1
.1 | GIAMM DISON SOLO (MM ASS 0 0 CADI TOO REE ERR (UU | EN, ONIA IS- LVED G/L N) .02 .03 .01 MIUM FAL COV- ABLE G/L | GEN, AM MONIA ORGANI DIS. (MG/L AS N) 0.2 0.3 0.3 CHRO- MIUM, TOTAL RECOV. ERABLI (UG/L | PHODE SCIENCE | OROUS
OIS-
OIS-
OIG/L
OP)
O.02
O.03
O.02
O.02
O.02
O.02
O.04
O.04
O.04
O.04
O.04
O.04
O.04
O.04 | PHOROUGOTHO ORTHO DIS SOLVED (MG/L AS P) 0.02 <0.01 COPPER TOTAL RECOV ERABL (UG/L | , IRON, TOTAL RECOV ERABLE (UG/L | | 16 1300 <1 1 <100 <10 <1 2 3 3 1500 MANGA- MOLYB- STRON- LEAD, LITHIUM NESE, MERCURY DENUM, NICKEL, SILVER, TIUM, ZINC, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL SELE- TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- RECOV- RECOV- NIUM, RECOV- RECOV- ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE DATE (UG/L | 20 | | 40 | <1 | | <1 | <100 | < ' | 10 | | <1 | ; | 2 | <1 | | 1 60 | | LEAD, LITHIUM NESE, MERCURY DENUM, NICKEL, SILVER, TIUM, ZINC, TOTAL TOTAL TOTAL TOTAL TOTAL SELE- TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- RECOV- RECOV- NIUM, RECOV- RECOV- ERABLE ERABLE ERABLE ERABLE ERABLE ERABLE TOTAL ERABLE ERABLE ERABLE DATE (UG/L | | | 1300 | <1 | | 1 | <100 | < ' | 10 | | <1 | ; | 2 | 3 | | 3 1500 | | | DATE | TO
RE
E R
(U | TAL
COV-
ABLE
G/L | TOTAL
RECOV-
ERABLE
(UG/L | NESE
TOTAL
RECO
ERABI
(UG/I | , MER
L TO
V- RE
LE ER
L (U | TAL
COV-
ABLE
G/L | DEN
TOT
REC
ERA
(UC | NUM,
TAL
COV-
ABLE
G/L | TO:
REC
ERA
(UC | CAL
COV-
ABLE
G/L | NIUM,
TOTAL
(UG/L | TO
RE
ER
(U | TAL
COV-
ABLE
G/L | TIUM
TOTAL
RECOV
ERABL
(UG/L | TOTAL RECOV- E ERABLE (UG/L | | NOV 20 <5 <10 <10 0.20 1 2 <1 <1 500 <10 | | | < 5 | <10 | < | 10 | 0.20 | | 1 | | 2 | < | 1 | <1 | 50 | 0 <10 | | MAY 16 <5 <10 40 <0.10 3 5 <1 <1 250 10 | MA Y | | _ | | | | | | | | | | | | | | 09303000 NORTH FORK WHITE RIVER AT BUFORD, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | |-----------------------|------------------------------|---|---|--------------------------------|--------------------------------------|------------------------------| | OCT
02
NOV | 1350 | 176 | 334 | | 9.5 | | | 12 | 1320 | 176 | 280 | | 2.0 | | | DEC 09 | 1450 | 185 | 327 | | 0.0 | | | JAN
26 | 1220 | 157 | 347 | | 0.0 | | | MAR
09
23
28 | 1035
1105
1030 | 141
150
178 | 347
341
340 | 8.7 | 0.0
3.0
1.0 | 1.4 | | 05
12
27
JUN | 1020
1430
1015 | 436
623
7 67 | 260
225
185 | 8.2
8.2
8.0 | 4.5
9.5
6.5 | 8.8
15
7.1 | | 03
10
16
27 | 1500
0930
1330
0930 | 716
1020
782
533 | 190
152
177
222 | 8.0

8.2 | 7.5
14.5
11.5 | 8.7 | | JUL
01
08
20 | 1050
1025
1500 | 444
3 77
284 | 235
270
290 | 8.1
8.3 | 10.5
11.5
17.0 | 1.7 | | 02
15
SEP | 1020
1330 | 260
202 | 320
 | | 12.0
15.0 | | | 14 | 1315 | 222 | 303 | | 7.5 | | | | | | | | | | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|------|---|--|--|---| | NOV
20 | 1045 | 215 | 5 | 2.9 | 56 | | MA R | 1045 | 215 | 5 | 2.9 | 50 | | 28 | 1030 | 178 | 14 | 6.7 | 95 | | MA Y | | | | | | | 05 | 1020 | 436 | 25 | 29 | 74 | | 12 | 1430 | 623 | 50 | 84 | 66 | | 27
JUN | 1015 | 767 | 26 | 54 | 67 | | 03 | 1500 | 716 | 18 | 35 | 65 | | 10 | 0930 | 1020 | 69 | 190 | 42 | | 23 | 1045 | 675 | 19 | 35 | 53 | | 27 | 0930 | 533 | 11 | 16 | | | JUL | | | | | | | 01 | 1050 | 444 | 14 | 17 | 49 | | 08 | 1025 | 377 | 21 | 21 | 51 | | AUG
02 | 1020 | 260 | 12 | 8.4 | 50 | | 26 | 1020 | 195 | 5 | 2.6 | 52 | | 20 | ,045 | 1,20 | , | | 22 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.062 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.125 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
1.00 MM | |-----------|------|---|---|--|--|--|--|--|--| | MAY
16 | 1240 | 1070 | 38 | 110 | 68 | 76 | 88 | 98 | 100 | #### 09303300 SOUTH FORK WHITE RIVER AT BUDGE'S RESORT. CO LOCATION.--Lat 39°50'36", long 107°20'03", in NWt sec.36, T.2 S., R.89 W., Garfield County, Hydrologic Unit 14050005, on right bank 20 ft upstream from Forest Service trail bridge, 0.2 mi upstream from Wagonwheel Creek, and 0.3 mi northeast of Budge's Resort. DRAINAGE AREA. -- 52.3 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1975 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,980 ft above National Geodetic Vertical Datum of 1929, from topographic map. June 1, 1975, to July 7, 1976, at site on left bank 50 ft upstream at datum 1.3 ft, lower. REMARKS.--Estimated daily discharges: Nov. 16-23, Dec. 1-3, 12-31, Jan. 1 to Feb. 26, and June 27 to July 14. Records good except for estimated daily discharges, which are fair. No diversion upstream from station. AVERAGE DISCHARGE. -- 13 years, 110 ft3/s; 79,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 2,750 ft³/s, June 25, 1983, gage height, 6.57 ft, from rating curve extended above 850 ft³/s; minimum daily, 21 ft³/s, Sept. 29, 30, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 821 ${\rm ft}^3/{\rm s}$ at 2100 June 7, gage height, 5.43 ft; minimum daily, 44 ${\rm ft}^3/{\rm s}$, Jan. 20. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------
--|---------------------------------|----------------------------|----------------------------|----------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 53 | 54 | 50 | 48 | 50 | 47 | 51 | 74 | 218 | 94 | 65 | 53 | | 2 | 53 | 56 | 50 | 48 | 50 | 48 | 50 | 68 | 212 | 91 | 64 | 53 | | 3 | 53 | 54 | 50 | 48 | 46 | 47 | 48 | 66 | 284 | 88 | 62 | 52 | | 4 | 53 | 51 | 51 | 48 | 46 | 47 | 47 | 67 | 415 | 85 | 61 | 51 | | 5 | 53 | 51 | 50 | 50 | 46 | 51 | 48 | 73 | 546 | 82 | 59 | 51 | | 6 | 52 | 51 | 49 | 50 | 48 | 50 | 49 | 78 | 635 | 79 | 59 | 51 | | 7 | 52 | 51 | 48 | 48 | 48 | 48 | 53 | 73 | 673 | 76 | 60 | 51 | | 8 | 52 | 50 | 49 | 48 | 50 | 49 | 56 | 71 | 639 | 73 | 58 | 50 | | 9 | 52 | 50 | 51 | 48 | 50 | 49 | 53 | 68 | 607 | 70 | 57 | 50 | | 10 | 52 | 51 | 51 | 50 | 48 | 48 | 55 | 70 | 603 | 69 | 56 | 52 | | 11 | 52 | 52 | 50 | 50 | 50 | 47 | 55 | 79 | 519 | 68 | 56 | 58 | | 12 | 51 | 55 | 50 | 46 | 50 | 49 | 58 | 98 | 483 | 67 | 58 | 65 | | 13 | 54 | 54 | 50 | 46 | 52 | 51 | 63 | 131 | 434 | 68 | 56 | 69 | | 14 | 58 | 54 | 48 | 48 | 50 | 53 | 64 | 170 | 335 | 68 | 55 | 65 | | 15 | 57 | 53 | 48 | 50 | 52 | 54 | 66 | 190 | 284 | 67 | 55 | 63 | | 16
17
18
19
20 | 56
55
52
52
52 | 50
50
50
50
5 0 | 50
52
52
52
48 | 50
50
50
46
44 | 50
50
50
50
52 | 49
49
50
50
48 | 67
69
66
67
67 | 214
240
267
243
199 | 273
251
222
210
206 | 68
67
66
65
64 | 60
59
58
56
55 | 63
62
59
57 | | 21 | 52 | 55 | 50 | 46 | 52 | 47 | 67 | 172 | 190 | 63 | 63 | 58 | | 22 | 51 | 50 | 50 | 48 | 52 | 47 | 65 | 158 | 176 | 62 | 63 | 59 | | 23 | 51 | 55 | 50 | 48 | 52 | 47 | 62 | 162 | 161 | 62 | 57 | 57 | | 24 | 52 | 53 | 48 | 46 | 52 | 46 | 59 | 186 | 140 | 62 | 55 | 55 | | 25 | 55 | 56 | 46 | 46 | 52 | 45 | 58 | 214 | 124 | 62 | 53 | 54 | | 26
27
28
29
30
31 | 53
52
52
53
56
54 | 54
57
50
50
50 | 46
48
48
48
50
48 | 48
50
50
50
52
52 | 52
51
48
47 | 47
48
48
53
52
49 | 59
55
56
61
70 | 227
242
303
360
333
256 | 113
105
120
100
97 | 63
62
64
65
65 | 54
56
53
53
53 | 53
53
53
54 | | TOTAL | 1645 | 1567 | 1531 | 1502 | 1446 | 1513 | 1764 | 5152 | 9375 | 2168 | 1782 | 1687 | | MEAN | 53•1 | 52.2 | 49.4 | 48.5 | 49.9 | 48.8 | 58.8 | 166 | 312 | 69.9 | 57.5 | 56.2 | | MAX | 58 | 57 | 52 | 52 | 52 | 54 | 70 | 360 | 673 | 94 | 65 | 69 | | MIN | 51 | 50 | 46 | 44 | 46 | 45 | 47 | 66 | 97 | 62 | 53 | 50 | | AC-FT | 3260 | 3110 | 3040 | 2980 | 2870 | 3000 | 3500 | 10220 | 18600 | 4300 | 3530 | 3350 | CAL YR 1987 TOTAL 30097 MEAN 82.5 MAX 476 MIN 46 AC-FT 59700 WTR YR 1988 TOTAL 31132 MEAN 85.1 MAX 673 MIN 44 AC-FT 61750 ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to current year. | DATE TIME | FLOW, COMINSTAN - DUCTANEOUS AND | IC
I- PH
CT- (STAND- | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN, TO
DIS- (M
SOLVED A | TAL DIS-
G/L SOLVE | DIS-
D SOLVED
(MG/L | |---|---|---|--|--|---|--| | FEB 12 1300 | 52 | 138 8.5 | 0.5 | 10.2 | 67 18 | 5.4 | | JUN | | | | | | - | | 07 1345 | 562 | 106 8.0 | 9.0 | 8.5 | 50 13 | 4.3 | | SODIUM,
DIS-
SOLVED
DATE (MG/L
AS NA) | AD- SI
SORP- DI
TION SOI | TAS- ALKA-
LUM, LINITY
IS- LAB
LVED (MG/L
G/L AS
K) CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE, RI
DIS- D
SOLVED SOI
(MG/L (M | UO- SILICA DE, DIS- IS- SOLVE LVED (MG/L G/L AS F) SIO2) | CONSTI-
D TUENTS, | | FEB 12 1,9 | 0.1 | 2.0 70 | 4.8 | 0.8 | 0.2 19 | 95 | | JUN 0.9 | | 0.6 52 | 3.5 | | 0.2 7.9 | 62 | | 07 0.9 | 0.1 | 5.0 | 3.5 | 0.2 | 0.2 7.9 | 02 | | FEB 12 JUN 07 ALUM- INUM, TOTAL AN RECOV- MC ERABLE TC DATE (UG/L (U | LIDS, DIS- DIS- DIVED SOLVED (TONS PER PER C-FT) DAY) 0.13 13.4 0.08 93.8 NTI- DNY, ARSENIC TOTAL (UG/L S SB) AS AS) | GEN, NITRITE NO DIS- SOLVED S (MG/L (AS N) A <0.01 <0.01 <0.01 SBARIUM, L TOTAL T RECOV- R ERABLE E (UG/L (UG/L | GEN, GI 2+NO3 AMM DIS- D OLVED SOI MG/L (MM S N) AS 0.24 0 0.1 0 ERYL- IUM, CADI OTAL TO' ECOV- REI RABLE ERI UG/L (UU | TRO- NITRO- EN, GEN, AM- EN, GEN, AM- ORGANIC LVED DIS. G/L (MG/L N) AS N) .01 <0.20 .02 0.40 CHRO- MIUM, TAL COV- ABLE ERABLE G/L (UG/L CD) AS CR) | PHOS-PHOROUS DIS-SOLVED SI (MG/L (I) AS P) AS 0.03 0.02 COBALT, COTAL RECOV-ERABLE I (UG/L | PHOS-HOROUS ORTHO, DIS- OLVED MG/L S P) <0.01 <0.01 OPPER, IRON, TOTAL RECOV- ERABLE ERABLE (UG/L AS CU) AS FE) | | FEB 12 130 | <1 <1 | <100 | <10 | 1 2 | 4 | 5 180 | | JUN
07 380 | 2 <1 | <100 | <10 | 2 1 | 2 | 370 | | LEAD, LIT TOTAL TO RECOV- RE ERABLE EN DATE (UG/L (U AS PB) AS | MANGA- THIUM NESE, OTAL TOTAL ECOV- RECOV- RABLE ERABLE UG/L (UG/L S LI) AS MN) | MERCURY D
TOTAL T
RECOV - R
ERABLE E
(UG/L (| OLYB- ENUM, NICI OTAL TO' ECOV- RE RABLE ER UG/L (U | | SILVER,
TOTAL
RECOV -
ERABLE
(UG/L | STRON- TIUM, ZINC, TOTAL TOTAL RECOV- RECOV- ERABLE ERABLE (UG/L (UG/L AS SR) AS ZN) | | FEB 12 <5 | <10 10 | <0.10 | 2 | 6 <1 | <1 | 120 20 | | JUN
07 47 | <10 10 | <0.10 | 5 | 8 <1 | 1 | 70 10 | # 09303300 SOUTH FORK WHITE RIVER AT BUDGE'S RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------------|------|---|---|--------------------------------------|-----------|------|---|---|--------------------------------------| | 0 CT
09 | 0915 | 54 | 164 | 0.0 | AUG
O3 | 1125 | 60 | 147 | 10.5 | | JUL
14 | 1120 | 69 | 158 | 11.0 | | | | | | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|------|---|--|--|---| | JUN
07 | 1345 | 562 | 18 | 27 | 60 | 257 09303320 WAGONWHEEL CREEK AT BUDGE'S RESORT, CO LOCATION.--Lat 39°50'40", long 107°20'10", in SW4SW4 sec.25, T.2 S., R.89 W., Garfield County, Hydrologic Unit 14050005, on right bank 60 ft upstream from mouth and confluence of South Fork White River, about 800 ft downstream from private road bridge, and 0.2 mi north-northeast of Budge's Resort. DRAINAGE AREA. -- 7.36 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1975 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,980 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 17 to May 17. Records good except for periods of flow below 4.0 ft³/s, which are fair, and those for estimated daily discharges, and periods of flow above 4.0 ft³/s, which are poor. AVERAGE DISCHARGE. -- 13 years, 11.0 ft3/s; 7,970 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 336 ft³/s, June 8, 1985, gage height 4.64 ft; no flow many days each year. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 55 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 28 | 2400 | 167 | 3.23 | June 5 | 1700 | *313 | *3.67 | | No flo | w many days. | | | | | | | | | | DISCHAI | RGE, CUBIC | C FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 T | SEPTEMBER | 1988 | | | |-------|------|---------|------------|------------|------|--------------------------|---------|--------|-----------|------|-------|------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | .01 | .00 | .00 | .00 | .00 | .00 | .00 | .10 | 75 | 5.5 | 1.0 | .06 | | 2 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .10 | 47 | 2.8 | .97 | .05 | | 3 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .10 | 95 | 2.7 | . 83 | .05 | | 4 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .10 | 187 | 2.8 | .76 | .04 | | 5 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .20 | 246 | 2.9 | .69 | .04 | |) | •00 | •00 | •00 | .00 | •00 | •00 | •00 | • 20 | 240 | | .07 | .04 | | 6 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .30 | 203 | 2.8 | .65 | .03 | | 7 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .20 | 170 | 2.3 | .65 | .01 | | 8 | .00 | .00 |
.00 | .00 | .00 | .00 | .00 | .20 | 166 | 2.3 | .70 | .00 | | 9 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .20 | 157 | 2.3 | .65 | .00 | | 10 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .20 | 107 | 2.5 | .65 | .00 | | 11 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .30 | 84 | 2.7 | .65 | .08 | | | | | | | | | | | | | .65 | •33 | | 12 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 1.0 | 71 | 2.9 | | • > > > | | 13 | .00 | .00 | .00 | .00 | .00 | .00 | .01 | 2.0 | 58 | 3.1 | .65 | .47 | | 14 | .00 | .00 | .00 | .00 | .00 | .00 | .01 | 3.0 | 38 | 3.3 | -65 | .49
.46 | | 15 | .00 | .00 | .00 | .00 | .00 | .00 | .01 | 7.0 | 32 | 3.2 | .65 | .46 | | 16 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | 10 | 29 | 3.1 | .65 | . 44 | | 17 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | 17 | 28 | 3.0 | .65 | .36 | | 18 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | 30 | 24 | 3.0 | .65 | .45 | | 19 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | 30 | 21 | 2.7 | .65 | .36 | | 20 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | 19 | 20 | 2.5 | .52 | .32 | | 20 | •00 | •00 | •00 | •00 | .00 | .00 | .02 | 19 | 20 | 2.5 | • 52 | • 5 = | | 21 | .00 | .00 | .00 | .00 | .00 | .00 | .03 | 11 | 16 | 2.1 | .13 | •37 | | 22 | .00 | .00 | .00 | .00 | .00 | .00 | .03 | 6.3 | 15 | 1.9 | .46 | •55 | | 23 | .00 | .00 | .00 | .00 | .00 | .00 | .04 | 6.4 | 13 | 1.8 | .46 | •55 | | 24 | .00 | .00 | .00 | .00 | .00 | .00 | .04 | 17 | 9.5 | 1.7 | .34 | •55 | | 25 | .00 | .00 | .00 | .00 | .00 | .00 | .05 | 41 | 7.4 | 1.6 | •33 | .40 | | | | | | | | | | | | | | | | 26 | .00 | .00 | .00 | .00 | .00 | .00 | .05 | 62 | 6.4 | 1.6 | .18 | .28 | | 27 | .00 | .00 | .00 | .00 | .00 | .00 | .05 | 75 | 5.4 | 1.6 | . 17 | .28 | | 28 | .00 | .00 | .00 | .00 | .00 | .00 | .05 | 122 | 5.3 | 1.4 | .13 | .28 | | 29 | .00 | •00 | .00 | .00 | .00 | .00 | | 152 | 4.9 | 1.2 | .11 | .24 | | 30 | .00 | .00 | .00 | .00 | | .00 | | 129 | 4.8 | 1.1 | .10 | .20 | | 31 | .00 | | .00 | .00 | | .00 | | 77 | | 1.1 | .06 | | | 31 | .00 | | •00 | •00 | | .00 | | 11 | | 1.1 | •00 | | | TOTAL | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.67 | 819.70 | 1945.7 | 75.5 | 16.39 | 7.74 | | MEAN | .000 | .00 | .00 | .00 | .00 | .00 | .022 | 26.4 | 64.9 | 2.44 | •53 | .26 | | MA X | .01 | .00 | .00 | .00 | .00 | .00 | .10 | 152 | 246 | 5.5 | 1.0 | .55 | | MIN | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .10 | 4.8 | 1.1 | .06 | .00 | | AC-FT | .02 | .0 | .0 | .0 | .0 | .0 | 1.3 | 1630 | 3860 | 150 | 33 | 15 | | AU-FI | .02 | • 0 | • 0 | . 0 | • 0 | .0 | 1.0 | 1030 | 5500 | . 50 | 33 | 1,5 | CAL YR 1987 TOTAL 3120.16 MEAN 8.55 MAX 115 MIN .00 AC-FT 6190 WTR YR 1988 TOTAL 2865.71 MEAN 7.83 MAX 246 MIN .00 AC-FT 5680 ## 09303320 WAGONWHEEL CREEK AT BUDGES RESORT, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1983 to current year. | 1 | DATE T | FLO
INS'
IME TANI | OW, CO
TAN- DU
EOUS AN | FIC
N- PH
CT- (ST# | ND- ATU
ND WAT | IRE DI
ER SOI | IS- (MO
LVED AS | SS CALC
FAL DIS
G/L SOL
S (MC | IUM SI
- DI
VED SOL | | |------------|--|---|---|---|---|---|---|---|--|---| | JUN
07 | 1 | 500 15 | 4 | 8 | 3.4 | 9.0 | 8.8 | 120 32 | : 9 | . 4 | | JUL
14. | | | 3.4 | | | 12.5 | 7.5 | 170 43 | | | | , , , | | | J • ¬ | 20) | , . ¬ | 12.5 | (•) | 170 43 | , , , , | | | 1 | DI
SOL
DATE (M | IUM,
S- SO
VED T | AD- S
RP- D
ION SO:
TIO (M | TAS- ALF IUM, LINI IS- LA LVED (MC G/L AS K) CAC | TY SULF
B DIS
J/L SOI | ATE RII
5- DIS
VED SOI
5/L (MO | S- DI
LVED SOI | DE, DIS
IS- SOL
LVED (MG
G/L AS | - CONS
VED TUEN
I/L DI
SOL | OF
TI-
TS,
S-
VED | | JUN
07 | | 0.4 | 0.0 | 0.4 113 | 2 | 2.7 | 0.2 | 0.2 2 | · 5 | 116 | | JUL
14. | < | 0.2 | | 0.4 158 | 2 | 2.0 | 0.3 | 0.2 2 | . 9 | | | | | | | | | | | | | | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | | JUN
07 | 0.16 | 48.0 | <0.01 | <0.1 | <0.01 | 0.20 | 0.01 | <0.01 | | | | JUL
14 | | | <0.01 | <0.1 | <0.01 | 0.50 | 0.01 | <0.01 | | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | TOTAL
(UG/L | ARSENIC
TOTAL
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON, TOTAL RECOV- ERABLE (UG/L AS FE) | | JUN
07 | 160 | 2 | <1 | <100 | <10 | 2 | 1 | 2 | 19 | 250 | | JUL 14 | <10 | | <1 | | | | | | - | _ | | 14 | \10 | `1 | <1 | <100 | <10 | <1 | <1 | <1 | 2 | 60 | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | ERABLE
(UG/L | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MOL YB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | STRON - TIUM, TOTAL RECOV - ERABLE (UG/L AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | JUN
07 | < 5 | <10 | 30 | <0.10 | 5 | 4 | <1 | 1 | 50 | <10 | | JUL
14 | < 5 | <10 | 40 | 0.10 | 2 | <1 | <1 | <1 | 60 | <10 | | | | | | | | | | | | | # 09303320 WAGONWHEEL CREEK AT BUDGES RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | |-----------------|--------------|---|---|---|-----------|------|---|--|---| | JUN
07
07 | 1500
1505 | 154
154 | 25
32 | 10
13 | JUL
14 | 1345 | 3.4 | 6 | 0.05 | #### 09303400 SOUTH FORK WHITE RIVER NEAR BUDGE'S RESORT, CO LOCATION.--Lat 39°51'51", long 107°32'00", in NW4SE4 sec.19, T.2 S., R.90 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank on downstream side of Forest Service bridge, 300 ft upstream from South Fork Campground, 10 mi above mouth, and about 10.5 mi southeast of Buford. DRAINAGE AREA. -- 128 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1976 to current year. REVISED RECORDS.--WDR CO-79-3: 1976 (M), 1977, 78 (P), 1978. GAGE.--Water-stage recorder. Elevation of gage is 7,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 17-22, Dec. 9 to Apr. 14, and June 8 to July 19. Records fair except for estimated daily discharges, which are poor. No regulation or diversions upstream from station. AVERAGE DISCHARGE. -- 12 years, 215 ft3/s; 155,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,770 ft³/s, June 22, 1983, gage height, 6.18 ft; minimum daily, 40 ft³/s, Feb. 1 to Mar. 10, 1980, Dec. 30, 1980, Jan. 10, 15, 1981. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|------|----------------------|---------------------| | May 28 | 2300 | 1,220 | 4.81 | June 6 | 0300 | * 1,680 | * 5.14 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 50 ft³/s, Dec. 14-16. | | MEAN VALUES | | | | | | | | | | | | | |--------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|--|--------------------------------------|--|-----------------------------------|-----------------------------------|--| | DA Y | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 86
86
86
86
86 | 97
102
96
94
94 | 56
62
58
57
74 | 70
60
60
60
70 | 90
90
90
80
80 | 75
75
75
75
75 | 90
90
95
95
95 |
170
164
153
155
162 | 593
562
744
1100
1320 | 220
210
200
195
190 | 123
119
115
110
105 | 82
82
78
76
76 | | | 6
7
8
9
10 | 86
85
87
88
88 | 97
95
94
88
91 | 81
82
80
70
70 | 80
80
80
80 | 90
100
100
95
90 | 80
80
80
80 | 100
110
110
100
100 | 171
164
163
159
160 | 1380
1190
1150
1050
1050 | 185
180
175
170
165 | 105
108
102
99
96 | 75
75
74
73
76 | | | 11
12
13
14
15 | 87
88
92
102
97 | 94
95
92
94
91 | 70
70
60
50
50 | 80
70
70
80
80 | 90
90
90
90
90 | 80
75
75
75
75 | 100
105
110
120
142 | 176
228
300
412
476 | 1000
900
800
700
660 | 160
155
150
145
145 | 94
94
93
89 | 89
111
119
106
99 | | | 16
17
18
19
20 | 96
93
92
90
87 | 81
75
70
70
80 | 50
60
90
90
80 | 80
80
80
75
70 | 100
100
90
70
70 | 80
85
100
100 | 148
157
154
153
151 | 540
640
726
679
565 | 650
650
550
500
450 | 145
140
140
135
132 | 96
92
93
89
87 | 97
99
103
92
88 | | | 21
22
23
24
25 | 87
90
91
93
102 | 90
100
106
82
80 | 70
70
70
70
70 | 60
60
60
60
70 | 80
80
70
70
80 | 100
90
90
90
90 | 154
150
143
138
135 | 506
457
453
523
609 | 400
350
320
300
280 | 128
124
122
120
118 | 98
104
91
86
84 | 91
93
88
85
83 | | | 26
27
28
29
30
31 | 96
93
92
93
100
96 | 106
79
57
57
56 | 60
60
60
70
70
70 | 75
80
90
90
90 | 80
80
80
80 | 90
90
90
90
90 | 140
138
134
139
155 | 657
695
849
983
945
690 | 270
250
270
250
230 | 120
121
122
124
124
121 | 84
89
85
84
83 | 82
81
81
81 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 2821
91.0
102
85
5600 | 2603
86.8
106
56
5160 | 2100
67.7
90
50
4170 | 2310
74.5
90
60
4580 | 2485
85.7
100
70
4930 | 2620
84.5
100
75
5200 | 3751
125
157
90
7440 | 13730
443
983
153
27230 | 19919
664
1380
230
39510 | 4681
151
220
118
9280 | 2967
95.7
123
81
5890 | 2616
87.2
119
73
5190 | | CAL YR 1987 TOTAL 60113 MEAN 165 MAX 945 MIN 50 AC-FT 119200 WTR YR 1988 TOTAL 62603 MEAN 171 MAX 1380 MIN 50 AC-FT 124200 ## WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1983 to current year. | 1 | DATE | TI | FLO
INS'
ME TANI | EAM-
DW,
FAN-
EOUS | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CN | PH
- (STA
Al | AND-
RD | TEMP
ATU
WAT
(DEG | RE
ER | OXYGE
DIS
SOLV | NE
EN, TO
S- (N
JED A | ARD-
ESS
OTAL
MG/L
AS
ACO3) | (MC | S-
VED | MAGN
SIU
DIS
SOLV
(MG/
AS N | IM,
S-
VED
'L | |------------|-----------------------|---|---|----------------------------------|--|---|----------------------------|---|---------------------------|---|--|---|--|---------------------|---|---| | MAY
25 | | 12 | 00 590 | 1 | 19 | an 5 | 3.2 | | 4.5 | 10 |).5 | 110 | 31 | | 7. | h | | JUN | | | | | | | | | | | - | | | | | | | JUL | • • • | 11 | 30 26 | 2 | 18 | 30 8 | 3.6 | 1 | 0.5 | 8 | 3.9 | 95 | 26 | • | 7. | 2 | | 19 | • • • | 14 | 15 138 | 3 | 19 | 8 8 | 3.5 | 1 | 4.0 | 7 | 7.9 | 100 | 28 | } | 7. | 9 | | 1 | DATE | SODI
DIS
SOLVI
(MG | UM, SOI
ED TI
/L RA | DIUM
AD-
RP-
ION
FIO | POTAS
SIUM
DIS-
SOLVE
(MG/L | 1, LINI
- LA
ED (MO | ITY
AB
G/L | SULF
DIS
SOL
(MG | VED | CHLO
RIDE
DIS-
SOLV
(MG/
AS (| E, RI
- I
/ED SC
/L (N | LUO-
IDE,
DIS-
DLVED
MG/L
S F) | SILI
DIS
SOL
(MC
AS | -
VED | SOLIE
SUM C
CONST
TUENT
DIS
SOLV
(MG/ | PF
'I -
'S,
'ED | | MAY
25. | | 1 | . 4 | 0.1 | 0.6 | 5 102 | | 4 | . 1 | 0. | ц | 0.2 | d | .7 | 1 | 16 | | JUN 30 | | | . 4 | 0.1 | 0.7 | | | | . 1 | 0. | | 0.1 | 12 | | | 10 | | JUL | | | | | | | | | | | | | | | | | | 19. | • • • | 1 | • 9 | 0.1 | 0.8 | 3 104 | | 4 | .0 | 0. | . 5 | 0.1 | 14 | | 1 | 20 | | | | ATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOL
(TO
PE | S- N
VED
NS | NITRO-
GEN,
IITRITE
DIS-
SOLVED
(MG/L
AS N) | 0
NO2
D
SO
(M | TRO-
EN,
+NO3
IS-
LVED
IG/L
N) | G
AMM
D
SO
(M | TRO-
EN,
ONIA
IS-
LVED
G/L
N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | - PH
- PHC
C I
SC
(N | IOS -
DROUS
DIS -
DLVED
IG/L
S P) | PHO | THO,
S-
VED
VL | | | | MAY
25. | | 0.16 | 185 | | <0.01 | 0 | . 1 | <0 | .01 | <0.20 |) (| .02 | <0. | .01 | | | | JUN
30. | | 0.15 | 78 | .0 | <0.01 | <0 | . 1 | <0 | .01 | <0.20 |) (| .02 | <0. | .01 | | | | JUL
19. | •• | 0.16 | 44 | .8 | 0.04 | 0 | . 1 | 0 | .05 | <0.20 |) (| .02 | 0. | . 04 | | | DATE | I
T
R
E
(| LUM-
NUM,
OTAL
ECOV-
RABLE
UG/L
S AL) | ANTI-
MONY,
TOTAL
(UC/L
AS SB) | ARSE
TOT
(UC
AS | NIC
AL | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | LI
TO
RE
ER
(U | RYL-
UM,
TAL
COV-
ABLE
G/L
BE) | TO
RE
ER
(U | MIUM
TAL
COV-
ABLE
G/L
CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | TC
- RE
E EF
(U | BALT,
DTAL
COV-
RABLE
UG/L
G CO) | RE (
ER /
(U) | PER,
TAL
COV-
ABLE
G/L
CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | | MA Y
25 | | 250 | <1 | | <1 | <100 | < | 10 | | 1 | <1 | 1 | <1 | | 12 | 420 | | DATE | T
R
E
(| EAD,
OTAL
ECOV-
RABLE
UG/L
S PB) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | NES
TOT
REC
ERA
(UG | AL
OV-
BLE | ERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | DE
TO
RE
ER
(U | LYB-
NUM,
TAL
COV-
ABLE
G/L
MO) | TO
RE
ER
(U | KEL,
TAL
COV-
ABLE
G/L
NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | TC
RE
ER
(U | VER,
TAL
COV-
ABLE
IG/L
AG) | TOT
REC
ER! | RON -
IUM,
IAL
COV -
IBLE
I/L
SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | MA Y
25 | | 5 | <10 | | 10 | <0.1 | | 4 | | < 1 | <1 | 1 | 1 | | 100 | <10 | GREEN RIVER BASIN 09303400 SOUTH FORK WHITE RIVER NEAR BUDGES RESORT, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------|------|---|--|--------------------------------------|------------|------|---|---|--------------------------------------| | OCT | | | | | APR | | | | | | 01 | 1200 | 89 | 205 | 7.0 | 14 | 1155 | 112 | 200 | 5.0 | | NOV
12 | 1015 | 85 | 224 | 1.0 | MA Y
12 | 1315 | 192 | 180 | 8.5 | | DEC | 1015 | 05 | 224 | 1.0 | JUN | 1315 | 192 | 100 | 0.5 | | 10 | 1000 | 83 | 184 | 0.0 | 15 | 1135 | 639 | 152 | 8.5 | | JAN | | | | | SEP | | | | | | 27 | 1025 | 82 | 188 | 0.0 | 14 | 1520 | 102 | 194 | 7.0 | | FEB | | | | | | | | | | | 26 | 1010 | 59 | 197 | 0.5 | | | | | | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED. SUSP. SIEVE DIAM. FINER THAN .062 MM | |-----------|------|---|--|---|---| | MAY
25 | 1200 | 590 | 19 | 30 | 33 | | JUN
30 | 1130 | 262 | 20 | 14 | | | JUL
19 | 1415 | 138 | 7 | 2.6 | 27 | #### 09303500 SOUTH FORK WHITE RIVER NEAR BUFORD, CO LOCATION.--Lat 39°55'18", long 107°33'04", in NW4SE4 sec.36, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank at upstream side of county bridge, 10 ft downstream from Peltier Creek, and 5.6 mi southeast of Buford. DRAINAGE AREA . -- 157 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1903 to October 1906, June 1910 to December 1915, October 1942 to September 1947, April 1967 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1057: 1944-45, WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 7,480 ft above National Geodetic Vertical Datum of
1929, from topographic map. July 26, 1903, to Oct. 31, 1906, nonrecording gage, and Oct. 1, 1942, to Sept. 30, 1947, water-stage recorder, at site 60 ft upstream at different datums. Records for 1919-20 at site 6.0 mi downstream not equivalent. REMARKS.--Estimated daily discharges: Nov. 18, 19, 25, Dec. 9, 13, 27-30, Jan. 21-27, Feb. 19, Mar. 12-16, 30, and June 11-16. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 600 acres of hay meadows upstream from station. AVERAGE DISCHARGE.--34 years (water years 1904-06, 1911-15, 1943-47, 1968-88), 270 ft³/s; 195,600 acre-ft. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,620 ft³/s, June 24, 1983, gage height, 7.73 ft; maximum gage height 8.2 ft, June 17, 1906, site and datum then in use; minimum discharge recorded, 56 ft³/s, Dec. 18, 1946, gage height, 1.01 ft, site and datum then in use, but may have been less during periods of no gage-height record. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 30 | 0500 | 1,430 | 5.21 | June 7 | 0500 | *2,110 | * 6.04 | Minimum daily discharge, 79 ft3/s, Dec. 16. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|--|---------------------------------|-----------------------------|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 122 | 125 | 110 | 105 | 113 | 112 | 109 | 20 7 | 833 | 288 | 168 | 124 | | 2 | 121 | 130 | 117 | 96 | 111 | 107 | 114 | 250 | 744 | 271 | 162 | 122 | | 3 | 120 | 127 | 122 | 100 | 104 | 106 | 119 | 242 | 987 | 261 | 154 | 118 | | 4 | 120 | 124 | 127 | 107 | 90 | 107 | 120 | 219 | 1360 | 256 | 152 | 117 | | 5 | 119 | 121 | 122 | 115 | 92 | 100 | 120 | 215 | 1730 | 246 | 148 | 116 | | 6 | 120 | 125 | 119 | 117 | 101 | 112 | 124 | 218 | 1940 | 233 | 147 | 115 | | 7 | 120 | 124 | 129 | 112 | 107 | 110 | 140 | 242 | 1900 | 226 | 153 | 114 | | 8 | 120 | 121 | 106 | 113 | 112 | 110 | 156 | 239 | 1 7 80 | 218 | 148 | 111 | | 9 | 120 | 114 | 105 | 111 | 110 | 112 | 140 | 227 | 1630 | 210 | 143 | 111 | | 10 | 120 | 118 | 118 | 111 | 109 | 116 | 134 | 226 | 1620 | 209 | 141 | 111 | | 11 | 119 | 130 | 116 | 107 | 104 | 105 | 142 | 244 | 1550 | 208 | 139 | 126 | | 12 | 119 | 127 | 119 | 100 | 104 | 100 | 154 | 311 | 1300 | 198 | 140 | 159 | | 13 | 122 | 121 | 100 | 94 | 109 | 100 | 173 | 425 | 1200 | 197 | 142 | 1 7 0 | | 14 | 133 | 122 | 87 | 108 | 105 | 100 | 182 | 598 | 1000 | 191 | 139 | 156 | | 15 | 131 | 121 | 82 | 114 | 115 | 100 | 196 | 694 | 900 | 185 | 136 | 141 | | 16 | 128 | 123 | 79 | 109 | 123 | 105 | 203 | 798 | 850 | 184 | 144 | 136 | | 17 | 124 | 115 | 111 | 109 | 119 | 107 | 222 | 954 | 851 | 182 | 144 | 136 | | 18 | 123 | 110 | 122 | 115 | 111 | 115 | 220 | 1130 | 758 | 173 | 143 | 138 | | 19 | 121 | 110 | 123 | 105 | 105 | 121 | 213 | 1110 | 718 | 165 | 137 | 132 | | 20 | 117 | 126 | 105 | 90 | 107 | 119 | 211 | 876 | 679 | 160 | 135 | 126 | | 21 | 117 | 123 | 104 | 80 | 113 | 113 | 212 | 712 | 653 | 158 | 143 | 126 | | 22 | 118 | 132 | 107 | 80 | 128 | 113 | 214 | 611 | 593 | 158 | 157 | 131 | | 23 | 118 | 121 | 104 | 80 | 109 | 110 | 203 | 599 | 545 | 154 | 139 | 128 | | 24 | 120 | 116 | 103 | 80 | 121 | 112 | 194 | 749 | 4 7 8 | 153 | 132 | 124 | | 25 | 133 | 110 | 98 | 90 | 130 | 109 | 185 | 897 | 432 | 152 | 129 | 121 | | 26
2 7
28
29
30
31 | 126
122
120
121
128
126 | 129
113
130
149
143 | 95
80
80
90
100 | 100
105
115
118
117
116 | 135
126
112
121 | 108
119
118
115
105
113 | 184
173
173
175
183 | 939
964
1160
1360
1350
1020 | 400
367
377
348
315 | 153
158
158
158
166
160 | 128
135
129
127
126
125 | 119
118
117
116
117 | | TOTAL | 3788 | 3700 | 3286 | 3219 | 3246 | 3399 | 5088 | 19786 | 28838 | 5989 | 4385 | 3796 | | MEAN | 122 | 123 | 106 | 104 | 112 | 110 | 170 | 638 | 961 | 193 | 141 | 127 | | MAX | 133 | 149 | 129 | 118 | 135 | 121 | 222 | 1360 | 1940 | 288 | 168 | 170 | | MIN | 117 | 110 | 7 9 | 80 | 90 | 100 | 109 | 20 7 | 315 | 152 | 125 | 111 | | AC-FT | 7510 | 7340 | 6520 | 6380 | 6440 | 6740 | 10090 | 39250 | 5 7 200 | 11880 | 8700 | 7530 | CAL YR 1987 TOTAL 84725 MEAN 232 MAX 1390 MIN 79 AC-FT 168100 WTR YR 1988 TOTAL 88520 MEAN 242 MAX 1940 MIN 79 AC-FT 175600 ## 09303500 SOUTH FORK WHITE RIVER NEAR BUFORD, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to current year. | | DATE | TIME | STREA
FLOI
INSTA
TANEO
(CF: | AM- CO
W, CO
AN- DO
OUS AN | PE-
IFIC
DN-
ICT-
ICE
S/CM) | PH
(STAND-
ARD
UNITS) | TEMPER
ATURE
WATER
(DEG C | D:
SOI | GEN,
IS-
LVED
G/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIU
DIS-
SOLVE
(MG/L
AS CA | DI:
D SOL
(MG | UM, SOD
S- DI:
VED SOL
/L (M | | |------------------|------------------|---|---|---|---|--|--|---|--|--|--|--|---|---| | JUN
1 | 5 | 1330 | 868 | | 160 | 8.3 | 8.9 | 5 | 9.5 | 85 | 24 | 6 | . 1 | 1.9 | | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTA
SII
DI:
SOL'
(MG:
AS I | UM, LIN
S- I
VED (N
/L | .KA-
NITY
.AB
MG/L
AS | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVEI
(MG/L
AS CL | RII
Di
SOI
(M | UO-
DE,
IS-
LVED
G/L
F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS
SUM OF
CONSTI
TUENTS
DIS-
SOLVE
(MG/L | SOLI
D SOL
D PE | S- D
VED SO
NS (T
R P | IDS,
IS-
LVED
ONS
ER
AY) | | JUN
1 | 5 | 0.1 | 0 | .6 8' | 7 | 5.8 | 1.5 | | 0.2 | 8.4 | 10 | 1 0 | .14 23 | 6 | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITI
GEI
NO2+I
DIS
SOL'
(MG: | N, 0
NO3 AMI
S- 1
VED SO
/L (1 | ITRO-
GEN,
MONIA
DIS-
DLVED
MG/L
S N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
DIS-
SOLVEI
(MG/L
AS P) | PHO
OR'
DI: | VED
/L | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ANTI-
MONY,
TOTAL
(UG/L
AS SB | ARSE
TOTA
(UG | TO
NIC RE
AL ER
/L (U | IUM,
TAL
COV-
ABLE
G/L
BA) | | JUN
1 | l
15••• | <0.01 | <0. | 1 <(| 0.01 | 0.30 | 0.02 | 0 | .02 | 380 | < | 1 | <1 | <100 | | | DATE | BERYL -
LIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS BE) | CADM:
TOTA
RECC
ERAI
(UG. | IUM M
AL TO
OV- RI
BLE EI
/L (U | HRO-
LUM,
DTAL
ECOV-
RABLE
JG/L
S CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | TO'
RE'
ER' | ON,
TAL
COV-
ABLE
G/L
FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LITHIU
TOTAL
RECOV
ERABL
(UG/L
AS LI | TOTA RECO E ERAI | E, MER AL TO DV- RE BLE ER /L (U | CURY TAL COV- ABLE G/L HG) | | JUN
1 | 5 | <10 | | <1 | <1 | <1 | | 7 | 490 | < 5 | <1 | 0 | 20 < | 0.1 | | | DAT
JUN
15 | DEN
TOT
REC
ERA
E (UC | TAL
COV-
ABLE | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE
NIUM
TOTA
(UG/
AS S | i, REC
L ERA
L (UG | ER, CAL TO COV- REBLE EI | TRON-
TIUM,
DTAL
CCOV-
RABLE
JG/L
S SR) | ZINC
TOTA
RECC
ERAE
(UG/
AS Z | AL SEI
OV- MEN
BLE SUS
'L PEN | M
DI -
IT, CH
S -
IDED P
G/L) (T | ENDED | SED.
SUSP.
SIEVE
DIAM.
FINER
THAN
.062 MM | | | DATE | TI | | OW,
CAN-
COUS | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPE
ATUR
WATE
(DEG | RE
CR | | | TAD | 'E I | I
IME T | TREAM-
FLOW,
NSTAN-
ANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | OCT
O1
NOV | 13 | 15 122 | 2 | 245 | 7 | .5 | | A P I | 14 | C | 1925 | 182 | 249 | 3.5 | | 12
DEC | 11 | 40 137 | , | 255 | 1 | .0 | | | 16 | 1 | 550 | 7 75 | 235 | 11.0 | | 10
JAN | 12 | 10 116 | 5 | 227 | 1 | .0 | | | 21 | 1 | 030 | 160 | 244 | 10.0 | | 27
FEB | 12 | 25 108 | 3 | 235 | 0 | 0.0 | | A U | 15 | 1 | 035 | 135 | | 12.0 | | 25 | 12 | 30 233 | 3 | 240 | 0 | 1.5 | | | 15 | 1 | 050 | 143 | 223 | 6.0 | #### 09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO LOCATION.--Lat 39°58'28", long 107°37'30", in NW4NE4 sec.17, T.1 S., R.91
W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 30 ft downstream from highway bridge, 0.8 mi upstream from mouth, and 1.0 mi south of Buford. DRAINAGE AREA. -- 177 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1919 to December 1920 (monthly discharge only, published in WSP 1313), October 1951 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,970 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 30, 1920, nonrecording gage at site 200 ft downstream, at different datum. Oct. 1951 to Apr. 1981, at site 500 ft downstream, at different datum. REMARKS.--Estimated daily discharges: Nov. 19-22, Nov. 27 to Dec. 3, Dec. 8-9, Dec. 12 to Feb. 26, Mar. 14, 18-20, 29, and Apr. 15 to May 5. Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 1,100 acres upstream from station, and a small area downstream from station. AVERAGE DISCHARGE. -- 38 years, 263 ft3/s; 190,500 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,150 ft³/s, June 26, 1983; gage height, 6.27 ft; maximum gage height, 7.07 ft, June 30, 1957, site and datum then in use, minimum daily discharge, 47 ft³/s, Jan. 15, 1981. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,300 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|--------|---------------|-----------------------------------|---------------------| | May 30 | 0600 | 1,300 | 4.46 | June 9 | 05 0 0 | *1,490 | *4.71 | DISCHARGE CURIC FEET PER SECOND. WATER YEAR OCTORER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 80 ft³/s, Dec. 15-16, 27-28, Sept. 8-9. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------|--|---------------------------------|---|--------------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 124 | 129 | 115 | 105 | 115 | 86 | 108 | 210 | 789 | 282 | 162 | 122 | | 2 | 120 | 137 | 120 | 100 | 115 | 91 | 113 | 250 | 699 | 266 | 169 | 120 | | 3 | 114 | 132 | 120 | 105 | 105 | 88 | 121 | 240 | 903 | 262 | 165 | 117 | | 4 | 110 | 126 | 109 | 110 | 95 | 98 | 125 | 230 | 1230 | 259 | 162 | 114 | | 5 | 111 | 123 | 116 | 120 | 90 | 98 | 124 | 220 | 1460 | 246 | 155 | 114 | | 6
7
8
9
10 | 108
109
109
109 | 130
126
122
111
117 | 112
104
110
110
111 | 120
115
115
110
110 | 100
110
115
110
110 | 98
103
100
102
106 | 132
160
180
146
137 | 253
241
244
224
225 | 1590
1550
1480
1390
1390 | 222
216
205
203
207 | 151
159
149
145
142 | 100
82
80
80
89 | | 11 | 109 | 124 | 112 | 110 | 105 | 99 | 155 | 237 | 1310 | 208 | 142 | 115 | | 12 | 109 | 114 | 110 | 105 | 105 | 95 | 179 | 303 | 1140 | 192 | 141 | 156 | | 13 | 110 | 125 | 100 | 100 | 110 | 94 | 200 | 423 | 1120 | 183 | 141 | 163 | | 14 | 132 | 125 | 85 | 110 | 105 | 100 | 202 | 588 | 900 | 175 | 137 | 135 | | 15 | 131 | 119 | 80 | 115 | 120 | 106 | 215 | 682 | 851 | 170 | 136 | 116 | | 16 | 124 | 95 | 80 | 110 | 125 | 99 | 220 | 772 | 817 | 171 | 143 | 118 | | 17 | 120 | 112 | 110 | 110 | 120 | 85 | 230 | 918 | 785 | 170 | 142 | 133 | | 18 | 119 | 103 | 120 | 120 | 115 | 88 | 230 | 1060 | 703 | 159 | 143 | 138 | | 19 | 118 | 115 | 125 | 105 | 105 | 90 | 220 | 1050 | 673 | 148 | 135 | 128 | | 20 | 112 | 120 | 110 | 90 | 110 | 92 | 220 | 861 | 626 | 137 | 133 | 123 | | 21 | 109 | 125 | 105 | 85 | 115 | 103 | 220 | 707 | 603 | 133 | 144 | 122 | | 22 | 116 | 120 | 110 | 85 | 130 | 105 | 230 | 616 | 560 | 130 | 160 | 131 | | 23 | 109 | 120 | 105 | 85 | 110 | 106 | 210 | 598 | 526 | 125 | 142 | 126 | | 24 | 122 | 110 | 105 | 85 | 125 | 111 | 200 | 7 08 | 478 | 124 | 133 | 126 | | 25 | 144 | 129 | 95 | 95 | 135 | 107 | 190 | 844 | 441 | 133 | 128 | 127 | | 26
27
28
29
30
31 | 130
126
123
123
134
131 | 119
110
110
115
115 | 95
80
80
90
100 | 105
110
115
120
120
115 | 140
93
98
82
 | 110
123
122
115
112
105 | 190
180
180
180
190 | 884
900
1050
1220
1230
963 | 410
371
396
357
309 | 141
148
145
145
156
152 | 128
138
129
127
126
123 | 126
127
127
130
132 | | TOTAL | 3674 | 3578 | 3229 | 3305 | 3213 | 3137 | 5387 | 18951 | 25857 | 5613 | 4430 | 3617 | | MEAN | 119 | 119 | 104 | 107 | 111 | 101 | 180 | 611 | 862 | 181 | 143 | 121 | | MAX | 144 | 137 | 125 | 120 | 140 | 123 | 230 | 1230 | 1590 | 282 | 169 | 163 | | MIN | 108 | 95 | 80 | 85 | 82 | 85 | 108 | 210 | 309 | 124 | 123 | 80 | | AC-FT | 7290 | 7100 | 6400 | 6560 | 6370 | 6220 | 10690 | 37590 | 51290 | 11130 | 8790 | 7170 | CAL YR 1987 TOTAL 87291 MEAN 239 MAX 1270 MIN 80 AC-FT 173100 WTR YR 1988 TOTAL 83991 MEAN 229 MAX 1590 MIN 80 AC-FT 166600 ## 09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1984 to current year. | 1 | DATE | TI | FL
INS
ME TAN | EAM-
OW,
TAN-
EOUS
FS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CN | PH
- (STA
AR | N D - | TEMPI
ATU
WATI
(DEG | RE
E R | OXYGI
DI:
SOL'
(MG: | NE:
EN, TO
S- (M
VED A: | TAL
G/L | CAL C
DIS
SOL
(MG
AS | IUM S
- D
VED SO
-/L (M | GNE -
IUM,
IS -
LVED
G/L
MG) | |-------------------|---|--|---|--|--|---|--|---|-------------------------------|--|---|--|---|---|---| | NOV
20. | | 11 | 30 12 | 0 | 28 | 30 8 | . 6 | | 0.0 | 1: | 2.2 | 140 | 42 | | 9.6 | | MAY
16. | | 13 | 45 7 5 | 8 | 23 | | .2 | | 8.5 | | 9.3 | 120 | 35 | | 7.1 | | JUN
23. | | 11 | 30 53 | 7 | 21 | 8 8 | . 3 | 1 | 2.0 | | 8.7 | 110 | 32 | | 7.5 | | AUG
26. | | 11 | 30 12 | 6 | 28 | 32 8 | . 6 | 1 | 4.0 | | 8.8 | 140 | 41 | 1 | 0 | | 1 | DATE | SODI
DIS
SOLV
(MG
AS | UM,
- SO
ED T
/L RA | DIUM
AD-
RP-
ION
TIO | POTAS
SIUM
DIS-
SOLVE
(MG/L
AS K) | 1, LINI
- LA
D (MG
. AS | TY
B
/L | SULF
DIS
SOL
(MG
AS S | -
VED
/L | CHLORIDIS SOL (MG | E, RI
- D
VED SOI
/L (M | UO-
DE,
IS-
LVED
G/L
F) | SILI
DIS
SOL
(MG
AS | CA, SUM
- CON
VED TUE
/L D
SO | IDS, OF STI- NTS, IS- LVED G/L) | | NOV
20. | | 2 | •3 | 0.1 | 0.9 | 118 | | 32 | | 0 | . 6 | 0.1 | 16 | | 174 | | | | 1 | .8 | 0.1 | 0.7 | 7 106 | | 10 | | 0 | . 4 | 0.2 | 12 | | 131 | | JUN
23. | | 1 | . 4 | 0.1 | 0.7 | 96 | | 15 | | 0 | 4 | 0.3 | 11 | | 126 | | AUG
26. | | 2 | .2 | 0.1 | 0.8 | 3 118 | | 34 | | 0 | .5 | 0.1 | 14 | | 173 | | DATE | NOV
20
MAY
16
JUN
23
AUG
26
ALL
IN
TO
RE
ER | | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
0.24
0.17
0.24
ANTI-
MONY,
TOTAL
(UG/L
AS SB) | (Tol
PE:
DA:
56
269
183 | S- N
VED
NS
R
Y)
.5 | NITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 <0.01 <0.01 EARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) | NIT GE NO2+ DII SOL (MG AS <0. <0. <0. <0. <0. <0. <0. <0. <0. <0. | N, NO3 S- V/L N) 1 13 1 1 YL- MAL- B/L | GE AMMO DI SOLL (MG AS O. <0. | S-VED
S/L
N)
01
01
03
01
SIUM
SAL
SOV - | NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 0.30 <0.2 <0.2 0.50 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | PHO I SO AS COE | IOS - DROUS DIS - DLVED IG/L S P) 1.01 1.03 1.02 1.02 1.02 1.02 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 | PHOS-PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.01 0.01 0.01 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) | IRON,
TOTAL | | 20
MAY | | 70 | <1 | | < 1 | <100 | < 1 | 0 | | <1 | 1 | | < 1 | 1 | 110 | | 16 | | 1200 | 1 | | < 1 | <100 | < 1 | 0 | | <1 | 1 | | 2 | 1 | 1400 | | DATE | TO
RE
E R
(U | AD,
TAL
COV-
ABLE
G/L
PB) | LITHIUM
TOTAL
RECOV -
ERABLE
(UG/L
AS LI) | MANO
NESI
TOTA
RECO
ERAN
(UG. | E, M
AL
DV-
BLE
/L | MERCURY TOTAL RECOV - ERABLE (UG/L AS HG) | MOL
DEN
TOT
REC
ERA
(UG
AS |
UM,
AL
OV-
BLE
/L | ERA
(UG | AL
OV-
BLE | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | TC
RE
EF
(U | VER,
TAL
COV-
RABLE
IG/L
AG) | STRON-
TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR) | ZINC,
TOTAL | | NO V
20 | | < 5 | <10 | | <10 | <0.1 | | 1 | | <1 | <1 | | <1 | 250 | <10 | | MAY
16 | | < 5 | <10 | | 50 | <0.1 | | 4 | | 5 | <1 | | < 1 | 160 | <10 | | | | | | | | | | | | | | | | | | 09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | |------|--|--|---|--|------------------------------|-------------------------------------| | | | | | | | | | 1130 | 119 | 279 | | 8.0 | | | | 1240 | 106 | 287 | | 2.0 | | | | 1345 | 110 | 260 | | 2.5 | | | | | | | | _ | | | | 1230 | 109 | 271 | | 0.0 | | | | 1505 | 214 | 253 | | 0.5 | | | | 0000 | 103 | 260 | | 2.0 | | | | | | | 8.7 | | 1.5 | 11.7 | | 1100 | 120 | 203 | 0., | 2.7 | 1 | | | 1050 | 216 | 260 | 8.7 | 7.0 | 1.6 | | | | | | 8.6 | | 5.0 | | | | | | | | | | | 1050 | 888 | 220 | 8.2 | 6.5 | 5.5 | | | 0050 | 607 | 227 | | | 2.0 | | | | | | 8 1 | 7 0 | | | | | | | 0.1 | | ,.o | | | | | | 8.5 | | 1.5 | | | | 51. | | | | | | | 1115 | 284 | 262 | 8.5 | 12.5 | 0.80 | | | 1100 | 212 | 290 | 8.5 | 13.5 | 0.40 | | | 1230 | 134 | 309 | | 15.5 | | | | 1000 | 143 | 310 | | 13.0 | | | | | | -0.4 | | | | | | 1320 | 119 | 281 | | 10.0 | | | | | 1130
1240
1345
1230
1505
0855
1100
1050
1450
1545
1050
0950
1000
1555
1245 | TIME FLOW, INSTAN-TANEOUS (CFS) 1130 119 1240 106 1345 110 1230 109 1505 214 0855 103 1100 126 1050 216 1450 306 1545 835 1050 888 0950 697 1000 1440 1555 786 1245 371 1115 284 1100 212 1230 134 1000 143 | TIME STREAM- CONT- FLOW, DUCT- TANEOUS ANCE (CFS) (US/CM) 1130 119 279 1240 106 287 1345 110 260 1230 109 271 1505 214 253 0855 103 269 1100 126 265 1050 216 265 1050 216 265 1050 216 265 1050 888 220 0950 697 227 1000 1440 160 1555 786 187 1245 371 250 1115 284 262 1100 212 290 1230 134 309 1000 143 310 | TIME STREAM- CIFIC CON- INSTAN- DUCT- (STAND- ARD (US/CM) UNITS) 1130 119 279 1240 106 287 1345 110 260 1230 109 271 1505 214 253 0855 103 269 1100 126 265 8.7 1050 216 265 8.7 1050 216 260 8.7 1450 306 242 8.6 1545 835 215 1050 888 220 8.2 0950 697 227 1000 1440 160 8.1 1555 786 187 1050 786 187 1050 1440 160 8.1 1555 786 187 1245 371 250 8.5 1115 284 262 8.5 1100 212 290 8.5 1100 212 290 8.5 1100 212 290 8.5 | TIME | TIME | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DATE | MIT 2 | STRE
FLO
INST
E TANE
(CF | W, MEN
AN-SUS
OUS PEN | IT, | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP
SIEVE
DIAM
% FINE
THAN
.062 M | R | | |------------|------------|---|--|---|------------------------------|--|---|---|--| | | NOV
20 | 113 | 0 120 | | 8 | 2,6 | 3 | 8 | | | | MA R | _ | | | | | - | | | | | 28
Ma Y | 110 | 0 126 | | 6 | 2.0 | 8 | 3 | | | | 05 | 105 | | | 21 | 12 | | 2 | | | | 12
27 | 145
105 | | | 43
51 | 36
122 | | 1
3 | | | | JUN
02 | 095 | 5 697 | | 20 | 38 | 5 | h | | | | 10 | 100 | 1440 | | 55 | 214 | 5 | 8 | | | | 23
27 | 113
124 | | | 12
4 | 17
4.0 | 4 | | | | | JUL | | | | | | | | | | | 01 | 111
110 | | | 4
7 | 3.1
4.0 | 4 | 1
4 | | | | 29 | 100 | | | 8 | 3.1 | 4 | | | | | AUG
26 | 113 | 126 | | 6 | 2.0 | 5 | 6 | | | | 20111 | 115 | 120 | | | 2.0 | , | O | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SU
FA
DI
% FI
TH | JSP. S
ALL F
IAM. D
INER % F
IAN I | HAN | SED.
SUSP.
FALL
DIAM.
FINER
THAN
250 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM | | | | (Or a) | (MG/L) | (I/DAI) | .002 | 120 12 | . ran c. | רוויו טכב | . JOU MM | | MA Y
16 | 1345 | 758 | 65 | 133 | | 75 | 87 | 97 | 100 | ### 09304200 WHITE RIVER ABOVE COAL CREEK, NEAR MEEKER, CO LOCATION.--Lat 40°00'18", long 107°49'29", in NW4NW4 sec.3, T.1 S., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 40 ft downstream from county road bridge, 2.3 mi upstream from Coal Creek, and 5.0 mi southeast of Meeker. DRAINAGE AREA .-- 648 mi2. 268 #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1961 to current year. REVISED RECORDS. -- WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,400 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1961, to Sept. 30, 1976, at site 76 ft upstream at datum 2.00 ft, higher. REMARKS.--Estimated daily discharges: Nov.16 to Mar. 23. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 8,000 acres and about 4,000 acres downstream from station. AVERAGE DISCHARGE. -- 27 years, 587 ft3/s; 425,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,740 ft $^3/s$, June 26, 1983, gage height, 7.07 ft; minimum daily, 6.5 ft $^3/s$, July 19-21, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height (ft) | |------------------|--------------|----------------------|---------------------|--------|------|----------------------|------------------| | May 18
May 30 | 0500
0900 | *2,710
2,100 | *4.99
4.48 | June 7 | 0900 | 2,690 | 4.98 | DISCHARGE CURIC FEET PER SECOND. WATER YEAR OCTOBER 1087 TO SEPTEMBER 1088 Minimum daily discharge, 164 ft³/s, Aug. 15. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|------------------------------|---|---------------------------------|--------------------------------------|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 191 | 353 | 310 | 260 | 310 | 270 | 309 | 936 | 1320 | 501 | 286 | 193 | | 2 | 212 | 382 | 350 | 270 | 300 | 280 | 326 | 825 | 1170 | 482 | 264 | 208 | | 3 | 242 | 381 | 350 | 270 | 290 | 280 | 339 | 760 | 1400 | 446 | 272 | 227 | | 4 | 246 | 361 | 340 | 270 | 270 | 280 | 353 | 747 | 1810 | 436 | 290 | 227 | | 5 | 235 | 354 | 350 | 290 | 250 | 270 | 350 | 781 | 2210 | 423 | 258 | 209 | | 6 | 234 | 356 | 340 | 290 | 260 | 280 | 352 | 931 | 2440 | 389 | 235 | 196 | | 7 | 235 | 364 | 340 | 290 | 250 | 280 | 404 | 848 | 2440 | 385 | 228 | 181 | | 8 | 240 | 349 | 330 | 300 | 260 | 280 | 470 | 852 | 2380 | 368 | 209 | 179 | | 9 | 232 | 340 | 320 | 300 | 260 | 280 | 417 | 748 | 2170 | 352 | 192 | 171 | | 10 | 232 | 331 | 340 | 310 | 260 | 290 | 384 | 739 | 2190 | 350 | 179 | 174 | | 11 | 243 | 346 | 340 | 310 | 260 | 280 | 400 | 809 | 2100 | 359 | 174 | 225 | | 12 | 247 | 357 | 300 | 260 | 260 | 280 | 443 | 1040 | 1820 | 343 | 178 | 361 | | 13 | 249 | 356 | 270 | 240 | 250 | 280 | 530 | 1370 | 1790 | 378 | 176 | 386 | | 14 | 273 | 365 | 280 | 270 | 250 | 280 | 585 | 1740 | 1470 | 390 | 166 | 345 | | 15 | 291 | 360 | 270 | 280 | 250 | 280 | 596 | 1900 | 1360 | 376 | 164 | 295 | | 16 | 320 | 320 | 270 | 260 | 250 | 280 | 637 | 1990 | 1270 | 378 | 174 | 291 | | 17 | 317 | 340 | 290 | 260 | 250 | 280 | 747 | 2230 | 1240 | 430 | 178 | 302 | | 18 | 306 | 330 | 290 | 260 | 250 | 270 | 899 | 2540 | 1130 | 426 | 176 | 312 | | 19 | 307 | 340 | 290 | 230 | 250 | 270 | 799 | 2450 | 1080 | 380 | 178 | 314 | | 20 | 312 | 360 | 280 | 200 | 250 | 280 | 812 | 1900 | 1040 | 401 | 183 | 301 | | 21 | 314 | 350 | 300 | 260 | 250 | 300 | 882 | 1510 | 986 | 398 | 195 | 299 | | 22 | 322 | 350 | 290 | 250 | 250 | 320 | 777 | 1280 | 930 | 367 | 208 | 313 | | 23 | 314 | 350 | 290 | 250 | 250 | 340 | 706 |
1250 | 908 | 282 | 209 | 313 | | 24 | 321 | 350 | 280 | 240 | 250 | 353 | 648 | 1400 | 807 | 233 | 212 | 304 | | 25 | 390 | 330 | 270 | 230 | 250 | 338 | 618 | 1580 | 705 | 245 | 204 | 304 | | 26
27
28
29
30
31 | 368
350
342
347
355
372 | 340
330
310
340
330 | 240
220
240
240
250
260 | 240
250
260
280
290
300 | 250
260
260
260
 | 333
365
3 7 9
33 7
350
323 | 579
573
585
625
742 | 1610
1580
1800
1990
2000 | 636
601
665
645
566 | 256
303
295
280
280
277 | 223
242
215
211
201
198 | 307
335
338
350
369 | | TOTAL | 8959 | 10425 | 9130 | 8270 | 7510 | 9308 | 16887 | 43726 | 41279 | 11209 | 6478 | 8329 | | MEAN | 289 | 347 | 295 | 267 | 259 | 300 | 563 | 1411 | 1376 | 362 | 209 | 278 | | MAX | 390 | 382 | 350 | 310 | 310 | 379 | 899 | 2540 | 2440 | 501 | 290 | 386 | | MIN | 191 | 310 | 220 | 200 | 250 | 270 | 309 | 739 | 566 | 233 | 164 | 171 | | AC-FT | 17770 | 20680 | 18110 | 16400 | 14900 | 18460 | 33500 | 86730 | 81880 | 22230 | 12850 | 16520 | CAL YR 1987 TOTAL 183817 MEAN 504 MAX 2190 MIN 176 AC-FT 364600 WTR YR 1988 TOTAL 181510 MEAN 496 MAX 2540 MIN 164 AC-FT 360000 ## 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO -- Continued 269 ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1978 to September 1984, October 1986 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: July 1978 to September 1984. WATER TEMPERATURES: July 1978 to September 1984. INSTRUMENTATION. -- Water-quality monitor July 1978 to September 1984. REMARKS. -- Daily maximum and minimum specific conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 511 microsiemens Dec. 24, 1981; minimum 152 microsiemens June 14, 1980. WATER TEMPERATURES: Maximum, 22.0°C July 8, 1981; minimum, 0.0°C on many days during winter months. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-------------------|--|---|---|---|--|---|--|---|---| | NOV
20 | 1215 | 308 | 410 | 8.7 | 0.0 | 12.8 | 220 | 67 | 12 | | MAY
16 | 1500 | 1840 | 235 | 8.1 | 10.5 | 8.7 | 120 | 35 | 6.8 | | JUN
23 | 1215 | 924 | 258 | 8.3 | 14.0 | 8.9 | 120 | 37 | 7.8 | | AUG
26 | 1220 | 210 | 440 | 8.5 | 16.0 | 9.8 | 210 | 64 | 13 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | 20
MAY | 4.1 | 0.1 | 1.0 | 117 | 98 | 1.6 | 0.2 | 16 | 270 | | 16
JUN | 2.2 | 0.1 | 0.8 | 91 | 33 | 0.6 | 0.2 | 12 | 146 | | 23
AUG | 2.8 | 0.1 | 0.8 | 93 | 38 | 1.1 | 0.3 | 13 | 157 | | 26 | 6.3 | 0.2 | 1.0 | 127 | 98 | 2.6 | 0.2 | 15 | 276 | | 1 | I
SC
(T
DATE F | OLS- D
OLVED SO
ONS (T
ER P | IDS, COIS- NIT | EN, RITE NO: DIS- DLVED SO IG/L (1 | GEN, C
2+NO3 AMN
DIS- I
DLVED SC
MG/L (N | GEN, GEN
MONIA MONI
DIS- ORGA
DLVED DIS | IA + PHO
ANIC D
S. SO
G/L (M | OS- PHO
ROUS OR
IS- DI | | | NOV
20 | | 0.37 22 | 25 <0 | .01 < | 0.1 | 0.01 < | 0.2 0 | .01 <0 | .01 | | MAY
16 | | 0.20 72 | :5 <0 | 0.01 | 0.15 | 0.01 < | 0.2 0 | .03 <0 | .01 | | JUN
23.
AUG | | 0.21 39 | 1 <0 | .01 < | 0.1 | 0.03 < | 0.2 0 | .02 0 | .02 | | 26 | •• | 0.38 15 | 7 <0 | .01 < | 0.1 <0 | 0.01 | 0.70 0 | .03 <0 | .01 | GREEN RIVER BASIN # 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ANTI-
MONY,
TOTAL
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BERYL -
LIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS BE) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |------------------|--|---|---|---|---|---|---|---|---|---| | NOV
20 | 200 | <1 | <1 | <100 | <10 | <1 | 2 | <1 | 1 | 250 | | MAY
16 | 1900 | <1 | 3 | <100 | <10 | <1 | 6 | 3 | 2 | 1900 | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | STRON -
TIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | NOV
20
MAY | <5 | <10 | 10 | <0.1 | 1 | 3 | <1 | <1 | 590 | <10 | | 16 | < 5 | <10 | <10 | <0.1 | 14 | 14 | <1 | <1 | 290 | 20 | | | | DATE | TIME | STREAM-
FLOW,
INSIAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCC-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | | | | | ос
NО | 06 | 1705 | 230 | 420 | | 11.0 | | | | | | | 13 | 1140 | 353 | 421 | | 3.5 | | | | | | | 21 | 1430 | 327 | 420 | | 0.0 | | | | | | | 21 | 1140 | 342 | 425 | | 0.0 | | | | | | | 23 | 0900 | 256 | 430 | | 0.0 | | | | | | | 24 | 1445
1145 | 340
383 | 413
405 | 8.4 | 6.5
3.0 | 2.1 | | | | | A P
MA | 20 | 1430 | 727 | 338 | | 9.0 | | | | | | | 05
12
17
27 | 1130
1520
0925
1125 | 753
959
2410
1580 | 320
280
216
242 | 8.4
8.3

8.0 | 7.0
11.0
8.0
8.5 | 7.0
1.5

8.5 | | | | | | 03
09
10
27 | 1150
1100
1045
1445 | 1450
2380
2320
600 | 240
197
193
292 | 8.0
8.6 | 9.0
9.0
17.0 | 12
1.5 | | | | | | 01
08
21
29 | 1155
1140
1425
1130 | 518
373
394
281 | 322
365
390
420 | 8.4
8.5
 | 14.0
15.0
17.5
16.0 | 1.4
0.9
 | | | | | SE | 17
P | 1440 | 175 | 440 | | 18.0 | | | | | | | 15 | 1435 | 284 | 428 | | 11.5 | | | | ## 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|--------------|---|--|---|---| | NOV | | | | | | | 20
MAR | 1215 | 308 | 15 | 12 | 55 | | 24 | 1530 | 340 | 9 | 8.3 | | | 28 | 1145 | 383 | 11 | 11 | 71 | | MAY
05 | 1130 | 753 | 26 | 53 | 71 | | 12 | 1520 | 959 | 64 | 166 | 69 | | 27
JUN | 1125 | 1580 | 60 | 256 | 53 | | 03 | 1150 | 1450 | 37 | 145 | 55 | | 10
23 | 1045 | 2320 | 63 | 395 | 49 | | 27 | 1215
1445 | 924
600 | 19
7 | 47
11 | 51
 | | JUL | · · · · · | | • | | | | 01
08 | 1155
1140 | 518
373 | 7
7 | 9.8 | 36
36 | | 29 | 1130 | 281 | 33 | 7.0
25 | 38 | | AUG | _ | | | - | _ | | 26 | 1220 | 210 | 6 | 3.4 | 64 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.002 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.004 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.016 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.062 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.125 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM | SED.
SUSP.
FALL
DIAM.
FINER
THAN
1.00 MM | |-----------|------
---|--|--|--|--|--|--|--|--|--|--| | MAY
16 | 1500 | 1840 | 95 | 472 | 18 | 25 | 40 | 73 | 85 | 93 | 97 | 100 | #### 09304500 WHITE RIVER NEAR MEEKER, CO LOCATION.--Lat 40°02'01", long 107°51'42", in NE4 sec.30, T.1 N., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 1.0 mi upstream from Curtis Creek and 2.5 mi east of Meeker. DRAINAGE AREA. -- 755 mi². PERIOD OF RECORD.--June 1901 to December 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Meeker" 1901-13. REVISED RECORDS. -- WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 6,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 31, 1906, and May 7 to Aug. 13, 1910, nonrecording gage, and Aug. 14, 1910, to Oct. 19, 1913, water-stage recorder, at site 2.5 mi downstream, at different datum. Oct. 20, 1913, to Sept. 30, 1971, water-stage recorder at present site, at datum 3.00 ft, higher, prior to Oct. 1, 1933, and at datum 2.00 ft, higher, thereafter. REMARKS.--Estimated daily discharges: Dec. 17 to Feb. 17. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 12,000 acres upstream from station, and about 3,000 acres downstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 84 years, 632 ft 3/s; 457,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,950 ft³/s, May 25, 1984, gage height, 6.12 ft, maximum gage height, 7.60 ft, June 16, 1921; minimum daily discharge, 78 ft³/s, July 16, 1977. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,100 ft³/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | May 18 | 0400 | *2,720 | *4.63 | June 6 | 0500 | 2,720 | 4.63 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 200 ft3/s, Jan. 20. | | | DIDONA | KGB, COBI | O FEET TE | | EAN VALUE | | 11 1907 10 | OBI IBINDE | 11 1900 | | | |----------------------------------|--|---------------------------------|--|--|------------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | oct | иол | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 300 | 382 | 318 | 270 | 310 | 269 | 342 | 1050 | 1450 | 647 | 335 | 275 | | 2 | 308 | 415 | 359 | 280 | 300 | 279 | 361 | 925 | 1300 | 616 | 309 | 285 | | 3 | 334 | 392 | 351 | 270 | 290 | 284 | 387 | 829 | 1560 | 596 | 332 | 293 | | 4 | 327 | 379 | 345 | 270 | 270 | 288 | 413 | 804 | 1970 | 600 | 383 | 289 | | 5 | 316 | 369 | 348 | 290 | 260 | 289 | 402 | 847 | 2330 | 591 | 316 | 272 | | 6 | 312 | 378 | 349 | 300 | 260 | 286 | 403 | 1010 | 2550 | 536 | 295 | 258 | | 7 | 310 | 368 | 344 | 290 | 260 | 291 | 462 | 879 | 2550 | 532 | 289 | 236 | | 8 | 310 | 364 | 337 | 310 | 270 | 295 | 550 | 900 | 2510 | 521 | 275 | 233 | | 9 | 302 | 345 | 313 | 310 | 260 | 296 | 456 | 788 | 2360 | 510 | 258 | 230 | | 10 | 305 | 350 | 349 | 320 | 260 | 295 | 417 | 783 | 2370 | 515 | 247 | 227 | | 11 | 322 | 361 | 346 | 330 | 260 | 297 | 441 | 860 | 2300 | 512 | 242 | 280 | | 12 | 312 | 361 | 306 | 260 | 260 | 294 | 497 | 1140 | 2030 | 499 | 250 | 442 | | 13 | 320 | 370 | 278 | 240 | 260 | 288 | 605 | 1510 | 2000 | 504 | 257 | 467 | | 14 | 351 | 371 | 285 | 270 | 250 | 283 | 673 | 1950 | 1690 | 460 | 245 | 413 | | 15 | 368 | 377 | 272 | 280 | 250 | 279 | 689 | 2100 | 1590 | 424 | 244 | 358 | | 16 | 392 | 324 | 281 | 270 | 250 | 282 | 741 | 2170 | 1510 | 422 | 249 | 345 | | 17 | 380 | 362 | 290 | 270 | 250 | 281 | 866 | 2330 | 1490 | 465 | 244 | 351 | | 18 | 371 | 329 | 290 | 270 | 254 | 276 | 798 | 2610 | 1350 | 454 | 253 | 356 | | 19 | 370 | 347 | 290 | 230 | 251 | 272 | 896 | 2580 | 1300 | 411 | 248 | 363 | | 20 | 360 | 379 | 270 | 200 | 251 | 274 | 872 | 2080 | 1250 | 462 | 245 | 353 | | 21 | 360 | 350 | 290 | 270 | 255 | 281 | 962 | 1680 | 1190 | 447 | 268 | 347 | | 22 | 367 | 354 | 290 | 260 | 255 | 299 | 846 | 1440 | 1140 | 417 | 290 | 363 | | 23 | 360 | 354 | 290 | 260 | 254 | 326 | 767 | 1400 | 1130 | 354 | 287 | 364 | | 24 | 385 | 354 | 280 | 240 | 251 | 353 | 716 | 1570 | 1010 | 312 | 286 | 350 | | 2 5 | 439 | 335 | 270 | 230 | 248 | 359 | 705 | 1760 | 907 | 312 | 277 | 349 | | 26
27
28
29
30
31 | 395
379
372
370
389
391 | 352
338
312
348
332 | 240
230
250
250
270
270 | 240
250
270
280
300
300 | 248
251
255
262
 | 360
388
440
383
367
352 | 660
638
642
679
815 | 1780
1760
1970
2140
2160
1740 | 823
800
855
860
731 | 324
347
341
329
327
325 | 290
309
292
286
278
279 | 350
351
341
348
359 | | TOTAL | 10877 | 10752 | 9251 | 8430 | 7555 | 9606 | 18701 | 47545 | 46906 | 14112 | 8658 | 9848 | | MEAN | 351 | 358 | 298 | 272 | 261 | 310 | 623 | 1534 | 1564 | 455 | 279 | 328 | | MAX | 439 | 415 | 359 | 330 | 310 | 440 | 962 | 2610 | 2550 | 647 | 383 | 467 | | MIN | 300 | 312 | 230 | 200 | 248 | 269 | 342 | 783 | 731 | 312 | 242 | 227 | | AC-FT | 21570 | 21330 | 18350 | 16720 | 14990 | 19050 | 37090 | 94310 | 93040 | 27990 | 17170 | 19530 | CAL YR 1987 TOTAL 199517 MEAN 547 MAX 2080 MIN 230 AC-FT 395700 WTR YR 1988 TOTAL 202241 MEAN 553 MAX 2610 MIN 200 AC-FT 401100 #### 09304800 WHITE RIVER BELOW MEEKER, CO LOCATION.--Lat 40°00'48", long 108°05'33", in center of sec.31, T.1 N., R.95 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 30 ft downstream from county bridge, 4.5 mi downstream from Strawberry Creek, and 10 mi west of Meeker. DRAINAGE AREA. -- 1,024 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1961 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. WDR CO-86-2: 1985. GAGE.--Water-stage recorder. Elevation of gage is 5,928 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 18 to Feb. 28. Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of about 22,000 acres upstream from station, and a few small hay meadows downstream from station. AVERAGE DISCHARGE. -- 27 years, 679 ft 3/s; 491,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,590 ft³/s, June 26, 1983, gage height, 4.97 ft; minimum daily, 85 ft³/s, June 28, 1977. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 18
May 30 | 1200
0900 | *2,910
2,250 | *3.46
3.05 | June 6 | 1200 | 2,750 | 3.37 | DISCUADOR CUDIO REET DED GECOND. MATER VEAD COTODER 1007 TO GERTEMBER 1000 Minimum daily discharge, 230 ft3/s, Jan. 20. | | | DISCHARG | E, CUBI | C FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|--|---------------------------------|--|--|-------------------------------------|--|--------------------------------------|--|---------------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 347 | 501 | 415 | 330 | 350 | 400 | 404 | 1140 | 1470 | 778 | 377 | 326 | | 2 | 353 | 538 | 441 | 330 | 350 | 421 | 408 | 1090 | 1310 | 723 | 350 | 319 | | 3 | 368 | 526 | 448 | 320 | 330 | 407 | 442 | 978 | 1470 | 703 | 364 | 328 | | 4 | 366 | 502 | 440 | 320 | 310 | 421 | 492 | 933 | 1840 | 831 | 525 | 322 | | 5 | 367 | 490 | 473 | 350 | 300 | 355 | 492 | 951 | 2190 | 843 | 386 | 311 | | 6 | 364 | 496 | 459 | 340 | 310 | 375 | 471 | 1130 | 2510 | 661 | 370 | 289 | | 7 | 373 | 495 | 456 | 340 | 320 | 440 | 504 | 1050 | 2500 | 629 | 372 | 264 | | 8 | 374 | 486 | 428 | 340 | 350 | 345 | 587 | 1050 | 2430 | 601 | 360 | 248 | | 9 | 361 | 467 | 407 | 340 | 370 | 343 | 568 | 991 | 2280 | 560 | 343 | 247 | | 10 | 362 | 461 | 455 | 350 | 360 | 401 | 482 | 959 | 22 7 0 | 572 | 320 | 234 | | 11 | 379 | 474 | 446 | 360 | 370 | 331 | 516 | 988 | 2230 | 578 | 303 | 303 | | 12 | 385 | 485 | 355 | 290 | 360 | 295 | 516 | 1200 | 2010 |
551 | 308 | 539 | | 13 | 411 | 481 | 327 | 280 | 350 | 309 | 586 | 1500 | 1950 | 545 | 342 | 616 | | 14 | 463 | 478 | 325 | 300 | 340 | 272 | 672 | 1870 | 1730 | 536 | 323 | 528 | | 15 | 488 | 503 | 325 | 320 | 360 | 324 | 712 | 2100 | 1620 | 475 | 318 | 457 | | 16 | 494 | 439 | 325 | 310 | 350 | 326 | 759 | 2170 | 1530 | 486 | 349 | 420 | | 17 | 489 | 465 | 370 | 310 | 330 | 285 | 903 | 2320 | 1490 | 529 | 320 | 421 | | 18 | 480 | 420 | 410 | 310 | 330 | 272 | 935 | 2680 | 1380 | 519 | 339 | 424 | | 19 | 481 | 411 | 420 | 280 | 330 | 296 | 967 | 2720 | 1330 | 485 | 335 | 432 | | 20 | 477 | 471 | 410 | 230 | 340 | 336 | 937 | 2250 | 1310 | 481 | 321 | 422 | | 21 | 471 | 471 | 380 | 310 | 350 | 456 | 1020 | 1790 | 1240 | 501 | 364 | 407 | | 22 | 477 | 462 | 400 | 300 | 360 | 523 | 948 | 1500 | 1180 | 459 | 419 | 451 | | 23 | 472 | 446 | 410 | 310 | 350 | 520 | 856 | 1420 | 1170 | 406 | 408 | 467 | | 24 | 485 | 432 | 380 | 280 | 360 | 577 | 807 | 1510 | 1080 | 310 | 404 | 443 | | 25 | 582 | 441 | 300 | 260 | 360 | 480 | 788 | 1700 | 985 | 302 | 367 | 439 | | 26
27
28
29
30
31 | 533
508
489
488
506
521 | 451
421
385
439
425 | 290
320
320
340
340
330 | 270
300
310
330
350
360 | 360
370
380
396 | 505
610
696
481
437
426 | 764
718
713
746
869 | 1750
1720
1890
2080
2150
1790 | 901
881
930
1020
878 | 302
344
354
355
350
333 | 396
446
388
364
347
325 | 423
450
427
431
438 | | TOTAL
MEAN
MAX
MIN
AC-FT | 13714
442
582
347
27200 | 465
538
385 | 11945
385
473
290
23690 | 9730
314
360
230
19300 | 10096
348
396
300
20030 | 409
696
2 7 2 | 20582
686
1020
404
40820 | 49370
1593
2720
933
97930 | 47115
1570
2510
878
93450 | 16102
519
843
302
31940 | 11253
363
525
303
22320 | 11826
394
616
234
23460 | CAL YR 1987 TOTAL 233431 MEAN 640 MAX 2240 MIN 290 AC-FT 463000 WTR YR 1988 TOTAL 228360 MEAN 624 MAX 2720 MIN 230 AC-FT 453000 ### 09304800 WHITE RIVER BELOW MEEKER, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1974 to September 1984, October 1985 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: July 1978 to September 1983. WATER TEMPERATURES: July 1978 to September 1983. INSTRUMENTATION. -- Water-quality monitor July 1978 to September 1983. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 908 microsiemens Aug. 30, 1981; minimum, 221 microsiemens June 13, 1980. WATER TEMPERATURES: Maximum, 25.0°C Aug. 7, 1978, Aug. 7, 1980; minimum, 0.0°C many days during winter months. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE -
SIUM,
DIS -
SOLVED
(MG/L
AS MG) | |--|--|--|--|--|--|---|--|---|---| | NOV
20 | 1415 | 472 | 57.0 | 8.5 | 0.0 | 13.2 | 270 | 75 | 21 | | MA.Y
17 | 0935 | 2470 | 265 | 8.0 | 10.0 | 8.3 | 130 | 38 | 8.9 | | JUN 23 | 1410 | 1220 | 402 | 8.4 | 18.0 | | | 51 | | | AUG | | | | | | 9.2 | 190 | | 15 | | 26 | 1400 | 380 | 645 | 8.5 | 18.5 | 9.4 | 300 | 78 | 25 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | 20 | 19 | 0.5 | 1.4 | 147 | 140 | 11 | 0.2 | 15 | 371 | | MAY
17 | 5.2 | 0.2 | 1.0 | 97 | 43 | 1.8 | 0.2 | 12 | 169 | | JUN
23 | 12 | 0.4 | 1.2 | 131 | 72 | 4.4 | 0.3 | 15 | 250 | | AUG
26 | 22 | 0.6 | 1.4 | 1 7 9 | 160 | 8.4 | 0.3 | 14 | 416 | | NOV
20
MAY
17
JUN
23
AUG | DATE F | DIS- DILVED SO TONS (TONS (TON | IDS, 01 | EEN, (RITE NO.2) RITE NO.2 RITE NO.2 RICH | 3EN, (A) AMN | GEN, GEN, 40NIA MONI DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | A + PHO NIC D S. SO (M N N) AS | OS - PHO
ROUS OR
ILS - DI
LVED SOL
G/L (MG
P) AS | .01
.02
.02 | | 26 | • • • | 0.57 42 | 7 <0 | .01 < |).1 <0 | 0.01 | 0.60 0 | .03 <0 | .01 | 09304800 WHITE RIVER BELOW MEEKER, CO--Continued | WATER QUALITY DATA, WATER Y | YEAR OCTOBER 1987 | TO SEPTEMBER 1988 | |-----------------------------|-------------------|-------------------| |-----------------------------|-------------------|-------------------| | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ANTI -
MONY,
TOTAL
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS BA) | BERYL -
LIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS BE) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) |
COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |-----------|--|---|---|--|---|---|--|---|---|---| | NOV
20 | 430 | 6 | <1 | <100 | <10 | <1 | 24 | <1 | 2 | 660 | | MAY
17 | 4800 | 2 | 1 | 100 | <10 | <1 | 6 | 1 | 6 | 5300 | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
TOTAL
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | STRON -
TIUM,
TOTAL
RECOV -
ERABLE
(UG/L
AS SR) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | NOV
20 | < 5 | <10 | 50 | <0.1 | 2 | 1 | 2 | <1 | 670 | <10 | | MAY
17 | < 5 | 10 | 170 | <0.1 | 4 | 13 | <1 | 1 | 330 | 20 | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | | | | | 00 | 06 | 1535 | 362 | 640 | | 11.5 | | | | | | | 18 | 1335 | 401 | | | 0.0 | | | | | | | 21 | 0840 | 386 | 578 | | 0.0 | | | | | | | 20 | 1255 | 264 | 584 | | 0.0 | ~- | | | | | | 01
24
28 | 1110
1225
1345 | 374
556
63 7 | 610
680
655 | 8.1 | 3.5
5.0
3.0 | 110 | | | | | | 19 | 1440 | 958 | 474 | | 9.5 | | | | | | ĺ | 05
12
17
27 | 1340
1600
1545
1320 | 952
1150
2300
1780 | 430
350
265
325 | 8.5
8.1

8.1 | 11.0
13.5
11.5
11.5 | 15
40

22 | | | | | ı | 03
10
14
28 | 0930
1300
1510
0950 | 1580
2440
1780
917 | 340
265
336
488 | 8.0
8.2 | 12.5
15.0
15.5 | 18
18
6.3 | | | | | | 01
08
28
29 | 1340
1315
1530
1525 | 799
607
362
365 | 530
570
620
630 | 8.4
8.5
 | 18.0
19.0
20.0
22.0 | 6.5
10
 | | | | | | 17 | 1130 | 318 | 696 | | 16.0 | | | | | | | 19 | 1640 | 420 | 585 | | 13.0 | ~- | | | GREEN RIVER BASIN 09304800 WHITE RIVER BELOW MEEKER, CO--Continued PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |----------|-------|---|---|---|---| | NOV | | | | | | | 20 | 1415 | 472 | 76 | 97 | 43 | | MA R | | | | _ | _ | | 28 | 1345 | 637 | 313 | 538 | 82 | | MA Y | | | | | | | 05 | 1340 | 952 | 54 | 139 | 72 | | 12 | 1600 | 1150 | 160 | 497 | 73 | | 27 | 1320 | 1780 | 113 | 543 | 64 | | JUN | 1200 | 01:1:0 | 4110 | 025 | | | 10 | 1300 | 2440 | 148 | 975 | 52 | | 23
28 | 1410 | 1220 | 31 | 102 | 77 | | JUL | 0950 | 917 | 29 | 72 | 75 | | 01 | 1340 | 799 | 21 | 45 | 57 | | 08 | 1315 | 607 | 43 | 70 | 54 | | 29 | 1525 | 365 | 30 | 30 | 54 | | AUG | 1929 | 200 | 30 | 30 | 54 | | 26 | 1400 | 380 | 21 | 22 | 53 | | | . 100 | 500 | | | ,,, | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | STREAM- SEDI- FLOW, MENT, INSTAN- SUS- DATE TIME TANEOUS PENDED (CFS) (MG/L) | | | SEDI
MENT
DIS
CHARC
SUS
PENI
(T/DA | f,
S-
GE,
S- # | SED.
SUSP.
FALL
DIAM.
FINER
THAN
002 MM | FAI | SP.
LL
AM.
NER % | SED.
SUSP.
FALL
DIAM.
FINER
THAN
008 MM | | |-------------------------------|--|--|--|--|---|---|--------------------------------------|---|---|--------------------------| | MAR
24
MAY | 1225 | 556 | | 231 | 347 | | | | | | | 17
JUN | 0935 | 2470 | | 392 | 2610 | | 20 | | 27 | 35 | | 03 | 0930 | 1580 | | 82 | 350 | | | | | | | DATE | % I | SED. SUSP. FALL DIAM. FINER THAN 16 MM | SED.
SUSP.
FALL
DIAM.
FINER
THAN
.062 MM | S
F
D
% F
T | ED.
USP.
ALL
IAM.
INER
HAN
5 MM | SED
SUS
FAL
DIA
% FIN
THA
.250 | P. S
L F
M. I
ER % F
N T | ED.
USP.
ALL
DIAM.
TINER
HAN | SED
SUS
FAL
DIA
% FIN
THA
1.00 | P.
L
M.
ER
N | | MAR
24
MAY
17
JUN | |
45 | 85
74 | | 90
87 | | 98
96 | 100
100 | | 00
00 | | 03 | | | 74 | | 86 | | 96 | 100 | 1 | 00 | ## 09306007 PICEANCE CREEK BELOW RIO BLANCO, CO LOCATION.--Lat 39°49'34", long 108°10'57", in SE4SE4 sec.32, T.2 S., R.96 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 20 ft downstream from private bridge, 1,100 ft upstream from Stewart Gulch, and 14.3 mi west of Rio Blanco. DRAINAGE AREA . -- 177 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1974 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,366 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 13-20, 24 to Jan. 6, 12-15, 19-26, and Feb. 4-7. Records good except for estimated daily discharges, which are poor. Several diversions upstream from station for irrigation of hay meadows. AVERAGE DISCHARGE. -- 14 years, 23.2 ft 3/s; 16,810 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 520 ft³/s July 19, 1977, gage height, 7.01 ft, from rating curve based on indirect measurement of peak flow, maximum gage height, 7.47 ft, May 16, 1984; minimum daily discharge, 0.38 ft³/s, July 16, 1988. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|------------------|-------|--------------|----------------------|---------------------| | Mar. 28 | 0330 | *101 | *3.39 | No ot | her peak gre | eater than base d | ischarge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 0.38 ft³/s, July 16. | | | | , | | Ņ | ÆAN VALUE | S | ,,,,, | | ,,,, | | | |--------------------------------------|-------------------------------------|-----------------------------------|--|-----------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.8
7.1
7.2
7.0
6.4 | 8.6
8.9
8.9
8.8 | 11
8.4
8.4
8.3
8.8 | 9.0
9.0
9.0
9.0 | 12
11
11
11
11 | 16
13
12
12
10 | 19
19
24
51
57 | 29
38
39
32
28 | 12
9.3
6.9
4.2
5.1 | 12
11
12
14
11 | 6.7
9.9
10
11 | 11
11
11
11
11 | | 6
7
8
9
10 | 6.4
6.8
6.7
6.8
7.1 | 9.1
8.7
8.8
8.8
9.4 | 8.5
8.4
8.8
8.6
8.4 | 10
11
11
11
11 | 10
11
10
12
11 | 12
13
12
11
12 | 62
66
63
38
28 | 20
22
23
24
21 | 5.7
6.8
6.4
5.1
3.9 | 10
9.3
9.6
4.5
3.8 | 11
13
13
12
13 | 11
11
10
10 | | 11
12
13
14
15 | 7.4
7.0
7.6
8.6
8.7 | 9.5
10
11
10
11 | 8.8
9.0
8.4
8.2
8.0 | 11
12
11
12
11 | 11
11
11
13
11 | 9.7
11
9.9
10
7.9 | 27
25
26
26
27 | 23
20
17
14
10 | 3.3
2.1
4.5
6.6
7.9 | 3.3
3.5
2.2
.79
.44 | 17
18
17
16
17 | 12
13
13
12
11 | | 16
17
18
19
20 | 7.3
6.1
5.4
5.4
4.9 | 13
13
14
16
12 | 8.2
8.2
8.4
8.3 | 12
11
11
11
11 | 11
12
12
14
10 | 8.9
8.7
7.7
7.9 | 28
29
34
30
29 | 9.8
8.5
14
16
16 | 5.2
7.1
4.7
3.2
6.0 | .38
1.3
1.3
1.4
1.5 | 18
18
17
15
14 | 7.8
7.4
7.7
6.8
3.5 | | 21
22
23
24
25 | 4.8
8.9
8.4
7.4 | 11
11
11
10
10 | 8.3
8.3
8.9
8.6
8.0 | 12
11
12
11 | 10
9.7
9.9
9.8
9.9 | 19
22
20
21
22 | 27
30
2 8
29
38 | 16
30
31
12
10 | 8.0
3.0
5.9
4.3
4.2 |
1.7
4.5
5.4
4.1
4.2 | 15
14
13
12
12 | 3.3
2.4
1.9
.63 | | 26
27
28
29
30
31 | 12
11
10
9.5
9.1
8.3 | 11
11
12
11
10 | 8.0
8.0
8.0
8.0
8.5
9.0 | 12
13
12
11
11 | 9.7
11
16
17 | 29
52
74
41
28
22 | 36
30
29
29
29 | 7.5
10
7.5
12
16
15 | 4.2
2.3
5.5
13
12 | 5.9
7.0
8.6
5.8
2.0 | 18
14
11
12
11 | .72
.75
1.4
.85
1.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 238.1
7.68
12
4.8
472 | 316.3
10.5
16
8.6
627 | 262.9
8.48
11
8.0
521 | 339.0
10.9
13
9.0
672 | 329.0
11.3
17
9.7
653 | 565.7
18.2
74
7.7
1120 | 1013
33.8
66
19
2010 | 591.3
19.1
39
7.5
1170 | 178.4
5.95
13
2.1
354 | 163.13
5.26
14
.38
324 | 420.6
13.6
18
6.7
834 | 214.96
7.17
13
.51
426 | CAL YR 1987 TOTAL 6186.5 MEAN 16.9 MAX 64 MIN 4.6 AC-FT 12270 WTR YR 1988 TOTAL 4632.39 MEAN 12.7 MAX 74 MIN .38 AC-FT 9190 #### 09306007 PICEANCE CREEK BELOW RIO BLANCO, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1974 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: December 1974 to September 1985. pH: December 1974 to September 1984. WATER TEMPERATURE: December 1974 to September 1985. DISSOLVED OXYGEN: December 1974 to September 1984. SUSPENDED SEDIMENT DISCHARGE: April 1974 to September 1985. INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1985. Water-quality monitor December 1974 to September 1985. REMARKS. -- Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: Maximum, 1,690 microsiemens June 21, 1976; minimum, 344 microsiemens Apr. 13, 1976. ph: Maximum, 9.0 units June 21, 1976; minimum, 7.0 units May 24, 1976. WATER TEMPERATURES: Maximum, 29.5°C July 25, 1977; minimum, freezing point on many days during winter months each year. DISSOLVED OXYGEN: Maximum, 15.7 mg/L Oct. 8, 1975; minimum, 5.1 mg/L July 17, 1979. SEDIMENT CONCENTRATIONS: Maximum daily, 20,300 mg/L July 20, 1974; minimum daily, 6 mg/L several days during September 1976. SEDIMENT LOADS: Maximum daily, 18,600 tons May 16, 1984; minimum daily, 0.02 ton Apr. 20, 1981. | DA TE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------|---|---|---|---|---|---|--|---|--|---| | FEB
11 | 0930 | 11 | 1220 | 8.3 | 0.5 | 12.8 | 460 | 93 | 55 | 120 | | MA Y
11 | 1000 | 23 | 1160 | 8.5 | 7.5 | 8.0 | 430 | 85 | 52 | 110 | | JUN
28 | 1220 | 5.7 | 1410 | 8.0 | 15.5 | 10.2 | 440 | 79 | 59 | 130 | | JԾL
27 | 1320 | 7.2 | 1330 | 8.2 | 17.0 | 9.8 | 470 | 85 | 61 | 140 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS -
SIUM,
DIS -
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | | FEB 11 | 3 | 2.7 | 386 | 300 | 20 | 1.1 | 15 | 847 | 1.15 | 0.0 | | MAY
11 | 2 | 3.0 | 342 | 270 | 16 | 0.6 | 16 | 764 | 1.04 | 47.9 | | JUN
28 | 3 | 3.8 | 437 | 330 | 20 | 0.7 | 14 | 901 | 1.22 | 13.8 | | JüL
27 | 3 | 2.9 | 399 | 310 | 21 | 0.6 | 14 | 878 | 1.19 | 17.1 | | DATE | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P) | BORON,
DIS-
SOLVED
(UG/L
AS B) | STRON -
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | | FEB 11 | | <0.01 | 1.50 | 0.04 | 0.36 | 0.40 | 0.03 | 0.01 | 170 | 1800 | | MAY
11 | | <0.01 | 1.00 | 0.06 | 0.54 | 0.60 | 0.06 | 0.02 | 140 | 1500 | | JUN
28 | | <0.01 | <0.10 | 0.02 | 0.48 | 0.50 | 0.03 | 0.01 | 200 | 1800 | | յն∟
27 | 0.410 | 0.01 | 0.42 | 0.02 | 0.58 | 0.60 | 0.02 | 0.01 | 190 | 1800 | MANGA - MOLYB - 279 # 09306007 PICEANCE CREEK BELOW RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LITHIUM DIS- SOLVED (UG/L AS LI) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |---------------|--|--|--|--|----------------------------------|--|---|--|--| | FEB 11
MAY | 1 | 100 | <1 | 11 | 19 | 53 | 8 | 2 | 5 | | 11 | 2 | 140 | <1 | 10 | 15 | 80 | 5 | 3 | < 3 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------|------|---|---|--------------------------------------|-----------|------|---|--|--------------------------------------| | OCT | | | | | FEB | | | | | | 01
NOV | 1130 | 7.3 | 1300 | 9.0 | 12
MAR | 1120 | 8.3 | 1180 | 4.0 | | 18
DEC | 1100 | 13 | 1290 | 3.0 | 30
JUN | 0910 | 26 | 1130 | 5.5 | | 14
JAN | 1035 | 15 | 1430 | 0.5 | 03
AUG | 1050 | 9.2 | 1350 | 16.0 | | 19 | 1420 | 11 | 1220 | 2.0 | 29 | 1148 | 12 | 1250 | 14.5 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |------------------------|--------------|---|--|---|---| | FEB
11
MAY
11 | 0930
0950 | 11
23 | 92
155 | 2.7
9.6 | 46 | | JUL 27 | 1320 | 7.2 | 60 | 1.2 | | ### 09306022 STEWART GULCH ABOVE WEST FORK NEAR RIO BLANCO, CO LOCATION.--Lat 39°49'09", long 108°11'08", in SE4NE4 sec.5, T.3 S., R.96 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 0.6 mi upstream from mouth, about 300 ft above confluence with West Fork Stewart Gulch, and 14.2 mi west of Rio Blanco. DRAINAGE AREA . - - 44.0 mi 2. ### WATER-QUALITY RECORDS PERIOD OF RECORD .-- October 1974 to current year. PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: October 1974 to September 1982. pH: October 1974 to March 1982. WATER TEMPERATURE: October 1974 to September 1982. DISSOLVED OXYGEN: October 1974 to March 1982. SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982. INSTRUMENTATION. -- Water-quality monitor October 1974 to September 1982. Pumping sediment sampler October 1974 to September 1982. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,200 microsiemens Nov. 10, 1975; minimum, 583 microsiemens Feb. 22, 1982. pH: Maximum, 8.9 units Dec. 9, 11, 1979; minimum, 7.6 units Oct. 7, 1975. WATER TEMPERATURES: Maximum, 20.5°C July 3, 1976, June 3, 1977; minimum, 0.0°C Jan. 9, Dec. 17, 1977, Mar. 3, Dec. 2, 3, 1978, Jan. 29, 1979. DISSOLVED OXYGEN: Maximum, 16.6 mg/L Jan. 13, 1976; minimum, 3.6 mg/L Aug. 19, 20, 1977. SEDIMENT CONCENTRATIONS: Maximum daily, 1,350 mg/L June 8, 1975; minimum daily, no flow Aug. 7-9, 1975. SEDIMENT LOADS: Maximum daily, 10 tons estimated June 8, 1975; minimum daily, no flow Aug. 7-9, 1975. | DATE | II
TIME T | TREAM- C
FLOW, C
NSTAN-
D
ANEOUS A | NCE | PH
STAND-
ARD
INITS) | ATI
WA | PER-
URE
TER
G C) | OXYGEN,
DIS-
SOLVEI
(MG/L) | NE
TO
(M | TAL
G/L | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | S .
D .
S O !
(M | IS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------------|--|---|---------------------------------|---|-------------------------------------|--|--|--|--|--|-------------------------------|---|--| | APR
28
JUN | 1155 | 3.8 | 1340 | 8.1 | | 12.5 | | | 490 | 79 | 7 | 1 | 110 | | 28 | 1040 | 2.5 | 1320 | 8.3 | | 11.5 | 11.0 |) | 520 | 90 | 7 | 2 | 120 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | M POTAS-
SIUM,
DIS-
SOLVEI
(MG/L
AS K) | LINITY
LAB | SULF
DIS
SOL
(MG | -
VED
/L | CHLC
RIDE
DIS-
SOLV
(MG/
AS C | ;, RI
- I
VED SO
'L (N | JUO-
DE,
DIS-
DLVED
MG/L
F) | SILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | CONST
D TUENT
DIS
SOLV | OF
TI-
TS,
S-
VED | SOLID
DIS
SOLV
(TON
PER
AC-F | ED
S | | APR
28 | 2 | 1.3 | 322 | 440 | | 11 | | 0.4 | 12 | | 930 | 1. | 26 | | JUN
28 | 2 | 1.2 | 294 | 360 | | 10 | | 0.2 | 16 | | 848 | | 15 | | DATE | SOLIDS
DIS-
SOLVE:
(TONS
PER
DAY) | NITRO-
, GEN,
NITRITE | NITRO
GEN,
NO2+NO
DIS- | O- NIT
GE
03 AMMO
DI
D SOL
(MG | RO-
N,
NIA
S-
VED
/L | NITR
GEN, A
MONIA
ORGAN
DIS.
(MG/
AS N | M- PH
+ PHC
HIC I
SC
'L (M | IOS-
PROUS
DIS-
DLVED
IG/L
F P) | PHOS-
PHOROU
ORTHO
DIS-
SOLVEI
(MG/L
AS P) | JS
DIS
DIS | ON,
S-
VED
/L | STRO
TIU
DIS
SOLV
(UG/
AS S | N -
M,
-
ED
L | | APR
28 | 9.4 | 9 <0.01 | 2.3 | 0. | 03 | 0. | 20 0 | .02 | <0.01 | | 80 | 23 | 00 | | JUN
28 | 5 .7 ′ | 7 | | | | 0. | 70 <0 | .01 | | | 80 | 27 | 00 | | | JAN
01
APR | DATE
··· | I
TIME T | TREAM-
FLOW,
NSTAN-
PANEOUS
(CFS) | COI
DU
AN
(US | FIC
N-
CT-
CE | PH
(STAND-
ARD
UNITS) | AT
WA | PER- CURE
TER
G C) | OXYGEN,
DIS-
SOLVED
(MG/L) | | | | 281 ### 09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO LOCATION.--Lat 39°50'01", long 108°13'12", in SENEL sec.36, T.2 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 600 ft upstream from mouth and 16.2 mi west of Rio Blanco. DRAINAGE AREA . -- 1.06 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1974 to August 1984, May 1985 to current year. REVISED RECORDS.--WDR CO-79-3: 1977(M). WDR CO-86-2: 1984-85 (M). GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,335 ft above National Geodetic Vertical Datum of 1929, from topographic map. Nov. 10, 1980 to June 10, 1981 at datum 0.21 ft, lower. REMARKS.--Estimated daily discharges: Nov. 16-21, 24 to Dec. 2, 4-5, 7-8, 10-19, 23, 25 to Jan. 18, 21, and Feb. 26 to Mar. 3. Records fair except for estimated daily discharges, which are poor. Most flow this year due to discharge from settling ponds on tract Cb, except for summer thunderstorms. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 506 ft³/s, Aug. 1, 1984, gage height, 6.38 ft, on basis of slope-area measurement of peak flow; no flow many days each year. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3.1 ft³/s at 1245 Feb. 14, gage height, 1.59 ft; no flow many days. | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YEA | | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4 | .12
.10
.08 | .45
.54
.64 | .45
.40
.37 | .46
.44
.42 | .39
.40
.28 | .10
.07
.05 | .02
.01
.02 | .09
.11
.06 | .14
.11
.09 | .18
.18
.19 | .10
.17
.18 | .18
.19
.19 | | 5 | .08
.11 | .59
.80 | .40
.45 | .44
.46 | .20
.20 | .08
.04 | .02
.04 | .06
.05 | .07
.06 | •19
•19 | .24
.22 | .20
.20 | | 6
7
8
9 | .23
.26
.29
.31
.29 | .74
.44
.44
.46 | .50
.45
.40
.40 | .48
.50
.44
.42 | .24
.24
.37
.38
.26 | .10
.14
.04
.06 | .03
.00
.01
.00 | .14
.14
.13
.11 | .08
.09
.10
.11 | .19
.19
.19
.20 | .22
.20
.25
.22 | .19
.20
.19
.21 | | 11
12
13
14
15 | .35
.41
.41
.43 | .59
.48
.52
.46
.45 | .40
.40
.45
.40 | .34
.30
.26
.22 | .33
.38
.45
.50 | .05
.04
.04
.13 | .02
.02
.03
.02 | .02
.03
.03
.04 | .10
.12
.11
.12
.13 | .20
.19
.20
.21
.21 | .22
.23
.24
.23
.24 | .21
.23
.19
.18 | | 16
17
18
19
20 | .29
.33
.37
.36
.32 | .45
.44
.42
.44
.46 | .40
.45
.40
.35 | .14
.10
.08
.06 | .43
.23
.54
.40 | .03
.02
.05
.06 | .04
.09
.03
.03 | .04
.08
.18
.18 | .14
.15
.15
.16
.18 | .21
.21
.21
.21 | .24
.23
.22
.23
.23 | .19
.19
.19
.19 | | 21
22
23
24
25 | .33
.58
.65
.44 | .50
.60
.72
.60 | .35
.38
.40
.43 | .08
.09
.12
.07
.08 | .49
.22
.18
.21
.18 | .16
.04
.05
.02 | .09
.11
.06
.08 | .10
.08
.09
.07 | .19
.19
.18
.20 | .20
.20
.19
.20
.22 | .24
.29
.24
.25
.27 | .22
.23
.23
.23 | | 26
27
28
29
30
31 | .46
.44
.70
.71
.51 | .45
.44
.42
.45
.42 | .40
.44
.46
.44
.42 | .06
.15
.27
.36
.34 | .15
.18
.16
.14 | .06
.06
.07
.05
.15 | .06
.08
.06
.03 | .12
.08
.07
.08
.13 | .19
.20
.22
.20
.17 | .22
.21
.18
.18
.18 | .24
.25
.29
.20
.18 | .23
.24
.22
.21
.20 | | TOTAL
MEAN
MAX
MIN
AC-FT | 11.68
.38
1.0
.08
23 | 15.43
.51
.80
.42
31 | 12.78
.41
.50
.30
25 | 8.20
.26
.50
.06 | 8.88
.31
.54
.14
18 | 2.17
.070
.16
.02
4.3 | 1.21
.040
.11
.00
2.4 | 2.73
.088
.18
.02
5.4 | 4.25
.14
.22
.06
8.4 | 6.13
.20
.22
.18
12 | 6.95
.22
.29
.10 | 6.13
.20
.24
.17 | CAL YR 1987 TOTAL 112.56 MEAN .31 MAX 8.3 MIN .00 AC-FT 223 WTR YR 1988 TOTAL 86.54 MEAN .24 MAX 1.0 MIN .00 AC-FT 172 ### 09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1974 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1974 to August 1984, April 1985 to February 1986. pH: February to September 1981. WATER TEMPERATURE: April 1974 to August 1984, April 1985 to February 1986. SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1982. INSTRUMENTATION. -- Water-quality monitor April 1974 to February 1986. Pumping sediment sampler April 1974 to September 1982. REMARKS.--Unpublished maximum and minimum values of specific conductance for periods of daily record are available in the district office. Water-quality monitor was moved February 21, 1986 to the discharge pipe of a settling pond on Occidental Petroleum's tract C-b oil shale lease. Daily monitor data subsequent to February 20 are site specific and not published in this report. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 2,570 microsiemens Sept. 16, 1980; minimum observed, 220 microsiemens Jan. SPECIFIC COMPONENTATION: Maximum, 2,370 microstemens Sept. 13, 1900, micro | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |------------------|---|---|---|---|---|--|---|---|---|---|---| | FEB
11
MAY | 1030 | 1.0 | 2340 | 9.1 | 1.0 | 11.5 | 55 | 8.4 | 7.8 | 550 | 34 | | 11 | 1130 | 0.03 | 2400 | 9.0 | 22.5 | 7.3 | 52 | 8.2 | 7.3 | 620 | 39 | | JUN
28 | 1330 | 0.21 | 2360 | 8.9 | 22.0 |
6.9 | 54 | 7.8 | 7.9 | 600 | 37 | | JUL
27 | 1247 | 0.20 | 2490 | 8.9 | 26.5 | 7.4 | 46 | 6.5 | 6.8 | 660 | 44 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | BROMI DE
DIS-
SOLVED
(MG/L
AS BR) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | | FEB
11 | 1.9 | 1300 | 28 | 22 | 12 | 0.020 | 12 | 1430 | 1.94 | 4.01 | 0.75 | | MA Y
11 | 1.8 | 1290 | 43 | 7.9 | 22 | | 11 | 1500 | 2.04 | 0.12 | | | JUN
28 | 1.5 | 1280 | 59 | 7.7 | 20 | 0.015 | 11 | 1490 | 2.02 | 0.84 | | | JUL
27 | 1.6 | 1360 | 60 | 8.0 | 18 | | 10 | 1590 | 2.16 | 0.86 | 0.16 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(MG/L) | BORON,
DIS-
SOLVED
(UG/L
AS B) | STRON -
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | | FEB
11 | 0.04 | 0.79 | 0.02 | 0.28 | 0.30 | 0.02 | <0.01 | 2.7 | 2 | 690 | 1300 | | MA Y
11 | <0.01 | 0.39 | 0.03 | | <0.2 | 0.02 | <0.01 | | | 770 | 1000 | | JUN
28 | <0.01 | 0.12 | 0.01 | 0.39 | 0.40 | 0.01 | 0.02 | 7.0 | <1 | 700 | 1200 | | JUL
27 | 0.01 | 0.17 | <0.01 | | 0.70 | 0.02 | <0.01 | | | 710 | 1200 | | | | | | | | | | | | | | ## 09306042 PICEANCE CREEK TRIBUTARY NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | |-----------|---|--|--|--|---|--|---|--|--| | FEB
11 | <10 | <1 | 600 | <10 | <1 | <1 | <1 | <1 | 20 | | MA Y | -10 | - 1 | 000 | 110 | - 1 | - 1 | • 1 | • 1 | 20 | | 11
JUN | | 1 | 400 | | | | <1 | | <10 | | 28 | 20 | 1 | 300 | <10 | <1 | <1 | < 1 | 1 | 120 | | | | | | | | | | | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY DIS- SOLVED (UG/L AS HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | VANA -
DIUM,
DIS -
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | FEB
11 | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DENUM,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | DIUM,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | FEB | DIS-
SOLVED
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS LI) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | DIS-
SOLVED
(UG/L | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | DIUM,
DIS-
SOLVED
(UG/L
AS V) | DIS-
SOLVED
(UG/L
AS ZN) | WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------------------|------|---|---|--------------------------------------|------------------|------|---|---|--------------------------------------| | NOV
20
FEB | 1315 | 0.31 | 2290 | 1.0 | APR
18
JUN | 1110 | 0.02 | 2260 | 15.5 | | 22
MA R | 1200 | 0.28 | 2290 | 6.0 | 02
AUG | 1300 | 0.12 | 2440 | 27.0 | | 30 | 1025 | 0.13 | 2140 | 4.0 | 29 | 1248 | 0.18 | 2430 | 24.0 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-------------------|------|---|--|---|---| | FEB
11
MA Y | 1030 | 1.0 | 518 | 1.5 | | | 11
JUL | 1130 | 0.03 | 149 | 0.01 | 54 | | 27 | 1247 | 0.20 | 27 | 0.01 | | ### 09306058 WILLOW CREEK NEAR RIO BLANCO, CO LOCATION.--Lat 39°50'14", long 108°14'37", in NWiNEd sec.35, T.2 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on right bank 1,500 ft upstream from mouth and 17.4 mi west of Rio Blanco. DRAINAGE AREA. -- 48.4 mi2. #### WATER-OHALITY RECORDS PERIOD OF RECORD. -- April 1974 to September 1985, October 1986 to current year. PERIOD OF DAILY RECORD . -- RIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1974 to September 1982. pH: March 1976 to February 1982. WATER TEMPERATURE: November 1974 to September 1982. DISSOLVED OXYGEN: March 1976 to February 1982. SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982. INSTRUMENTATION.--Water-quality monitor November 1974 to September 1982. Pumping sediment sampler October 1974 to September 1982. REMARKS.--Unpublished daily maximum and minimum specific conductance data for period of daily record are available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,920 microsiemens July 14, 1976; minimum, 528 microsiemens Mar. 18, 1976. pH: Maximum, 8.8 units Mar. 11, 1980; minimum, 7.4 units June 4, 6, 1980. WATER TEMPERATURES: Maximum, 30.5°C July 4, 1982; minimum, 0.0°C on many days during winter months each year. DISSOLVED OXYGEN: Maximum, 12.9 mg/L Mar. 29, 1979; minimum, 3.6 mg/L Sept. 29, 1978. SEDIMENT CONCENTRATIONS: Maximum daily, 7,030 mg/L July 29, 1979; no flow many days during 1978. SEDIMENT LOADS: Maximum daily, 61 tons July 29, 30, 1979; no flow many days during 1978. | DATE | F
IN
TIME TA | REAM- C
LOW, C
STAN- D
NEOUS A | NCE | PH
STAND-
ARD
(NITS) | TEMP
ATU
WAT
(DE C | IRE
ER | OXYGEN,
DIS-
SOLVEI
(MG/L) | NE
TO
(M | TAL
G/L
S | ALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVEI
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L | |------------------|---|---|------------------------|---|------------------------------|--|--------------------------------------|--|---|---
--|---| | APR
28
JUN | 1155 | 3.8 | 1340 | 8.1 | 1 | 12.5 | | • | 490 | 79 | 71 | 110 | | 29 | 1040 | 2.5 | 1320 | 8.3 | 1 | 11.5 | 11.0 | ı | 520 | 90 | 72 | 120 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB | SULFA
DIS-
SOLV
(MG) | -
VED
/L | CHLO
RIDE
DIS-
SOLV
(MG/
AS C | , RI
ED SC
L (M | UO-
DE,
DIS-
DLVED
IG/L | SILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | CONST | S SOL
S S SOL
S S SOL
S S SOL
S S | IDS,
IS-
LVED
ONS
ER | | APR 28 | 2 | 1.3 | 322 | 4 4 0 | | 11 | | 0.4 | 12 | 93 | 30 | 1.26 | | JUN
29 | 2 | 1.2 | 294 | 360 | | 10 | | 0.2 | 16 | 81 | 48 | 1.15 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRIŤE | GEN,
NO2+NO
DIS- | GE1 3 AMMO1 5 DIS 5 SOL 7 (MG) | N,
NIA
S-
VED
/L | NITR
GEN, A
MONIA
ORGAN
DIS.
(MG/
AS N | M- PH
+ PHO
IC E
SO
L (M | OS-
ROUS
DIS-
DLVED
IG/L
P) | PHOS-PHOROUSORTHODIS-SOLVED(MG/LAS P) | | , T
- E
ED SC | RON-
IUM,
US-
UVED
G/L
SR) | | APR
28
JUN | 9.49 | <0.01 | 2.30 | 0.0 | 03 | 0. | 20 0 | .02 | <0.01 | 8 | 30 | 2300 ' | | 29 | 5.77 | | - | - | | 0. | 7 0 <0 | .01 | - | - 8 | 30 | 2700 | | | JAN
O1.
APR
20. | •• | TIME T | TREAM-
FLOW,
NSTAN-
'ANEOUS
(CFS)
4.5
4.7 | | IC
I-
EE | PH
(STAND-
ARD
UNITS) | A T
WA | URE
TER | XYGEN,
DIS-
SOLVED
(MG/L) | | | 285 ### 09306061 PICEANCE CREEK ABOVE HUNTER CREEK NEAR RIO BLANCO, CO ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1974 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1974 to September 1985. pH: October 1974 to September 1984. WATER TEMPERATURE: October 1974 to September 1985. DISSOLVED OXYGEN: October 1974 to September 1984. SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1985. INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1985. Water-quality monitor October 1974 to September 1985. REMARKS. -- Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum 1,980 microsiemens Jan. 15, 1976; minimum, 440 microsiemens Apr. 19, 1985. pH: Maximum, 8.9 units Dec. 7, 1977; minimum, 7.4 units Apr. 18, 1979. WATER TEMPERATURES: Maximum, 26.5°C June 26, 1977; minimum, freezing point on many days during winter months. DISSOLVED OXYGEN: Maximum, 16.5 mg/L Mar. 21, 22, 1976; minimum, 3.1 mg/L Sept. 10, 1978. SEDIMENT CONCENTRATIONS: Maximum daily, 15,000 mg/L May 2, 1986; minimum daily, no flow Oct. 4, 5, 1977. SEDIMENT LOADS: Maximum daily, 27,000 tons estimated Sept. 3, 1977; minimum daily, no flow Oct. 4, 5, 1977. | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER
ATURE
WATER
(DEG C | I
SC | YGEN,
DIS-
DLVED | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | SI
DI
SOI
(M) | GNE- IUM, SODIUM, IS- DIS- LVED SOLVED G/L (MG/L MG) AS NA) | |-----------|------------------|---|---|---|--|---|--|---|--|-------------------------------|---| | APR
28 | 1430 | 37 | 1160 | 8.1 | 12. | 5 | | 400 | 78 | 50 | 0 110 | | JUN
29 | 1215 | 6.6 | 1620 | 8.2 | 18. | 0 | 13.4 | 500 | 77 | 71 | 160 | | DATE | A
Sof | ON SOLV | M, LINI
- LA
ED (MG
L AS | TY SULI
B DIS
/L SOI
(MG | FATE R
S- D
LVED S
G/L (| HLO-
IDE,
IS-
OLVED
MG/L
S CL) | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
AS F) | DIS
SOL'
D (MG | CONS
VED TUEN
L DI
SOL | OF
TI-
TS,
S-
VED | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | | APR
28 | | 2 2. | 5 327 | 270 | n | 15 | 0.2 | 14 | | 744 | 1.01 | | JUN
29 | | 3 3. | | 410 | | 18 | 0.7 | | | 040 | 1.41 | | DATE | SOL
(TO
PE | S- NITRI
VED DIS
DNS SOLV | TE NO2+ DI ED SOL L (MG | N, GE
NO3 AMMO
S- DI
VED SOI
/L (MO | EN, GE
ONIA MO
IS- OR
LVED D
G/L (| ITRO-
N,AM-
NIA +
GANIC
IS.
MG/L
S N) | PHOS-
PHOROU
DIS-
SOLVE
(MG/L
AS P) | S ORTH
DIS-
D SOLVE | OUS HO, BOR DI: ED SOL' L (UG | S-
VED
/L | STRON -
TIUM,
DIS -
SOLVED
(UG/L
AS SR) | | APR 28 | 74 | .7 <0.0 | 1 1. | 4 0 | .06 | 0.2 | 0.04 | <0.0 | 01 | 130 | 1400 | | JUN
29 | 18 | .5 <0.0 | 1 0. | 16 <0 | .01 | 0.8 | 0.01 | <0.0 | 01 | 210 | 2300 | | | 0.0 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM | P
(ST
A | AND-
RD | EMPER-
ATURE
WATER
DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | | | | | | 01 | 1325 | 20 | 144 | 0 | | 12.5 | | | | | | AP | 15
R | 1015 | 9.8 | 154 | | | 0.0 | | | | | | | 20 | 1130 | 44 | 116 | U | 8.0 | 9.0 | 8.3 | | | ### 09306200 PICEANCE CREEK BELOW RYAN GULCH, NEAR RIO BLANCO, CO LOCATION.--Lat 39°55'16", long 108°17'49", in sec.32, T.1 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank at downstream side of bridge, 40 ft downstream from Ryan Gulch, and 23 mi northwest of Rio Blanco. DRAINAGE AREA . - - 506 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- October 1964 to current year. REVISED RECORDS. -- WDR CO-79-3: 1977(M). GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,070 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 13, 14, 16-18, 24 to Jan. 31, and Feb. 4-8. Records good except for estimated daily discharges, which are fair. Diversions for irrigation upstream from station. AVERAGE DISQHARGE.--24 years, 32.6 ft³/s; 23,620 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 550 ft³/s, May 5, 1985, gage height, 7.70 ft; maximum gage height, 7.81 ft, May 28, 1983; minimum daily discharge, 0.15 ft³/s, June 7, 1981. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 100 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|---------|------|----------------------|---------------------| | Feb. 29 | 2015 | *114 | *5.27 | Mar. 28 | 0600 | 108 | 5.20 | Minimum daily discharge, 6.6 ft³/s, May 22. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR
AN VALUES | OCTOBER | 1987 To | SEPTEMBE | R 1988 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------
----------------------------------|----------------------------|----------------------------|-----------------------------|----------------------------------|----------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 29 | 35 | 38 | 30 | 30 | 71 | 46 | 42 | 15 | 11 | 14 | 22 | | 2 | 30 | 37 | 37 | 28 | 30 | 55 | 46 | 53 | 14 | 11 | 16 | 22 | | 3 | 30 | 36 | 37 | 27 | 30 | 47 | 49 | 56 | 14 | 12 | 15 | 21 | | 4 | 30 | 37 | 38 | 26 | 30 | 46 | 70 | 49 | 14 | 13 | 20 | 21 | | 5 | 30 | 38 | 40 | 26 | 29 | 42 | 67 | 46 | 14 | 15 | 19 | 21 | | 6 | 29 | 39 | 40 | 25 | 29 | 44 | 71 | 39 | 15 | 12 | 22 | 21 | | 7 | 30 | 38 | 41 | 25 | 28 | 46 | 77 | 41 | 17 | 12 | 22 | 20 | | 8 | 31 | 37 | 40 | 24 | 28 | 40 | 79 | 41 | 16 | 12 | 21 | 19 | | 9 | 32 | 38 | 39 | 24 | 28 | 41 | 59 | 40 | 17 | 12 | 21 | 18 | | 10 | 33 | 39 | 40 | 27 | 29 | 44 | 52 | 36 | 15 | 12 | 21 | 19 | | 11 | 32 | 40 | 40 | 30 | 28 | 40 | 50 | 32 | 13 | 11 | 21 | 20 | | 12 | 32 | 40 | 39 | 26 | 29 | 35 | 48 | 27 | 12 | 11 | 24 | 23 | | 13 | 32 | 38 | 39 | 24 | 30 | 35 | 49 | 21 | 12 | 10 | 24 | 23 | | 14 | 34 | 39 | 39 | 24 | 30 | 33 | 51 | 17 | 12 | 11 | 24 | 24 | | 15 | 34 | 41 | 39 | 24 | 32 | 37 | 51 | 15 | 11 | 9.2 | 24 | 21 | | 16
17
18
19
20 | 36
35
34
34
32 | 38
44
43
43
41 | 38
36
35
35
35 | 24
23
23
22
22 | 32
30
31
32
32 | 38
35
34
37
42 | 52
59
67
58
58 | 14
10
11
14
13 | 12
13
12
12
9.6 | 9.9
9.7
10
9.9 | 27
30
29
27
28 | 20
19
19
20
18 | | 21 | 33 | 40 | 37 | 23 | 31 | 48 | 55 | 6.8 | 9.4 | 10 | 35 | 21 | | 22 | 36 | 40 | 36 | 25 | 34 | 57 | 59 | 6.6 | 11 | 10 | 37 | 19 | | 23 | 36 | 40 | 37 | 28 | 33 | 54 | 58 | 9.1 | 11 | 11 | 33 | 18 | | 24 | 35 | 40 | 34 | 30 | 35 | 55 | 58 | 10 | 12 | 12 | 32 | 17 | | 25 | 37 | 39 | 30 | 34 | 37 | 51 | 68 | 9.5 | 11 | 13 | 32 | 16 | | 26
27
28
29
30
31 | 36
37
37
37
38
36 | 40
40
39
39
39 | 29
28
27
27
26
28 | 32
30
30
30
29
29 | 39
43
66
76 | 56
70
90
64
57
51 | 63
53
47
46
45 | 11
11
11
10
11 | 12
12
13
10
11 | 12
11
13
13
14
15 | 32
38
29
22
22 | 16
16
15
14
15 | | TOTAL | 1037 | 1177 | 1104 | 824 | 991 | 1495 | 1711 | 727.0 | 382.0 | 357.7 | 783 | 578 | | MEAN | 33.5 | 39.2 | 35.6 | 26.6 | 34.2 | 48.2 | 57.0 | 23.5 | 12.7 | 11.5 | 25.3 | 19.3 | | MAX | 38 | 44 | 41 | 34 | 76 | 90 | 79 | 56 | 17 | 15 | 38 | 24 | | MIN | 29 | 35 | 26 | 22 | 28 | 33 | 45 | 6.6 | 9.4 | 9.2 | 14 | 14 | | AC-FT | 2060 | 2330 | 2190 | 1630 | 1970 | 2970 | 3390 | 1440 | 758 | 709 | 1550 | 1150 | CAL YR 1987 TOTAL 15365 MEAN 42.1 MAX 131 MIN 18 AC-FT 30480 WTR YR 1988 TOTAL 11166.7 MEAN 30.5 MAX 90 MIN 6.6 AC-FT 22150 09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO--Continued 287 ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1970 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: December 1979 to September 1982, November 1985 to current year. WATER TEMPERATURE: December 1979 to September 1982, November 1985 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1972 to September 1983. INSTRUMENTATION.--Automatic pumping sediment sampler October 1972 to September 1983. Water-quality monitor December 1979 to September 1982, November 1985 to current year. REMARKS.--Unpublished maximum and minimum specific conductance data for the periods of daily record are available in the district office. Interruptions in the daily record are due to instrument malfunctions. ### EXTREMES FOR PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: Maximum 2,920 microsiemens July 18, 1981; minimum, 520 microsiemens July 18, 1981. WATER TEMPERATURES: Maximum 26.5°C June 22, 1981; minimum, 0.0°C on many days during the winter period. SEDIMENT CONCENTRATIONS: Maximum daily, 21,700 mg/L July 20, 1977; minimum daily, 8 mg/L Oct. 14, 1979, several days in Sept. 1981. SEDIMENT LOADS: Maximum daily, 5,390 tons July 23, 1983; minimum daily, 0.05 ton Sept. 27, 30, 1981. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Not determined. WATER TEMPERATURES: Maximum 25.7°C June 25; minimum, 0.0°C several days during the winter period. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | 1 | DATE | TIME | STREAM
FLOW,
INSTAN
TANEOU
(CFS) | , CO
N- DU
JS AN | FIC
N-
CT- (
CE | PH
STAND-
ARD
NITS) | A T
WA | PER-
URE
TER
G C) | D:
S O I | GEN,
IS-
LVED
G/L) | HARD
NESS
TOTAL
(MG/I
AS
CACO | CA1
D:
S(1 | CCIUM
IS-
DLVED
MG/L
S CA) | MAGN
SIU
DIS
SOLV
(MG/
AS M | IM, SC
S- I
ED SC
L (| DDIUM,
DIS-
DLVED
MG/L
S NA) | |------------|--------------------|--|--|--|--|-------------------------------|------------------------------|--|------------------------|--|--|--|--|--|--|--| | FEB
11. | | 1220 | 28 | | 1440 | 8.8 | | 2.5 | | 12.0 | 5(| 00 1 | 34 | 70 | 1 | 40 | | MAY
11. | | 1315 | 33 | | 1460 | 8.4 | | 14.0 | | 12.0 | | | 39 | 79 | | 50 | | JUN
29 | | 1345 | 11 | | 1930 | 8.2 | | 16.5 | | 9.5 | _ | | 34 | 110 | | :30 | | JUL 27 | | 1430 | 11 | | 1900 | 8.3 | | 18.5 | | 9.2 | | - | 76 | 100 | | 10 | | _, | | , 150 | | | , , 0 0 | 0.5 | | | | , | J | | | , 00 | _ | . 10 | | 1 | DATE FEB 11 MAY 11 | SORI
TIC
RATI | D-
?-
ON S
IO (| POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3 | SULFA
DIS-
SOLY
(MG) | -
VED
/L | CHLC
RI DE
DIS-
SOLV
(MG/
AS C | ED
L | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
AS F) | D S | ILICA,
DIS-
SOLVED
(MG/L
AS
BIO2) | • | F S
I-
S,
-
ED | OLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | | | <u>.</u> | 29
JUL | 1 | 4 | 3.3 | 537 | 520 | | 19 | | 0.7 | | 17 | 13 | 10 | 1.78 | | | | 27 | 1 | 4 | 2.9 | 529 | 540 | | 20 | | 0.6 | | 18 | 12 | 90 | 1.75 | | | | DATE | SOLII
DIS
SOLV
(TOM
PEI
DAY | DS,
S- NI
VED
NS S
R (| GEN,
GEN,
ITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO
GEN,
NO2+NO
DIS-
SOLVE
(MG/L
AS N) | GE1
3 AMMON
DIS | N,
NIA
S-
VED
/L | NITE
GEN, A
MONIA
ORGAN
DIS.
(MG/ | M-
I +
IIC
'L | PHOS-
PHOROU
DIS-
SOLVE
(MG/L
AS P) | PI
S (
D S(
I) | PHOS-
HOROUS
DRTHO,
DIS-
DLVED
MG/L
S P) | BORO
DIS
SOLVI
(UG/I | -
ED
L | STRON -
TIUM,
DIS -
SOLVED
(UG/L
AS SR) | | | F | FEB
11 | 0. | .0 < | <0.01 | 1.40 | 0.0 | 02 | n | 40 | 0.02 | | <0.01 | 1 | 50 | 2700 | | | 1 | 11 | 87. | | <0.01 | 0.80 | 0.0 | | | 60 | 0.02 | | 0.02 | | 60 | 2900 | | | Ç | JUN 29 | 37 | | <0.01 | <0.10 | 0.0 | | | 90 | 0.05 | | 0.02 | | 50 | 3700 | | | Ċ | 27 | 39. | | <0.01 | 0.16 | | | 1. | | 0.06 | | 0.03 | | 60 | 3400 | | | | - , • • • | 27. | • • | 3.01 | 0.10 | J. (| ٠, | ٠. | J | 0.00 | | 0.00 | ~ | | 5-700 | | GREEN RIVER BASIN # 09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |------------|--|--|--|--|--|--|---|--|--| | FEB 11 | 1 | 110 | <1 | 8 | 14 | 9 | 7 | <1 | 6 | | MA Y
11 | 2 | 87 | <1 | 9 | 15 | 10 | 6 | 5 | < 3 | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|------|---|--|---|---| | FEB 11 | 1220 | 28 | 264 | 22 | 65 | | MAY
11 | 1315 | 33 | 226 | 20 | 70 | | JUL
27 | 1430 | 11 | 36 | 1.1 | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MA R APR MAY JUN JUL $A\,U\,G$ SEP ___ ------1580 ___ ------_---------1320 1330 8 ---~-----------------14 ___ ------------___ ---------___ 18 ------1380 1830 1630 1670 ---------___ ------------------23 ---------1.400 ---------1720 ---1240
___ ___ ___ ---------1250 1730 949 ---30 ---------___ --- --- TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA Y | MA X | MIN | |---|---|--|---|--|--|--|--|---|--|---|---|--| | | OCTO | BER | NOVE | MBER | DE C | EMBER | JAN | UA RY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 14.6
14.9
14.4
13.5
14.2 | 5.3
5.4
5.5
5.8 | 11.1
10.9
9.2
10.1
9.6 | 7.9
7.7
6.5
4.3
3.7 | 2.3
4.4
6.2
5.6
5.6 | .0
.5
1.9
1.6
3.7 | |

 | 2.5
2.5
2.7
2.3 | 1.3
1.4
1.6
.5 | 7.1
6.3
9.1
7.6
7.4 | 2.4
3.2
3.6
3.4 | | 6
7
8
9
10 | 14.3
13.5
12.6
12.6
13.4 | 5.4
5.4
6.6
5.5
6.4 | 9.8
7.2
9.0
8.0
4.7 | 6.1
4.2
4.5
2.5
2.5 | 6.6
6.6
3.4
2.7
6.8 | 3.9
2.7
.2
.0
2.5 | .0 | .0 | .2
.9
3.0
3.9
4.7 | .0
.3
.4
1.8 | 7.1
5.5
6.8
8.1
5.8 | 2.0
1.6
.3
1.8
2.3 | | 11
12
13
14
15 | 13.0
10.2
10.7
9.8
12.9 | 5.1
4.7
8.6
7.3
6.9 | 6.4
6.6
6.9
6.6
4.8 | 3.4
1.6
3.0
3.8 | 4.9
2.2
.0
.0 | 2.4
.0
.0
.0 | .0
.1
.1
.0 | .0
.0
.0 | 4.9
5.1
4.0
3.6
3.8 | .2
.4
.5
.2
.3 | 4.5
3.8
3.9
4.9
5.6 | .7
.7
.7
.7 | | 16
17
18
19
20 | 12.0
11.1
10.3
10.5
9.7 | 5.7
3.6
4.1
3.4
2.0 | 3.1
2.3
.9
2.3
3.9 | .0
.0
.0 | .1

 | .1

 | .0
.0
.0 | .0
.0
.0 | 3.3
2.8
2.0
2.4
4.2 | .2
.3
.1
.3
.4 | 5.0
4.5
5.8
7.1
7.7 | 2.0
1.0
1.3
2.3
3.8 | | 21
22
23
24
25 | 9.8
10.0
8.2
10.3
12.8 | 1.7
2.9
3.5
6.9
7.9 | 4.5
4.2
5.2
4.8
3.2 | .0
.7
1.4
1.3 | | | .0
.0
.0
.1 | .0
.0
.0 | 4.6
6.1
6.0
6.2
6.8 | .7
1.0
.1
.3 | 8.5
7.8
7.9
7.7
7.1 | 4.4
4.7
4.2
4.3
3.5 | | 26
27
28
29
30
31 | 11.6
10.7
9.4
11.6
10.0 | 5.0
4.4
4.0
6.9
7.6
5.7 | 3.0
4.3
2.1
2.7
2.7 | .9
.7
.0
.0 | | | .1
.0
.0
2.0
2.8 | .0
.0
.0
.0 | 7.1
7.5
7.0
7.5 | .5
1.0
2.5
1.6 | 9.9
8.6
7.1
5.4
4.4
8.1 | 4.1
4.6
1.7
.0
2.4
1.3 | | | | | | | | | | | | | | | | MONTH | 14.9 | 1.7 | 11.1 | .0 | | | | | 7.5 | .0 | 9.9 | .0 | | MONTH | 14.9
APR | | 11.1
MA | | | JNE | | JL Y | | .0
GUST | SEPT | .0
EMBER | | MONTH 1 2 3 4 5 | • | | | | | | | | | | | | | 1
2
3
4 | APR | IL

 | MA
11.1
9.4
18.3
12.9 | 6.9
4.0
3.7
5.4 | J18.5
23.3
24.1
21.7 | 5.4
8.7
9.2
9.8 | Jt
21.2
21.8
20.2
19.1 | JLY
10.4
11.2
11.8
12.9 | 18.4
21.3
23.3
22.8 | 12.1
11.4
13.5
13.0 | SEPTI
20.6
19.5
19.3
19.5 | 10.2
10.4
9.8 | | 1
2
3
4
5
6
7
8 | APR | IL | MA 11.1 9.4 18.3 12.9 14.6 11.6 12.7 13.5 15.4 | 4.0
3.7
5.4
5.3
6.3
4.0
6.2 | 18.5
23.3
24.1
21.7
20.7
19.7
21.0
21.7
22.7 | 5.4
8.7
9.2
9.8
11.0
9.3
7.3
6.2
7.2 | 21.2
21.8
20.2
19.1
21.4
22.5
22.0
22.2
18.7 | 10.4
11.2
11.8
12.9
11.4
11.8
11.2
11.4 | 18.4
21.3
23.3
22.8
21.9
19.6
19.1
19.3
20.9 | 12.1
11.4
13.5
13.0
10.4
12.9
12.0
10.8
10.0 | SEPTI
20.6
19.5
19.3
19.5
19.3
18.1
18.8
19.3
18.0 | 10.2
10.4
9.8
9.7
8.7
9.0
10.1
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | APR | IL | MA 11.1 9.4 18.3 12.9 14.6 11.6 12.7 13.5 15.4 17.4 19.1 20.7 20.2 21.2 | Y 6.9
4.0
3.7
5.3
6.3
4.0
6.2
6.0
7.6
6.0
8.1 | 18.5
23.3
24.1
21.7
20.7
19.7
21.0
21.7
22.7
20.9
23.1
23.2
18.1
22.7 | 5.4
8.7
9.2
9.8
11.0
9.3
7.3
6.2
7.2
8.3
9.0
8.9
9.4
7.6 | 21.2
21.8
20.2
19.1
21.4
22.5
22.0
22.2
18.7
20.7
22.3
22.8
23.6 | JLY 10.4 11.2 11.8 12.9 11.4 11.8 11.2 11.4 10.8 9.9 11.6 11.7 10.7 12.0 | 18.4
21.3
23.3
22.8
21.9
19.6
19.1
19.3
20.9
19.5
19.7
18.3
20.8
21.4 | 12.1
11.4
13.5
13.0
10.4
12.9
12.0
10.8
10.0
9.7 | SEPTI
20.6
19.5
19.3
19.5
19.3
18.1
18.8
19.3
18.0
16.1
12.9
10.3
14.4
12.8 | 10.2
10.4
9.8
9.7
8.7
9.0
10.1
8.8
8.9
11.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | APR | IL | MA 11.1 9.4 18.3 12.9 14.6 11.6 12.7 13.5 15.4 17.4 19.1 20.7 20.2 21.2 22.0 21.5 17.0 11.6 | Y 6.9 9 4.0 3.7 5.3 6.3 6.2 6.6 6.0 7.6 6.2 8.1 8.8 7.2 8.4 11.1 8.8 8.4 | 18.5
23.3
24.1
21.7
20.7
19.7
21.0
21.7
22.7
20.9
23.1
23.2
18.1
22.7
20.9
22.1
21.9
22.3
23.0 | 5.4
8.7
9.2
9.8
11.0
9.3
7.3
6.2
7.2
8.3
9.9
9.4
7.6
7.7
8.7
8.9
9.6 | 21.2
21.8
20.2
19.1
21.4
22.5
22.0
22.2
18.7
20.7
22.3
22.8
23.9
23.6
19.6
20.3
21.7
22.5 | JLY 10.4 11.2 11.8 12.9 11.4 11.8 11.2 11.4 10.8 9.9 11.6 11.7 12.0 10.9 10.8 10.4 10.2 9.6 | 18.4
21.3
23.3
21.9
19.6
19.1
19.3
20.9
19.5
19.7
18.3
20.8
21.4
17.8
21.0
18.8
20.6
21.5 | 12.1
11.4
13.5
13.0
10.4
12.9
12.0
10.8
10.0
9.7
10.3
12.7
10.3
10.5
12.1 | SEPTI 20.6 19.5 19.3 19.5 19.3 18.1 18.8 19.3 18.0 16.1 12.8 15.6 16.5 16.5 16.2 14.2 13.2 | 10.2
10.4
9.8
9.7
8.7
9.0
10.1
8.8
9.0
8.2
6.8 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | APR 14.2 13.9 13.6 10.3 11.8 13.4 12.9 9.8 10.2 11.9 11.0 | IL | 11.1
9.4
18.3
12.9
14.6
11.6
12.7
13.5
17.4
19.1
20.7
20.2
21.2
22.0
21.5
17.0
11.6
16.5 | Y 6.90
35.43
6.02
6.06
7.6
6.00
7.8.18
8.4
118.844
8.44
8.44
8.44
8.6
6.6 | 18.5
23.3
24.1
20.7
19.7
21.0
21.7
20.9
23.1
22.7
20.9
23.1
22.7
20.9
21.9
22.3
23.0
21.8
21.4
22.9 | JNE 5.4 4 7 9.8 8.7 2 9.8 11.0 9.3 3.6.2 2 8.3 9.4 6.7 7.7 8.8 9.6 6 11.9 7.5 11.5 | 21.2
21.8
20.2
19.1
21.4
22.5
22.0
22.2
18.7
20.7
22.3
23.9
23.6
19.6
20.3
21.7
22.5
22.7
22.5
22.7 | JLY 10.4 11.2 11.8 12.9 11.4 11.8 11.2 11.4 10.7 10.7 10.7 12.0 10.9 10.8 10.4 10.2 9.6 10.0 11.5 10.2 | 18.4
21.3
23.8
21.9
19.6
19.1
19.3
20.9
19.5
19.7
18.3
21.4
17.8
21.0
18.6
21.5
17.9 | 12.1
11.4
13.5
10.4
12.9
12.0
10.8
10.0
9.7
10.3
12.7
10.3
10.5
12.1
12.1
11.0
11.5 | SEPTI 20.6 19.5 19.3 19.5 19.3 18.1 18.8 19.3 18.0 16.1 12.9 14.4 12.8 15.6 16.2 13.2 15.0 14.0 12.5 15.2 14.8 | 10.4
9.87
9.7
8.7
9.0
10.1
8.8
8.9
11.6
10.0
9.2
8.4
6.8
8.6
6.6 | ### 09306222 PICEANCE CREEK AT WHITE RIVER, CO LOCATION.--Lat 40°05'16", long 108°14'35", in SWANE4 sec.2, T.1 N., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 900 ft upstream from mouth, 1.0 mi west of White River City, and 17 mi west of Meeker. DRAINAGE AREA. -- 652 mi2. PERIOD OF RECORD. -- October 1964 to September 1966, October 1970 to current year. REVISED RECORDS. -- WDR CO-82-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,705 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1964, to Sept. 30, 1966, and Oct. 1, 1970, to July 12, 1974, at several sites 1.1 mi upstream at different datums. REMARKS.--Estimated daily discharges: Nov. 14-18, Dec. 12 to Mar. 2, Mar. 8-9, 12-14, and Mar. 17-18. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 5,500 acres upstream from station. AVERAGE DISCHARGE. -- 20 years, 41.7 ft 3/s; 30,210 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 628 ft³/s, Sept. 7, 1978, gage height, 7.04 ft, on basis of slope-area measurement of peak flow; minimum daily, 0.50 ft³/s, July 21-22, 1966. EXTREMES FOR CURRENT YEAR. --
Peak discharges greater than base discharge of 100 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | Mar. 28 | 1410 | * 136 | *3.62 | Apr. 8 | 1555 | 108 | 3.41 | Minimum daily discharge, 3.6 ft³/s, June 25. | | | DISCHAF | RGE, CUBIC | FEET PEF | | WATER YEA | R OCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 30
31
31
30
29 | 46
48
46
47
48 | 40
43
38
39
40 | 35
32
31
30
30 | 34
35
35
35
34 | 90
100
76
73
50 | 53
54
57
75
80 | 55
64
70
65
61 | 12
10
9.9
9.8
9.4 | 9.0
6.7
7.5
9.7 | 17
19
23
27
25 | 26
27
25
25
25 | | 6
7
8
9
10 | 29
30
32
34
36 | 50
49
47
47
49 | 43
44
44
44
43 | 29
29
27
27
30 | 33
32
32
32
33 | 59
63
50
52
55 | 80
86
87
72
56 | 54
54
55
54
48 | 8.0
7.9
8.2
7.9 | 13
11
11
10
14 | 26
30
26
27
26 | 25
24
23
19
15 | | 11
12
13
14
15 | 35
34
36
37
37 | 51
51
53
52
50 | 44
45
45
45 | 35
32
30
29
29 | 32
33
34
35
36 | 42
39
39
38
42 | 57
55
58
62
63 | 36
32
26
20
19 | 8.1
8.0
7.8
8.5
9.4 | 16
14
11
12
14 | 23
23
24
25
25 | 17
19
19
19 | | 16
17
18
19
20 | 38
37
38
37
37 | 40
40
40
50
52 | 43
40
40
40
40 | 29
28
27
26
26 | 36
34
35
36
36 | 45
44
41
42
64 | 64
70
80
73
71 | 17
16
16
14
16 | 9.9
11
12
9.4
9.1 | 11
10
10
11
11 | 25
24
24
21
20 | 16
15
15
15
16 | | 21
22
23
24
25 | 36
39
41
42
45 | 51
50
51
50 | 42
40
42
38
35 | 27
30
33
35
37 | 35
37
36
39
42 | 76
80
71
71
64 | 68
71
72
72
79 | 13
11
12
12
12 | 5.8
4.9
4.5
3.6 | 12
13
12
13 | 26
31
30
26
30 | 17
21
19
17
17 | | 26
27
28
29
30
31 | 44
44
45
48
47 | 49
49
42
44
43 | 33
33
32
32
30
32 | 34
34
34
33
34 | 45
50
70
80 | 68
84
103
51
67
60 | 77
69
61
59
57 | 13
14
13
12
12
12 | 3.7
4.5
5.4
11
9.4 | 16
14
14
15
16
17 | 30
32
31
29
28
26 | 19
21
24
23
23 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1153
37.2
48
29
2290 | 1436
47•9
53
40
2850 | 1234
39.8
45
30
2450 | 956
30.8
37
26
1900 | 1116
38.5
80
32
2210 | 1899
61.3
103
38
3770 | 2038
67.9
87
53
4040 | 928
29.9
70
11
1840 | 242.2
8.07
12
3.6
480 | 378.9
12.2
17
6.7
752 | 799
25.8
32
17
1580 | 604
20.1
27
15
1200 | CAL YR 1987 TOTAL 17451 MEAN 47.8 MAX 147 MIN 18 AC-FT 34610 WTR YR 1988 TOTAL 12784.1 MEAN 34.9 MAX 103 MIN 3.6 AC-FT 25360 09306224 WHITE RIVER ABOVE CROOKED WASH, NEAR WHITE RIVER CITY, CO LOCATION.--Lat 40°09'44", long 108°20'33", in NW4NW4 sec.12, T.2 N., R.98 W., Rio Blanco county, Hydrologic Unit 14050005, on right bank 15 ft upstream from County Road 77 bridge, 2.8 mi upstream from Crooked Wash, 9.8 mi downstream from Piceance Creek and 8.0 mi northwest of White River City. DRAINAGE AREA . -- 1,821 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,590 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1982 to Aug. 15, 1983, at site 0.25 mi upstream, at datum 3.12 ft, higher. REMARKS.--Estimated daily discharges: Dec. 16 to Mar. 7. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 31,900 acres. AVERAGE DISCHARGE. -- 6 years, 1,017 ft3/s; 736,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,370 ft³/s, June 7, 1984, gage height, 8.05 ft; minimum daily, 280 ft³/s, Jan. 20, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,120 ft³/s at 1600 May 18, gage height, 5.85 ft; maximum gage height, 7.08 ft, Jan. 29 (backwater from ice); minimum daily discharge, 280 ft³/s, Jan. 20. | | | DISCHA | RGE, CUBIC | C FEET PE | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|--|-------------------------------------|--|--|-------------------------------------|--|-------------------------------------|--|---------------------------------------|--|--|-------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 355 | 452 | 496 | 340 | 380 | 440 | 502 | 1040 | 1460 | 732 | 379 | 357 | | 2 | 358 | 486 | 501 | 335 | 370 | 450 | 503 | 1090 | 1250 | 687 | 373 | 350 | | 3 | 363 | 479 | 486 | 330 | 360 | 460 | 542 | 1000 | 1350 | 663 | 370 | 360 | | 4 | 357 | 446 | 429 | 330 | 350 | 470 | 588 | 892 | 1720 | 691 | 509 | 347 | | 5 | 360 | 435 | 429 | 330 | 340 | 450 | 610 | 885 | 2250 | 880 | 413 | 344 | | 6 | 359 | 452 | 448 | 330 | 330 | 460 | 619 | 1050 | 2680 | 645 | 380 | 326 | | 7 | 364 | 447 | 430 | 330 | 350 | 480 | 628 | 1010 | 2700 | 592 | 407 | 319 | | 8 | 369 | 441 | 427 | 350 | 380 | 502 | 698 | 988 | 2720 | 582 | 386 | 302 | | 9 | 364 | 429 | 411 | 360 | 400 | 523 | 642 | 951 | 2590 | 536 | 372 | 302 | | 10 | 362 | 418 | 416 | 360 | 400 | 545 | 561 | 890 | 2520 | 537 | 355 | 300 | | 11 | 364 | 434 | 439 | 370 | 390 | 489 | 547 | 882 | 2500 | 549 | 348 | 311 | | 12 | 371 | 444 | 436 | 380 | 390 | 456 | 569 | 1030 | 2270 | 532 | 342 | 446 | | 13 | 381 | 436 | 479 | 370 | 390 | 480 | 633 | 1350 | 2080 | 510 | 360 | 585 | | 14 | 406 | 444 | 468 | 310 | 390 | 446 | 713 | 1760 | 1820 | 516 | 357 | 502 | | 15 | 423 | 474 | 418 | 330 | 390 | 461 | 706 | 2110 | 1570 | 466 | 344 | 441 | | 16 | 422 | 422 | 364 | 340 | 390 | 468 | 750 | 2100 | 1500 | 458 | 366 | 405 | | 17 | 425 | 417 | 360 | 330 | 390 | 465 | 833 | 2250 | 1450 | 484 | 352 | 399 | | 18 | 423 | 583 | 410 | 320 | 380 | 431 | 872 | 2740 | 1340 | 489 | 355 | 405 | | 19 | 416 | 560 | 425 | 310 | 380 | 436 | 869 | 2860 | 1270 | 480 | 355 | 415 | | 20 | 419 | 532 | 425 | 280 | 380 | 503 | 874 | 2410 | 1250 | 439 | 347 | 422 | | 21 | 413 | 541 | 410 | 310 | 380 | 631 | 899 | 1750 | 1150 | 479 | 371 | 409 | | 22 | 419 | 575 | 420 | 320 | 390 | 732 | 886 | 1400 | 1080 | 446 | 410 | 441 | | 23 | 413 | 449 | 425 | 310 | 400 | 689 | 815 | 1300 | 1080 | 434 | 413 | 460 | | 24 | 426 | 420 | 400 | 300 | 400 | 717 | 785 | 1360 | 1000 | 355 | 406 | 446 | | 25 | 525 | 412 | 370 | 300 | 400 | 588 | 772 | 1560 | 897 | 337 | 386 | 446 | | 26
27
28
29
30
31 | 482
436
426
429
441
466 | 460
446
415
495
569 | 340
320
320
330
340
350 | 310
320
330
340
360
380 | 390
390
410
420 | 597
689
839
630
548
538 | 811
715
718
748
815 | 1680
1630
1810
2080
2250
1920 | 807
799
802
964
839 | 340
364
372
373
372
357 | 391
455
417
386
378
369 | 434
455
441
440
457 | | TOTAL
MEAN
MAX
MIN
AC-FT | 12537
404
525
355
24870 | 14013
467
583
412
27790 | 12722
410
501
320
25230 | 10315
333
380
280
20460 | 11110
383
420
330
22040 | 536
839
431 | 21223
707
899
502
42100 | 48028
1549
2860
882
95260 | 47708
1590
2720
799
94630 | 15697
506
880
337
31130 | 11852
382
509
342
23510 | 12067
402
585
300
23930 | CAL YR 1987 TOTAL 251906 MEAN 690 MAX 2520 MIN 320 AC-FT 499700 WTR YR 1988 TOTAL 233885 MEAN 639 MAX 2860 MIN 280 AC-FT 463900 # 09306224 WHITE RIVER ABOVE CROOKED WASH NEAR WHITE RIVER CITY, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to current year. | NOV | : | DATE | TI | STRE
FLC
INST
ME TANE
(CF | OW, COI
CAN- DU
COUS AN | FIC
N- P
CT- (ST
CE A | AND- A | MPER-
TURE
ATER
EG C) | OXYGEN
DIS-
SOLVE
(MG/L | - (MG
ED AS | S CALC
FAL DIS
F/L SOI
(MC | CIUM S
S- D
LVED SO
G/L (M | GNE-
IUM,
IS-
LVED
G/L
MG) |
--|-----------|--|--|---|--|--|---|--|--|--|--|--|---| | MAT 17 1100 2360 300 8.1 12.5 7.8 140 31 100 | | | 15 | 00 hhu |) | 750 | 8 5 | 0.0 | 12. | . 7 | 330 83 | २ २ | n | | JUN 23 1500 1110 440 8.3 20.5 8.1 200 52 16 AUGUS 23 1500 1110 440 8.3 20.5 8.1 200 52 16 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 750 8.5 20.0 8.8 310 72 31 AUGUS 25 1435 386 25. | MAY | | | | | | | | | | | - | | | AUG 26 1435 386 750 8.5 20.0 8.8 310 72 31 SOLIDA | JUN | | | | | | | | | | | | | | SOLIDS S | AUG | | | | | | | | | | | | | | NOT | 20 | ••• | , -1, | 3 5 | , | 150 | 0. J | 20.0 | 0. | . 0 | 510 7. | | | | 20 | : | DATE | DIS
SOLVI
(MG | UM, A
- SOF
ED TI
/L RAT | AD- S:
RP- D:
CON SOI
'IO (M | IUM, LIN
IS- L
LVED (M
G/L A | ITY SU
AB D
G/L S
S (| IS-
OLVED
MG/L | RIDE,
DIS-
SOLVE
(MG/L | RID
DI
ED SOL
(MG | DE, DIS
S- SOI
VED (MO | CA, SUM S- CON LVED TUE G/L D S SO | OF
STI-
NTS,
IS-
LVED | | 17 9.0 0.3 1.0 106 52 2.2 0.2 13 193 23 17 0.5 1.3 136 81 5.4 0.3 15 270 26 244 1 1.6 205 190 11 0.3 12 485 25 25 25 25 25 25 25 26 248 1 1.6 205 190 11 0.3 12 485 26 25 | | | 41 | | 1 | 1.6 184 | 1 | 90 | 14 | 0 | .3 15 | 5 | 486 | | 23 17 | | | 9 | .0 | 0.3 | 1.0 106 | | 52 | 2.2 | 2 0 | .2 13 | 3 | 193 | | SOLIDS, DIS- DIS- DIS- SOLVED DIS- SOLVED DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | 23 | | 17 | | 0.5 | 1.3 136 | | 81 | 5.1 | + 0 | 3 15 | 5 | 270 | | NOV | | | 44 | | 1 | 1.6 205 | . 1 | 90 | 11 | 0 | .3 12 | 2 | 485 | | MAY 17 7200 <1 2 <100 <10 <1 9 6 7 8100 MANGA- | NOV | NOV 20.
MAY 17.
JUN 23.
AUG 26. | LUM-
NUM,
OTAL
RECOV-
RABLE
UG/L
S AL) | DIS- SOLVED (TONS PER AC-FT) 0.66 0.26 0.37 0.66 ANTI- MONY, TOTAL (UG/L | DIS-SOLVED (TONS PER DAY) 578 1230 808 505 | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 <0.01 <0.01 BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) | GEN, NO2+NO DIS- SOLVE (MG/L AS N) 0.24 0.17 <0.1 <0.1 BERYL LIUM, TOTAL RECOV ERABL (UG/L AS BE | GAI CAI CAI CAI CAI CAI CAI CAI | GEN, COMING NO C | GEN, AM- dONIA + ONE GANIC DIS. (MG/L AS N) <0.2 <0.2 <0.2 0.60 CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L | PHOROUS DIS- SOLVED (MG/L AS P) <0.01 0.05 0.05 0.02 COBALT, TOTAL RECOV- ERABLE (UG/L | PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) <0.01 0.01 0.03 <0.01 COPPER, TOTAL RECOV- ERABLE EUG/L | IRON,
TOTAL
RECOV-
ERABLE
(UG/L | | LEAD, LITHIUM MANGA- MERCURY DENUM, NICKEL, SILVER, TOTAL TO | MA Y | | | | | | | | | | | | | | LEAD, LITHIUM NESE, MERCURY DENUM, NICKEL, TOTAL RECOV- | 17 | | 7200 | <1 | 2 | <100 | <10 | | <1 | 9 | 6 | 7 | 8100 | | 20 <5 20 50 <0.1 2 3 2 <1 990 <10 MAY | DATE | T
R
E
(| OTAL
ECOV-
RABLE
UG/L | TOTAL
RECOV-
ERABLE
(UG/L | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DENUM
TOTAL
RECOV
ERABL
(UG/L | , NIC
TC
- RE
E
EF | TAL
COV-
RABLE
IG/L | NIUM,
TOTAL
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | TIUM,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | | MAY | 20 | | < 5 | 20 | 50 | <0.1 | | 2 | 3 | 2 | <1 | 990 | <10 | | 11 5 20 200 10.1 5 12 11 1 420 40 | MAY
17 | | 5 | 20 | 260 | <0.1 | | 5 | 12 | <1 | 1 | 420 | 40 | 293 09306224 WHITE RIVER ABOVE CROOKED WASH NEAR WHITE RIVER CITY, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(FTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | |------------|--------------|---|---|--------------------------------|--------------------------------------|------------------------------|-------------------------------------| | OCT | | | | | | | | | 06
NOV | 1415 | 359 | 7 55 | | 13.0 | | | | 18
MA R | 1430 | 43 5 | | | 0.0 | | | | 15 | 1345 | 461 | 880 | | 3.0 | | | | 28
APR | 1430 | 838 | 790 | 8.2 | 3.5 | 310 | 10.0 | | 20
MA Y | 1025 | 934 | 588 | | 8.5 | | | | 05 | 1415 | 942 | 530 | 8.3 | 12.0 | 38 | | | 10 | 1330 | 915 | 534 | | 12.0 | | | | 12
20 | 1640
1740 | 1180
2260 | 440
356 | 8.0 | 15.5
11.0 | 70 | | | 27 | 1410 | 1760 | 355 | 8.0 | 13.0 | 43 | | | JUN | | | | | | | | | 02 | 1435 | 1280
2690 | 400 | 8.0 | 14.5 | 19
42 | | | 10
13 | 1345
1200 | 2090 | 298
334 | 0.0 | 14.5 | 42 | | | 28 | 1220 | 798 | 530 | 8.2 | 19.5 | 9.0 | | | JUL | 43.20 | 7.16 | 500 | 0.0 | | | | | 01 | 1430
1400 | 716
583 | 580
610 | 8.3
8.4 | 20.5
21.0 | 9.7
13 | | | 28 | 1310 | 383 | 679 | | 21.5 | 1.5 | | | 29 | 1430 | 381 | 695 | | 22.0 | | | | AUG
16 | 1435 | 369 | 785 | | 21.0 | | | | SEP | 1430 | 309 | 105 | | 21.0 | | | | 16 | 1440 | 404 | 725 | | 15.5 | | | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |-----------|---------------|---|--|---|---| | NOV | | | | | | | 20 | 1500 | 440 | 115 | 137 | 50 | | MAR
28 | 1430 | 838 | 1510 | 3420 | 88 | | MA Y | | 050 | .5.0 | 5120 | • | | 05 | 1415 | 942 | 249 | 633 | 51 | | 12 | 1640 | 1180 | 880 | 2800 | 38 | | 27 | 1410 | 1760 | 296 | 1410 | 5 1 | | JUN | | | | | | | 10 | 1345 | 2690 | 289 | 2100 | 55 | | 23 | 15 0 0 | 1110 | | 279 | 5 7 | | 28 | 1220 | 798 | 47 | 101 | 73 | | JUL | | | | | | | 01 | 1430 | 716 | 41 | 79 | 64 | | 08 | 1400 | 583 | 69 | 109 | 54 | | 29 | 1430 | 381 | 103 | 106 | 76 | | AUG | | | | | | | 26 | 1435 | 386 | 21 | 22 | 79 | 09306224 WHITE RIVER ABOVE CROOKED WASH NEAR WHITE RIVER CITY, CO--Continued PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA TE | TIME | STREA
FLOV
INSTA
TANEO | W, MEN
AN-SUS
DUS PEN | ľΤ, | SEDI
MENT
DIS
CHARC
SUS
PENI
(T/DA | 7, SI
5- FA
GE, DI
5- % FI
DED TI | JSP. S
ALL F
IAM. D
INER % F
IAN T | ED.
USP.
ALL
IAM.
INER
HAN
4 MM | SED.
SUSP
FALL
DIAM.
% FINER
THAN
.008 MM | |------------------------|--------------------------------|---|--|--------------------|--|--|--|---|---| | MA Y | | | | | | | | | | | 17 | 1100 | 2360 | 1 | 020 | 6500 | | 16 | 21 | 27 | | 20
JUN | 1740 | 2260 | | 251 | 1530 | | | | | | 02 | 1435 | 1280 | | 84 | 290 | | | | | | DATE | S
F
D
% F
T | ED.
USP.
ALL
IAM.
INER
HAN
6 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.062 MM | S
F
D
% F | ED.
USP.
ALL
IAM.
INER
HAN
5 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM | S
F
D
% F | ED.
USP.
ALL
IAM.
INER
HAN
O MM | | MAY
17
20
JUN | | 33 | 65
67 | | 84
82 | 96
98 | 100
100 | | | | 02 | | | 67 | | 80 | 89 | 98 | | 100 | 295 ### 09306235 CORRAL GULCH BELOW WATER GULCH, NEAR RANGELY, CO LOCATION.--Lat 39°54'22", long 108°31'56", in SE $^{\downarrow}_4$ NW $^{\downarrow}_4$ sec.5, T.2 S., R.99 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 0.1 mi downstream from Water Gulch and 19 mi southeast of Rangely. DRAINAGE AREA. -- 8.61 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1974 to current year. GAGE.--Water-stage recorder. Concrete control since Aug. 1, 1974. Prior to Aug. 1, 1974, water-stage recorder at different datum. Elevation of gage is 6,975 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 15-17, Dec. 26 to Jan. 13, Jan. 15 to Feb. 28, Apr. 12-14, and Apr. 30 to May 9. Records good except those above 28 ft³/s, which are fair, and estimated daily discharges, which are poor. AVERAGE DISCHARGE. -- 14 years, 1.04 ft 3/s; 753 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge determined, 272 ft3/s, July 23, 1977, gage height, 3.20 ft, maximum gage height, 13.50 ft, May 31, 1983 (from mud flow); no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12 $\rm ft^3/s$ at 2045 Aug. 3, gage height, 1.80 ft; minimum daily, 0.28 $\rm ft^3/s$, Dec. 21. | | | DISCHARGE | CUBIC | C FEET PER | | WATER YEAR | OCTOBER | 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | | | | | | | EAN VALUES | | | | | | | | DAY | OCT | NOA | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.0
.98
.90
.90 | .66
.66
.66
.67 | .53
.46
.46
.46 | .38
.38
.36
.36 | .37
.35
.34
.32 | .41
.38
.38
.40 | .48
.65
.95
.70
.65 | 1.7
1.7
1.7
1.8
1.8 | 1.3
1.2
1.2
1.2 | .64
.63
.69
.72
.68 | .71
.67
1.0
.76
.72 | .51
.53
.54
.53 | | 6
7
8
9
10 | .84
.84
.82
.77
.77 | .70
.65
.60
.60 | .42
.43
.51
.53 | .36
.36
.36
.36 | .31
.34
.35
.37 | .42
.43
.45
.43 | .73
.72
.65
.60 | 1.8
1.8
1.9
2.0 | 1.1
1.1
1.1
1.1 | .64
.65
.66
.68 | .72
.68
.66
.64
.58 | .53
.52
.52
.51 | | 11
12
13
14
15 | •77
•77
•77
•77 | .60
.60
.60
.60 | .43
.47
.50
.49 | .36
.35
.35
.35 | .37
.37
.36
.36 | .53
.46
.46
.46 | .55
.55
.59
.55 | 2.1
2.0
2.0
2.0
2.0 | 1.0
1.0
1.1
1.0
.94 | .68
.67
.63
.62
.67 | .58
.56
.58
.56
.61 | .55
.56
.53
.51 | | 16
17
18
19
20 | .77
.76
.71
.71 | .56
.54
.63
.50 | .33
.31
.31
.31 | .35
.35
.35
.34 | .36
.36
.36
.36 | .42
.42
.42
.42
.40 | .55
.59
.64
.79
.84 | 1.9
2.1
2.1
1.9 | .86
.86
.80
.80 | .66
.65
.64
.64 | .59
.59
.54
.53 | .50
.50
.49
.50 | | 21
22
23
24
25 | .71
.71
.71
.71 | .46
.46
.47
.51 | .28
.33
.42
.42 | .31
.31
.33
.34 | .39
.40
.39
.34 | .45
.48
.53
.46 | 1.0
1.2
1.2
1.2 | 1.7
1.5
1.5
1.5 | .77
.75
.74
.73
.72 | .65
.68
.69
.69 | .55
.54
.54
.53 | .51
.52
.50
.49 | | 26
27
28
29
30
31 | .71
.70
.66
.66
.66 | .51
.51
.50
.47
.55 | .40
.40
.40
.40
.40 | .34
.34
.34
.34
.34 | .35
.36
.38
.42 | 1.0
1.2
.69
.62
.65 | 1.3
1.4
1.6
1.7 | 1.5
1.5
1.5
1.4
1.4 | .76
.73
.74
.74
.68 | .71
.72
.73
.69
.70 | .51
.49
.48
.48
.51 | .48
.47
.46
.46 | | TOTAL
MEAN
MAX
MIN
AC-FT | 23.82
.77
1.0
.66
47 | 17.08
.57
.70
.46
34 | 2.86
.41
.53
.28
26 | 10.79
.35
.38
.31
21 | 10.41
.36
.42
.30
21 | 16.00
.52
1.2
.38
32 | 26.53
.88
1.7
.48
53 | 54.4
1.75
2.1
1.4
108 | 28.00
.93
1.3
.68
56 | 20.84
.67
.73
.62
41 | 18.50
.60
1.0
.48
37 | 15.21
.51
.56
.46
30 | CAL YR 1987 TOTAL 437.60 MEAN 1.20 MAX 5.1 MIN .16 AC-FT 868 WTR YR 1988 TOTAL 254.44 MEAN .70 MAX 2.1 MIN .28 AC-FT 505 ### 09306235 CORRAL GULCH BELOW WATER GULCH, NEAR RANGELY, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD .-- March 1974 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC
CONDUCTANCE: April 1974 to September 1985. WATER TEMPERATURE: April 1974 to September 1985. SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1982. INSTRUMENTATION: -- Water-quality monitor April 1974 to September 1985. Pumping sediment sampler October 1974 to September 1982. REMARKS .-- Unpublished maximum and minimum specific conductance data for period of daily record available in district office. ### EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 6,490 microsiemens Dec. 19, 1981; minimum, 230 microsiemens Mar. 20, 1978. WATER TEMPERATURES: Maximum, 33.5°C June 11, 1981; minimum, freezing point many days during winter months each year. SEDIMENT CONCENTRATIONS: Maximum daily, 17,800 mg/L July 26, 1981; no flow many days during 1974-78, 1981. SEDIMENT LOADS: Maximum daily, 162 tons May 20, 1979; no flow many days during 1974-78, Dec. 15, 1979, | DATE
JUN | | STREAM-
FLOW,
INSTAN-
TANEOUS | ANCE | STAND-
ARD | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED S
(MG/L (| DIS- DI
OLVED SOI
MG/L (I | DIUM,
IS-
LVED
MG/L
S NA) | | |------------------|--|---|---|--|--------------------------------------|--|---|---|---|---|---------------------------------------| | 30 | 1100 | 0.71 | 1380 | 8.3 | 18.0 | 7.6 | 580 | 110 | 73 1 | 10 | | | DA TE | SODI
AD
SORP
TIO
RATI | - SIUM
- DIS-
N SOLVE | , LINITY
LAB
D (MG/L
AS | SULFAT
DIS-
SOLVE
(MG/L | DIS-
ED SOLV
L (MG/ | , RIDE
DIS-
ED SOLVI
L (MG/I | , DIS
- SOL
ED (MG
L AS | VED DEG. COLUMN | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | | | | JUN
30 | 2 | 1.1 | 268 | 440 | 15 | 0.3 | 3 21 | 994 | 950 | | | | DATE | SOLID
DIS
SOLV
(TON.
PER
AC-F | - DIS-
ED SOLVE
S (TONS
PER | NITRIŤ
D DIS-
SOLVE
(MG/L | GEN,
E NO2+NO
DIS-
D SOLVE
(MG/L | GEN OS AMMON DIS ED SOLVE (MG/ | , GEN,AI IA MONIA - ORGANI ED DIS. L (MG/I | M- PHO
+ PHOR
IC DI
SOL
(MG | OUS TIUM,
S- DIS-
VED SOLVED | ORGANIĆ
DIS-
SOLVED
(MG/L | | | | JUN
30 | 1. | 35 1.9 | 1 <0.01 | 3.80 | 0.0 | 1 0.9 | 90 <0. | 01 2100 | 11 | | | | DA TE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | | OCT
07
NOV | 1250 | 0.86 | 1570 | 15.0 | | A | PR
01
12 | 1200
1215 | 0.65
0.55 | 1350
1380 | 7.0
16.0 | | 18
JAN | 1100 | 0.55 | 1580 | 0.5 | | | 10 | 1115 | 2.0 | 1350 | 14.0 | | 07
FEB | 1050 | 0.35 | 1430 | 0.0 | | | JN
01 | 1118 | 1.3 | 1360 | 14.0 | | 23 | 1110 | 0.55 | 1450 | 6.5 | | I | AUG
30 | 1114 | 0.52 | 1440 | 19.5 | ### 09306242 CORRAL GULCH NEAR RANGELY, CO LOCATION.--Lat 39°55'13", long 108°28'20", in SEANWA sec.35, T.1 S., R.99 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 5 ft downstream from Boxelder Creek, and 3.5 mi upstream from confluence with Stake Springs Draw, and 21 mi southeast of Rangely. DRAINAGE AREA. -- 31.6 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1974 to current year. GAGE.--Water-stage recorder. Concrete control since July 20, 1974. Elevation of gage is 6,570 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. No diversions upstream from station. AVERAGE DISCHARGE. -- 14 years, 2.78 ft3/s; 2,010 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,780 ft³/s, Aug. 18, 1984, gage height, 6.12 ft, from rating curve extended above 70 ft³/s, on basis of slope-area measurements at gage heights 3.89 ft, 4.08 ft, and 6.12 ft; minimum daily, 0.06 ft³/s, Apr. 10-14, 1974. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 17 ft³/s at 2245 Aug. 3, gage height, 2.33 ft; minimum daily, 0.95 ft³/s, Mar. 24. | | | DISCHAI | RGE, CUBIC | FEET PER | | WATER YEA | | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|----------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|----------------------------------| | DAY | OCT | иои | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.8
1.9
1.9
1.9
2.0 | 1.9
1.8
1.8
1.8 | 1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2
1.2 | 1.3
1.2
1.2
1.1 | 1.6
1.4
1.3
1.3 | 1.1
1.1
1.3
1.4 | 2.4
2.9
3.8
4.2
4.5 | 4.7
4.3
4.0
3.9
3.9 | 1.8
1.7
1.7
2.1
1.8 | 1.8
2.0
2.7
2.4
2.1 | 1.4
1.4
1.4
1.5 | | 6
7
8
9
10 | 2.1
2.2
2.0
2.0
2.0 | 1.8
1.8
1.8
1.7 | 1.5
1.4
1.4
1.4 | 1.2
1.2
1.2
1.2 | 1.1
1.2
1.2
1.3
1.3 | 1.3
1.2
1.1
1.3
1.2 | 1.3
1.4
1.4
1.3 | 5.1
5.3
5.3
5.6 | 3.8
3.6
3.4
3.4 | 1.7
1.6
1.5
1.6 | 2.1
2.1
2.0
1.9 | 1.4
1.4
1.4
1.4 | | 11
12
13
14
15 | 1.9
2.0
2.1
2.1
2.0 | 1.7
1.7
1.7
1.8
1.6 | 1.5
1.4
1.3
1.2 | 1.2
1.1
1.1
1.1
1.2 | 1.3
1.2
1.2
1.2
1.3 | 1.1
1.1
1.1
1.1 | 1.3
1.3
1.3
1.2 | 5.6
5.5
5.8 | 3.2
3.5
3.3
3.1 | 1.6
1.5
1.4
1.3 | 1.9
1.8
1.8
1.7 | 1.6
1.7
1.6
1.5 | | 16
17
18
19
20 | 1.9
1.9
1.9
1.9 | 1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2 | 1.2
1.1
1.1
1.1 | 1.3
1.3
1.2
1.2 | 1.1
1.1
1.1
1.2
1.9 | 1.3
1.5
1.4
1.5 | 5.7
6.0
6.4
6.5
6.2 | 2.8
2.9
2.7
2.7
2.5 | 1.3
1.3
1.3
1.4 | 1.9
1.8
1.8
1.8 | 1.5
1.5
1.4
1.4 | | 21
22
23
24
25 | 1.9
1.9
1.9
1.9 | 1.6
1.6
1.6
1.5 | 1.3
1.3
1.3
1.3 | 1.1
1.1
1.1
1.2 | 1.3
1.3
1.2
1.2 | 2.2
1.3
1.2
.95
1.2 | 1.8
1.9
1.9
1.9 | 5.9
5.8
5.6
5.7 | 2.5
2.4
2.3
2.3
2.3 | 1.3
1.3
1.3
1.3 | 1.9
1.8
1.7
1.7 | 1.4
1.3
1.3
1.2 | | 26
27
28
29
30
31 | 1.8
1.8
1.8
1.8
1.8 | 1.6
1.5
1.6
1.5 | 1.3
1.2
1.2
1.2
1.2 | 1.2
1.2
1.2
1.2
1.2 | 1.2
1.3
1.4
1.5 | 1.3
1.7
1.1
1.1
1.2 | 1.6
1.9
2.0
2.2
2.2 | 5.6
5.5
5.2
5.2
5.1
5.1 | 2.5
2.6
2.5
2.5
2.2 | 1.4
1.4
1.6
1.6
1.6 | 1.7
1.8
1.8
1.7
1.6 | 1.2
1.2
1.2
1.1
1.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 59.6
1.92
2.2
1.8
118 | 49.6
1.65
1.9
1.5
98 | 41.1
1.33
1.5
1.2
82 | 36.3
1.17
1.3
1.1
72 | 36.1
1.24
1.5
1.1
72 | 39.15
1.26
2.2
.95
78 | 45.9
1.53
2.2
1.1
91 | 163.7
5.28
6.5
2.4
325 | 92.8
3.09
4.7
2.2
184 | 46.6
1.50
2.1
1.3
92 | 58.2
1.88
2.7
1.6
115 | 41.4
1.38
1.7
1.1
82 | CAL YR 1987 TOTAL 1229.73 MEAN 3.37 MAX
18 MIN .82 AC-FT 2440 WTR YR 1988 TOTAL 710.45 MEAN 1.94 MAX 6.5 MIN .95 AC-FT 1410 ### 09306242 CORRAL GULCH NEAR RANGELY, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1974 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1975 to current year. WATER TEMPERATURE: January 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1985. INSTRUMENTATION. -- Water-quality monitor since October 1974. Pumping sediment sampler October 1974 to September REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens July 17, 1976; minimum, 271 microsiemens Feb. 18, 1980. WATER TEMPERATURES: Maximum, 29.0°C Aug. 5, 1979; minimum, 0.0°C on several days during winter months some SEDIMENT CONCENTRATIONS: Maximum daily, 35,800 mg/L Aug. 2, 1982; minimum daily, 2 mg/L May 24, 1981. SEDIMENT LOADS: Maximum daily, 43,600 tons August 18, 1984; minimum daily, 0.00 ton on many days during 1981. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 1790 microsiemens Feb. 26 and Mar. 18; minimum, 530 microsiemens Mar. 21. WATER TEMPERATURES: Maximum, 25.1°C Aug. 5; minimum, 0.4°C May 3. | DATE | F
IN
TIME TA | REAM- COLON, COLONSTAN- DI
NEOUS AN | JCT - (ST | CAND- AT
ARD WA | URE D | GEN, TO
DIS- (1
LVED | OTAL DI
MG/L SO
AS (M | CIUM S
S- D
LVED SO
G/L (M | GNE- LIUM, SODIUM, LIS- LIVED SOLVED G/L (MG/L MG) AS NA) | |-----------|---|---|---|---|---|---|--|--|---| | JUN
30 | 1245 | 2.4 | 1430 | 7.9 | 21.5 | 7.1 | 540 9 | 2 7 | 5 110 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | JUN
30 | 2 | 1.3 | 323 | 440 | 16 | 0.30 | 19 | 974 | 959 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | JUN
30 | 1.32 | 6.31 | <0.010 | 2.10 | 0.010 | 0.80 | 0.010 | 2200 | 8.9 | SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG. C, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | MEAN | VALUES | | | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1600
1590
1600
1610
1610 | 1660
1660
1660
1660
1660 | 1700
1690
1700
1690
1670 | 1740
1710
1710
1690
1670 | 1690
1700
1680
1670
1680 | 1460
1580
1690
1720
1730 | 1600
1580
1470
1460
1510 |

 | 1420
1430
1440
1450
1450 | 1480
1460
1450
1430
1410 | 1520
1520
1470
1460
1560 | 1510
1520
1520
1520
1520 | | 6
7
8
9 | 1610
1620
1630
1630
1640 | 1660
1660
1660
1680
1660 | 1680
1670
1690
1690
1680 | 1630
1670
1700
1700
1680 | 1680
1680
1680
1670
1680 | 1640
1670
1720
1690
1700 | 1510
1500
1510
1530
1550 | 1390
1380
1370
1380 | 1460
1460
1470
1470
1470 | 1400
1420
1420
1420
1410 | 1530
1530
1550
1560
1570 | 1520
1530
1530
1530
1530 | | 11
12
13
14
15 | 1630
1630
1650
1630
1640 | 1660
1680
1670
1640
1670 | 1680
1690
1710
1730
1710 | 1670
1710
1730
1720
1690 | 1690
1710
1690
1700
1680 | 1720
1730
1730
1710
1710 | 1560
1590
1580
1580
1630 | 1380
1380
1390
1390
1370 | 1470
1480
1470
1460
1470 | 1420
1440
1450
1480
1470 | 1570
1570
1580
1590
1570 | 1560
1520
1530
1540
1540 | | 16
17
18
19
20 | 1640
1650
1640
1640
1650 | 1710
1700
1710
1710
1700 | 1680
1670
1660
1660
1670 | 1690
1670
1680
1700
1710 | 1690
1710
1710
1720
1690 | 1710
1730
1720
1630
1360 | 1620
1550
1600
1570
1540 | 1370
1360
1350
1360
1400 | 1480
1490
1500
1500
1500 | 1470
1460
1470
1470
1470 | 1570
1570
1580
1570
1560 | 1540
1540
1550
1570
1540 | | 21
22
23
24
25 | 1660
1650
1650
1650
1650 | 1690
1680
1680
1690
1700 | 1710
1720
1710
1700
1710 | 1660
1630
1630
1650
1650 | 1680
1690
1730
1760
1750 | 1220
1440
1520
1610
1510 | 1460

 | 1410
1410
1400
1390
1370 | 1510
1520
1480
1460
1480 | 1470
1470
1460
1460
1460 | 1540
1540
1540
1540
1540 | 1540
1530
1530
1520
1510 | | 26
27
28
29
30
31 | 1650
1660
1660
1660
1670
1670 | 1680
1690
1720
1700
1700 | 1700
1740
1740
1730
1710
1720 | 1640
1640
1650
1670
1640
1660 | 1730
1640
1540
1540 | 1500
1450
1610
1620
1600
1620 | | 1380
1370
1380
1390
1390
1410 | 1480
1470
1460
1460
1470 | 1450
1460
1470
1500
1510
1500 | 1540
1530
1530
1520
1520
1510 | 1540
1540
1550
1550
1530 | | MEAN
WTR YR | 1640
1988 | 1680
ME A N | 1700
1580 | 1680
Max | 1680
1790 | 1610 | | 530 | 1470 | 1460 | 1540 | 1530 | | | | | | | | | | | | | | | 09306242 CORRAL GULCH NEAR RANGELY, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MA X | MIN | X AM | MIN | MA X | MIN | |---|---|--|--|--|--|--|--|---|--|---|---|---| | | осто | BER | NOVE | MBER | DE CE | MBER | JANU | ARY | FEBI | RUA R Y | MA F | RCH | | 1
2
3
4
5 | 13.9
14.0
13.8
13.5 | 4.6
4.6
4.7
4.8
5.3 | 11.0
11.2
11.0
10.7
10.6 | 6.7
6.5
6.0
4.9
4.6 | 6.7
7.2
7.7
8.1
6.9 | 3.5
3.7
4.0
4.2
5.1 | 4.5
5.0
5.5
5.1
6.0 | 1.5
1.9
1.5
2.9
3.7 | 6.7
6.8
6.6
7.0 | 2.5
2.9
2.1
2.3
2.3 | 11.4
6.9
10.4
9.3
10.0 | 2.6
3.8
3.7
2.6
1.9 | | 6
7
8
9
10 | 13.5
13.2
14.0
12.8
12.9 | 4.9
4.8
5.6
5.0 | 10.1
8.6
9.3
9.2
7.0 | 5.4
4.7
4.5
4.2
3.8 | 8.2
7.7
6.5
6.9
7.3 | 4.6
4.7
3.5
3.9 | 5.9
5.9
5.7
6.7 | 4.1
2.8
1.9
2.0
3.0 | 7.4
7.3
6.2
7.3
7.5 | 2.7
2.7
2.4
2.2
2.4 | 10.0
6.5
9.7
10.9
8.4 | 1.7
1.6
1.3
2.0 | |
11
12
13
14
15 | 12.7
13.6
10.1
10.0
12.0 | 4.9
5.0
7.5
6.9 | 9.4
8.2
9.4
7.8
6.6 | 4.2
4.1
4.2
4.1
3.2 | 6.7
6.4
5.1
5.5
5.7 | 4.1
3.0
3.1
3.0
2.9 | 6.2
5.4
5.3
5.8
5.7 | 2.3
1.8
1.2
1.0
2.3 | 7.4
8.3
7.4
7.3
7.8 | 2.5
2.0
1.7
1.4
2.4 | 7.4
8.8
8.3
8.9
9.2 | 1.5
1.0
1.0
.9
2.3 | | 16
17
18
19
20 | 11.7
11.8
10.2
11.0
10.8 | 4.6
4.3
4.5
4.3
4.1 | 6.8
6.0
7.2
7.4
7.3 | 3.1
3.0
2.6
3.2
3.6 | 6.1
6.5
6.6
6.1
6.0 | 3.4
4.2
4.7
4.0
2.9 | 6.0
6.2
4.7
4.7
5.0 | 2.3
3.1
2.4
1.9
1.8 | 7.2
7.2
6.5
7.4
8.0 | 1.4
1.3
1.1
1.0
1.5 | 6.0
8.4
10.2
12.5
12.8 | 1.8
.9
1.1
1.8
2.1 | | 21
22
23
24
25 | 10.8
10.8
11.0
10.3
11.8 | 4.2
4.3
4.7
6.5
5.9 | 7.5
8.1
7.4
6.9
6.2 | 3.9
3.9
4.0
3.4
3.8 | 5.7
5.7
5.1
4.2
4.5 | 3.1
3.4
2.1
1.9
1.7 | 5.4
5.8
6.1
5.4
6.3 | 2.9
2.3
2.8
2.0
2.1 | 8.4
8.2
8.6
9.0
9.4 | 1.6
2.0
1.7
1.1 | 12.5
10.7
10.5
11.0
12.4 | 2.3
4.0
4.0
3.3
3.5 | | 26
27
28
29
30
31 | 11.6
11.0
10.7
11.1
10.3
11.3 | 4.9
4.5
4.7
6.8
6.4
5.4 | 5.9
6.3
6.9
6.2
6.6 | 3.8
3.3
3.5
3.5
3.6 | 4.5
5.6
5.7
6.6
5.2
4.8 | 2.1
2.3
2.5
2.6
2.5
1.8 | 6.7
6.9
6.9
8.4
7.6
7.0 | 2.6
3.1
3.0
3.4
3.7
2.8 | 9.8
10.0
9.4
11.3 | 1.2
1.6
3.1
2.8 | 14.5
14.9
6.9
8.6
4.6
10.8 | 2.5
1.7
2.1
2.8
1.6
3.2 | | | | | | | | | | | | | | | | MONTH | 14.0 | 4.1 | 11.2 | 2.6 | 8.2 | 1.7 | 8.4 | 1.0 | 11.3 | 1.0 | 14.9 | •9 | | | APR | IL | MA | . Ү | JU | INE | JU | IL Y | AUC | GUST | SEPTE | MBER | | MONTH 1 2 3 4 5 | | | | . Ү | | | | | | | | | | 1 2 3 4 | APR
12.6
14.6
13.7
12.2 | 3.2
3.4
3.5
3.1 | MA
11.6
11.8
19.5
18.7 | 5.5
3.0
.4
1.3 | JU
20.2
21.0
24.9
24.6 | 2.7
5.0
5.8
6.9 | JU
21.5
20.1
18.4
18.9 | 7.2
8.2
8.2
10.5 | AUC
20.7
20.9
21.9
24.7 | 8.7
8.6
10.6
10.1 | SEPTE
19.7
19.1
18.7
19.3 | 7.1
6.8
6.0
5.8 | | 1
2
3
4
5
6
7
8
9 | APR 12.6 14.6 13.7 12.2 15.4 17.0 17.3 13.9 12.2 | 3.2
3.4
3.5
3.1
2.2
2.5
2.2
2.2
2.6 | MA 11.6 11.8 19.5 18.7 18.7 12.8 12.3 14.5 17.4 | 5.5
3.0
.4
1.3
2.0
2.5
1.8
3.5
2.2 | 20.2
21.0
24.9
24.6
20.6
21.8
22.5
22.3
22.2 | 2.7
5.0
5.8
6.9
8.5
7.0
4.8
4.9 | 21.5
20.1
18.4
18.9
21.8
21.5
20.5
20.9
20.0 | 7.2
8.2
8.2
10.5
8.3
8.7
7.8
8.1
7.5 | 20.7
20.9
21.9
24.7
25.1
24.6
24.6
21.8
23.0 | 8.7
8.6
10.6
10.1
7.1
11.5
8.8
7.9
6.7 | SEPTE 19.7 19.1 18.7 19.3 19.1 18.0 17.5 18.8 18.7 | 7.1
6.8
6.0
5.8
4.8
5.5
6.6
5.0
5.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 12.6
14.6
13.7
12.2
15.4
17.0
17.3
13.9
12.2
14.6
16.4
15.8
16.8 | 3.2
3.4
3.5
3.1
2.2
2.5
2.2
2.6
2.7
3.2
3.7 | MA 11.6 11.8 19.5 18.7 18.7 12.8 12.3 14.5 17.4 17.8 20.9 21.7 20.5 20.8 | 5.5
3.0
1.3
2.0
2.5
1.8
3.5
2.2
5.0
2.8
3.3
4.9 | 20.2
21.0
24.9
24.6
20.6
21.8
22.5
22.3
22.2
20.2
20.9
21.9
17.7
22.0 | 7.08.95
55.895
74.4.99
668.33 | 21.5
20.1
18.4
18.9
21.8
21.5
20.5
20.9
20.0
20.7
22.4
20.5
22.2
21.0 | 7.2
8.2
8.2
10.5
8.3
8.7
7.8
8.1
7.5
7.1
7.9
8.7 | 20.7
20.9
21.9
24.7
25.1
24.6
24.0
21.8
23.0
23.3
21.4
21.5
22.6
21.9 | 8.7
8.6
10.6
10.1
7.1
11.5
8.8
7.9
6.7
6.9
7.1
9.4
6.9 | SEPTE 19.7 19.1 18.7 19.3 19.1 18.0 17.5 18.8 18.7 16.3 10.9 9.5 16.6 14.3 | 7.1
6.8
6.8
6.8
4.8
5.5
6.0
5.2
8.7
7.1
4.2 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 12.6
14.6
14.6
13.7
12.2
15.4
17.0
17.3
13.9
12.2
14.6
16.4
15.8
16.8
14.9
16.9
9.4
14.8 | 3.2
3.4
3.5
3.1
2.2
2.5
2.2
2.6
2.7
3.2
2.7
3.2
3.7
5.6
3.1
2.2 | MA 11.6 11.8 19.5 18.7 18.7 12.8 12.3 14.5 17.4 17.8 20.9 21.7 20.5 20.8 21.8 20.6 15.8 15.1 12.1 | Y 5.00 1.30 2.58 52.0 2.334.4.9 0 5.7.6 5.9 | 20.2
21.0
24.9
24.6
20.6
21.8
22.5
22.3
22.2
20.2
20.9
21.9
17.7
22.0
21.8
23.0
21.1
21.1
21.4 | 7.08.95
5.08.95
7.08.4.99
6.3.4.33
7.26.99 | 21.5
20.1
18.4
18.9
21.8
21.5
20.5
20.9
20.0
20.7
22.4
20.5
22.2
21.0
18.6
20.2
20.8
21.1
20.3 | 7.2
8.2
8.2
10.5
8.3
8.7
7.8
8.1
7.5
7.1
7.9
8.7
7.8
8.8
7.6
8.0
7.3 | 20.7
20.9
21.9
24.7
25.1
24.6
24.0
21.8
23.0
23.3
21.4
21.5
22.6
21.9
19.8
24.0
21.2
22.4
23.0 | 8.7
8.6
10.6
10.1
7.1
11.5
8.8
7.9
6.7
6.9
7.1
9.4
6.8
6.9
9.1 | SEPTE 19.7 19.1 18.7 19.3 19.1 18.0 17.5 18.8 18.7 16.3 10.9 9.5 14.3 17.2 17.5 16.5 13.7 15.5 | 7.186.88 7.66.88 4.8 5.566.02 7.132.3 3.4.6 3.3 3.46.3 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 19 2 0 2 1 2 2 3 | 12.6
14.6
13.7
12.2
15.4
17.0
17.3
13.9
12.2
14.6
16.4
15.8
16.8
14.9
16.9
9.4
14.8
19.0
17.7 | 3.45
3.12
2.52
2.66
7
3.22
2.67
3.22
2.75
3.27
5.51
4.40
9.83
2.98
2.1 | MA 11.6 11.8 19.5 18.7 18.7 12.8 12.3 14.5 17.8 20.9 21.7 20.5 20.8 21.8 20.6 15.8 15.1 16.8 19.1 21.1 21.1 21.1 21.0 | Y 5.0.4430 5.0.430 2.1.8520 83.4.90 0.76.94 6.3.30 2.3.4.90 0.76.94 6.3.30 | 20.2
21.0
24.9
24.6
20.6
21.8
22.5
22.3
22.2
20.2
20.2
21.9
21.1
21.1
21.1
22.1
22.5
22.3 | 70895 08499 93433 72695 1542 | 21.5
20.1
18.4
18.9
21.8
21.5
20.5
20.9
20.7
22.4
20.5
22.2
21.0
18.6
20.2
20.3
20.7 | 7.22
8.22
10.53
8.7
7.8
8.1
7.51
7.8
8.8
7.8
8.6
7.3
8.6
7.3
8.6
6.6
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 20.7
20.9
21.9
24.7
25.1
24.6
24.0
21.8
23.3
21.4
22.6
21.9
19.8
24.0
21.2
22.4
23.0
19.4
20.7
22.3
23.1
23.0 | 8.7
8.66
10.1
7.1
11.5
8.8
7.9
6.9
7.1
4.66
9.1
9.4
6.69
10.66
7.66
7.66
7.66
7.7
9.46
7.7 | SEPTE 19.7 19.1 18.7 19.3 19.1 18.0 17.5 18.8 18.7 16.3 10.9 16.6 14.3 17.2 17.5 16.1 14.7 15.5 16.1 | 7.80.88
7.66.88
5.66.0.27
7.5.4.5
9.4.6.93
5.69.3 | YEAR MAXIMUM 25.1 MINIMUM 0.4 MEAN 8.2 301 ### 09306255 YELLOW CREEK NEAR WHITE RIVER, CO LOCATION.--Lat 40°10'07", long 108°24'02", in NE4SW4 sec.4, T.2 N., R.98 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 160 ft downstream from bridge on State Highway 64, 0.3 mi upstream from mouth, and 10.0 mi northwest of White River City. ### WATER-DISCHARGE RECORDS DRAINAGE AREA .-- 262 mi2. PERIOD OF RECORD. -- October 1972 to September 1982, May to September 1988. GAGE. -- Water-stage recorder. Elevation of gage is 5,535 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: May 1-11. Records fair except for estimated daily discharges and flows above 20 ft³/s, which are poor. Diversions upstream from station for irrigation of about 300 acres. AVERAGE DISCHARGE.--10 years (water years 1973-82), 1.9 ft3/s; 1,380 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,800 ft³/s, Sept. 7, 1978, gage height, 12.97 ft, on basis of contracted opening and flow over road measurement of peak flow; minimum daily, no flow Sept. 7-16, 1978, Dec. 15, 1978 to Jan. 14, 1979. EXTREMES FOR CURRENT YEAR (MAY TO SEPTEMBER).--Peak discharges greater than base discharge of 100 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | Aug. 7 | 1500 | *144 | *6.89 | | | | | Minimum daily discharge, 4.3 ft³/s, Sept. 8. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEA
An values | | R 1987 TO | SEPTEMBE | R 1988 | | | |--------------------------------------|----------|-----------|---------|----------|----------|------------------------|----------|-------------------------------------|------------------------------------|------------------------------------|-----------------------------------|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | |

 | |

 | | 11
13
15
14
13 | 8.6
7.1
6.8
6.6
6.8 | 6.4
5.5
5.9
6.3
5.9 | 4.9
5.0
5.3
5.8
6.5 | 4.7
4.6
4.4
4.4 | | 6
7
8
9
10 | | | | | |

 | | 12
13
13
13
13 | 6.6
6.7
6.9
7.0 | 5.9
5.8
5.6
6.0 | 7.3
12
6.5
6.2
6.0 | 4.5
4.4
4.3
4.4
4.5 | | 11
12
13
14
15 |

 | | |

 |

 |

 |

 | 13
14
13
14
15 | 7.2
7.4
7.4
7.2
7.0 | 6.0
6.9
5.8
5.6 | 5.8
6.0
6.0
5.8
6.2 | 4.9
5.0
4.8
5.0 | |
16
17
18
19
20 |

 | | |

 |

 |

 | | 15
16
21
18
17 | 6.7
6.9
6.7
6.8
7.2 | 5.7
5.8
5.7
5.6 | 6.7
6.5
6.3
6.1
6.2 | 4.9
4.9
4.9
5.0 | | 21
22
23
24
25 |

 | | | | |

 | | 17
11
11
10
9.8 | 6.9
6.8
6.6
6.5
6.4 | 5.5
5.5
5.1
5.1 | 6.9
6.6
6.0
5.8
5.7 | 5.7
5.7
5.5
5.4
5.4 | | 26
27
28
29
30
31 | |

 | |

 |

 |

 |

 | 11
10
9.6
9.8
10
7.6 | 6.6
6.8
6.9
7.0
6.6 | 5.4
5.3
5.2
5.1
4.9 | 5.7
5.8
5.6
5.2
5.0 | 5.5
5.6
5.7
5.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | <u> </u> |

 | | 402.8
13.0
21
7.6
799 | 207.3
6.91
8.6
6.4
411 | 175.1
5.65
6.4
4.9
347 | 191.0
6.16
12
4.9
379 | 149.6
4.99
5.7
4.3
297 | ### 09306255 YELLOW CREEK NEAR WHITE RIVER, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1974 to September 1982, March 1988 to September 1988. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: April 1975 to September 1982. WATER TEMPERATURE: April 1975 to September 1982. SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1982. INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1982. Water-quality monitor April 1975 to September 1982. REMARKS.--Unpublished maximum and minimum specific conductance data for the period of daily record are available in the district office. EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum 5,790 microsiemens Sept. 17, 1978; minimum, 457 microsiemens July 21, 1979. WATER TEMPERATURES: Maximum 35.0°C July 25, 1978; minimum, 0.0°C on many days during the winter period. SEDIMENT CONCENTRATIONS: Maximum daily, 24,000 mg/L Sept. 07, 1978; minimum daily, no flow several days during September 1978, many days during 1979. SEDIMENT LOADS: Maximum daily, 290,000 tons Sept. 07, 1978; minimum daily, no flow several days during September 1978, many days during 1979. | DATE | F
IN
TIME TA | REAM- CI
LOW, CI
STAN- DI
NEOUS AI | JCT - (ST | TAND- A'
ARD W | TURE
ATER S | XYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | |------------------|---|---|---|---|--|------------------------------------|---|--|--|--| | MAR
15 | 1030 | 11 | 3150 | 8.9 | 4.0 | 11.4 | 970 | 90 | 180 | 450 | | JUN
29 | 1500 | 6.9 | 3300 | 8.6 | 19.5 | 9.7 | 1100 | 76 | 210 | 500 | | JUL
28 | 1100 | 5.6 | 3020 | 8.6 | 18.5 | 9.5 | 1000 | 80 | 200 | 500 | | SEP
02 | 1350 | 4.5 | | 8.7 | 21.0 | 9.0 | 860 | 63 | 170 | 500 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CA CO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVEI
(MG/L
AS CL) | (MG/ | DIS-
SOLVI
ED (MG/I
L AS | CONST
ED TUENT
L DIS
SOLV | F SOLI I - DI S, SOL - (TO ED PE | S-
Ved
Ons | | MAR
15 | 6 | 3.2 | 660 | 1100 | 53 | 0. | 8 17 | 23 | 10 3 | 3.14 | | JUN
29
JUL | 7 | 2.8 | 791 | 1100 | 65 | 0. | 9 17 | 24 | 70 3 | 3.35 | | 28
SEP | 7 | 2.6 | 742 | 1000 | 65 | 0. | 7 14 | 23 | 30 3 | 3.16 | | 02 | 8 | 2.5 | 725 | 1100 | 66 | 0. | 9 13 | 23 | 70 3 | 3.22 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA -
ORGANIO
DIS.
(MG/L
AS N) | PHOS | US ORTHO
- DIS-
ED SOLVE:
L (MG/L | US
O, BORO
DIS | N, TI
- DI
ED SOL
L (UG | RON -
UM,
S-
VED
//L
SR) | | MAR
15
JUN | 68.6 | <0.01 | 3.50 | 0.06 | 1.0 | 0.0 | 6 0.0 | 5 4 | 20 5 | 500 | | 29
JUL | 46.0 | 0.02 | 3.50 | <0.01 | 0.60 | 0.0 | 3 <0.0 | 1 4 | 40 4 | 900 | | 28
SEP | 35.2 | 0.03 | 3.70 | 0.01 | 0.70 | 0.0 | 2 0.0 | 1 4 | 30 4 | 800 | | 02 | 28.8 | 0.01 | 3.70 | 0.02 | 0.70 | 0.0 | 1 <0.0 | 1 4 | 40 4 | 000 | ## 09306255 YELLOW CREEK NEAR WHITE RIVER, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------------|------|---|--|--------------------------------------|-----------|------|---|---|--------------------------------------| | FEB | | | | | JUL | | | | | | 29
APR | 1230 | 17 | 2450 | 6.0 | 22
AUG | 1445 | 5.6 | 3080 | 27.5 | | 20
MA Y | 1155 | 11 | 3210 | 13.0 | 16
SEP | 1310 | 6.8 | 3130 | 26.0 | | 11
JUN | 1430 | 13 | 3010 | 21.0 | 16 | 1300 | 5.4 | 3240 | 17.0 | | 14 | 1040 | 7.7 | 3140 | 15.5 | | | | | | PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |------------------|------|---|--|--|---| | MAR
15
JUN | 1030 | 11 | 708 | 21 | 88 | | 29
JUL | 1500 | 6.9 | 152 | 2.8 | | | 28
SEP | 1100 | 5.6 | 89 | 1.3 | | | 02 | 1350 | 4.5 | 545 | 6.6 | 82 | ### 09306290 WHITE RIVER BELOW BOISE CREEK, NEAR RANGELY, CO LOCATION.--Lat 40°10'47", long 108°33'53", in SWASEA sec.36, T.3 N., R.100 W., Rio Blanco County, Hydrologic Unit 14050007, on left bank 60 ft downstream from bridge on County Road 73, 0.5 mi below Boise Creek, and 16.4 mi east of Rangely. ### WATER-DISCHARGE RECORDS DRAINAGE AREA. -- 2,530 mi². PERIOD OF RECORD. -- August 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,395 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 15 to Mar. 22, Mar. 28 to Apr. 2, May 22 to June 2, June 10-13, July 18-22, and Sept. 10-20. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 31,500 acres. AVERAGE DISCHARGE. -- 6 years, 1,032 ft3/s; 747,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,440 ft³/s, June 7, 1984, gage height, 8.45 ft; minimum daily, 218 ft³/s, Sept. 9, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,840 ft³/s at 1700 May 19, gage height, 5.95 ft; minimum daily, 218 ft³/s, Sept. 9 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DISCHA | .KGE, CUBI | C FEET PE | K SECOND, | WATER IE
EAN VALUE | S CLOB | ER 190/ 10 | SEPTEMBE | л 1900 | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|---|---------------------------------|--|--------------------------------------|--|--|---------------------------------| | DA Y | 0 C. ⁷ | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 327 | 538 | 546 | 350 | 380 | 470 | 640 | 1020 | 1600 | 909 | 390 | 339 | | 2 | 335 | 569 | 518 | 350 | 380 | 480 | 640 | 1100 | 1400 | 855 | 410 | 327 | | 3 | 348 | 572 | 569 | 340 | 360 | 480 | 655 | 995 | 1690 | 815 | 399 | 333 | | 4 | 366 | 546 | 540 | 340 | 350 | 480 | 737 | 934 | 1900 | 801 | 546 | 320 | | 5 | 371 | 523 | 509 | 360 | 330 | 470 | 700 | 897 | 2130 | 983 | 487 | 307 | | 6 | 370 | 534 | 517 | 360 | 350 | 520 | 690 | 996 | 2540 | 812 | 411 | 272 | | 7 | 365 | 541 | 511 | 370 | 370 | 520 | 692 | 1000 | 2520 | 750 | 452 | 254 | | 8 | 378 | 528 | 503 | 370 | 400 | 520 | 792 | 974 | 2480 | 702 | 435 | 220 | | 9 | 367 | 511 | 487 | 370 | 410 | 500 | 767 | 963 | 2370 | 649 | 392 | 218 | | 10 | 366 | 483 | 484 | 380 | 410 | 500 | 632 | 904 | 2300 | 647 | 368 | 250 | | 11 | 376 | 506 | 506 | 390 | 410 | 440 | 591 | 962 | 2300 | 670 | 346 | 400 | | 12 | 395 | 519 | 490 | 370 | 400 | 430 | 604 | 1170 | 2200 | 643 | 335 | 560 | | 13 | 412 | 514 | 467 | 310 | 400 | 380 | 687 | 1490 | 2000 | 611 | 365 | 700 | | 14 | 456 | 521 | 429 | 320 | 400 | 380 | 757 | 1850 | 1970 | 618 | 373 | 700 | | 15 | 507 | 554 | 400 | 350 | 410 | 390 | 1030 | 2110 | 1760 | 554 | 345 | 540 | | 16 | 521 | 522 | 370 | 340 | 400 | 390 | 998 | 2140 | 1670 | 521 | 363 | 480 | | 17 | 521 | 484 | 420 | 330 | 390 | 370 | 1340 | 2220 | 1600 | 555 | 352 | 470 | | 18 | 512 | 524 | 450 | 320 | 390 |
370 | 1480 | 2680 | 1510 | 540 | 334 | 460 | | 19 | 512 | 493 | 450 | 320 | 390 | 500 | 1150 | 2740 | 1440 | 520 | 340 | 450 | | 20 | 510 | 532 | 450 | 280 | 390 | 700 | 976 | 2460 | 1400 | 520 | 331 | 430 | | 21
22
23
24
25 | 496
496
501
508
590 | 616
605
563
510
488 | 420
440
440
420
380 | 330
330
320
310
310 | 400
400
400
410 | 930
1000
826
882
727 | 967
975
914
886
861 | 2070
1700
1600
1650
1850 | 1320
1240
1200
1150
1060 | 520
490
425
322
284 | 364
411
424
420
400 | 419
457
486
475
465 | | 26
27
28
29
30
31 | 609
559
536
511
534
559 | 536
576
531
487
534 | 360
330
340
350
350
360 | 320
330
350
360
380
390 | 420
420
450
460 | 685
833
1000
800
700
640 | 883
808
788
810
866 | 1900
1900
2100
2300
2300
2000 | 991
990
974
1120
1020 | 287
318
354
363
365
360 | 380
463
434
389
363
346 | 459
478
458
460
472 | | TOTAL | 14214 | 15960 | 13806 | 10650 | 11480 | 18313 | 25316 | 50975 | 49845 | 17763 | 12168 | 12659 | | MEAN | 459 | 532 | 445 | 344 | 396 | 591 | 844 | 1644 | 1661 | 573 | 393 | 422 | | MAX | 609 | 616 | 569 | 390 | 460 | 1000 | 1480 | 2740 | 2540 | 983 | 546 | 700 | | MIN | 327 | 483 | 330 | 280 | 330 | 370 | 591 | 897 | 974 | 284 | 331 | 218 | | AC-FT | 28190 | 31660 | 27380 | 21120 | 22770 | 36320 | 50210 | 101100 | 98870 | 35230 | 24140 | 25110 | CAL YR 1987 TOTAL 256238 MEAN 702 MAX 2260 MIN 305 AC-FT 508200 WTR YR 1988 TOTAL 253149 MEAN 692 MAX 2740 MIN 218 AC-FT 502100 # 09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to current year. | DATE | I | STREAM-
FLOW,
ENSTAN-
FANEOUS
(CFS) | AN CE | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS (
TOTAL
(MG/L
AS
CA CO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | | |------------------|---|--|--|--|---|---|--|---|---|--|--| | NOV
20 | 1600 | 598 | 810 | 8.6 | 0.0 | 12.4 | 340 | 80 | 34 | 58 | | | MA Y
17 | 1230 2 | 2260 | 380 | 8.1 | 13.0 | 7.8 | 160 | 44 | 13 | 17 | | | JUN
23 | 1545 1 | 210 | 465 | 8.3 | 22.0 | 7.8 | 200 | 52 | 17 | 22 | | | AUG 26 | 1530 | 381 | 800 | 8.5 | 22.5 | 9.2 | 300 | 65 | 34 | 57 | | | DATE | SODIUM
AD-
SORP-
TIOM
RATIO | POTAS- | ALKA-
LINITY
LAB
(MG/L
AS
CACO3 | SULFATE
DIS-
SOLVED
(MG/L | CHLO-
RI DE,
DIS-
SOLVEI
(MG/L | FLUO -
RIDE,
DIS-
SOLVED
(MG/L | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | | | NOV
20
MAY | 1 | 1.6 | 200 | 210 | 15 | 0.3 | 15 | 536 | 0.73 | 866 | | | 17
JUN | 0.6 | 1.1 | 116 | 76 | 3.3 | 0.2 | 12 | 238 | 0.32 | 1450 | | | 23
AUG | 0.7 | 1.3 | 143 | 90 | 6.2 | 0.3 | 14 | 289 | 0.39 | 943 | | | 26 | 1 | 1.6 | 192 | 210 | 13 | 0.3 | 11 | 507 | 0.69 | 522 | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVEI
(MG/L
AS N) | GEN,
NO2+NO3
DIS- | GEN,
B AMMONIA
DIS- | GEN,AM
MONIA
ORGANI | PHOS-PHOROU | S ORTHO DIS- D SOLVED (MG/L | | BORON, | DIS- | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | NOV | 40.01 | 0.20 | 0.04 | 40.0 | 40.04 | 60.01 | 0.05 | 5 60 | . 1177 | 2.2 | | | 20
MAY | <0.01 | 0.30 | 0.01 | <0.2 | | | 0.05 | | • | 2.2 | | | 17
JUN | <0.01 | 0.25 | 0.04 | 0.2 | - | | 0.01 | | | 4.4 | | | 23
AUG | <0.01 | <0.1 | 0.01 | 0.5 | | | 0.02 | _ | | 3.4 | | | 26 | <0.01 | <0.1 | 0.01 | 0.5 | 0 0.02 | <0.01 | <0.01 | 60 | 30 | 3.4 | | | DATE | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | | NOV
20 | 0.30 | 0.02 | 0.38 | 0.40 | 0.01 | | 940 | 20 | <1 | 1 | 1 | | MA Y
17 | 0.20 | 0.03 | 0.57 | 0.60 | 0.06 | 0.03 | 7900 | 110 | 4 | 1 | 1 | | | | | | | | | | | | | | ### 09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE NOV 20 MAY | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BARIU
DIS-
SOLVE
(UG/
AS E | LIUM, TOTO RECOMENTAL (UC BA) AS | CAL LIVE COV - DISABLE SOI G/L (UC BE) AS | UM, TO S- RE LVED ER G/L (U BE) AS | COV-
ABLE S
G/L (
CD) A | DMIUM
DIS-
SOLVED
UG/L
S CD) | | CHR
MIU
- DIS
E SOL
(UG
) AS | M, TOT
- REG
VED ERA
/L (UC
CR) AS | CAL COB
COV- DI
ABLE SOL
G/L (U
CO) AS | ALT, T
S- R
VED E
G/L (
CO) A | PPER,
OTAL
ECOV-
RABLE
UG/L
S CU) | |-----------------|---|---|---|---|---|---|--|--------------------------|---|--|--|---|--| | 17 | 100 | | 36 < | 10 | <0.5 | <1 | <1 | 1 | 1 | 1 | 6 | <1 | 10 | | DA | DI
SO
TE (U | PER,
S-
LVED
G/L
CU) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LITHIUM
TOTAL
RE COV -
ERABLE
(UG/L
AS LI) | TOTAL | MANO
NESI
- DIS
E SOL | E, 'S-
WED I | ERCURY TOTAL RECOV- ERABLE (UG/L AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | MOLYB
DENUM
DIS-
SOLVE
(UG/L | ,
D | | NOV
20 | | 2 | < 5 | < 5 | 10 | 5 | 50 | 11 | <0.1 | <0.1 | 3 | | 2 | | MAY
17 | | 9 | 8 | < 5 | 20 | 30 | 0 | 7 | <0.1 | <0.1 | 18 | | 1 | | DA | TO
RE
ER
TE (U | KEL,
TAL
COV-
ABLE
G/L
NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE -
NIUM,
TOTAL
(UG/L
AS SE) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVEF
DIS-
SOLVE
(UG/L
AS AC | DIS
D SOLV | UM,
S-
VED :
/L | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | CYANID
TOTAL
(MG/L
AS CN | | | NOV
20 | | 2 | <1 | 2 | 2 | <1. | 0 1 | 100 | <10 | < 3 | 3.4 | <0.01 | | | MAY
17 | | 17 | 2 | <1 | 1 | 1. | 0 : | 330 | 40 | <3 | 12 | _ | - | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM | PH
(STAN
ARI |)
1D- | EMPER-
ATURE
WATER
DEG C) | TUR-
BID-
ITY
(FTU) | | | | | | | OCT | 6 | 1250 | 370 | 82 | 0 | | 10.5 | | | | | | | | JAN | | 1225 | 459 | 72 | | | 0.0 | | | | | | | | MAR | | 0900 | 987 | 82 | | | 4.5 | | | | | | | | 2 | 24 | 1025
1515 | 987
993 | 82
84 | :6 | 3 | 3.0
4.5 | 320 | | | | | | | | 13 | 1345 | 635 | 81 | 0 | | 11.5 | | | | | | | | 0
1
1
2 | 05
10
12
20 | 1500
1105
1715
1345
1500 | 914
881
1210
2590
1900 | 61
58
53
37
39 | 1
0 8.
1 | . 1 | 13.0
12.0
16.0
10.5
14.0 | 50
83

55 | | | | | | | 1
1 | 0
3
29 | 1430
1110
1230 | 2350
1890
1170 | 32
35
55 | 2 | . 1 | 15.0
15.0
16.5 | 61

26 | | | | | | | 0
0
2
2
2 | 11
18
19 | 1510
1440
1255
1330
1810 | 892
707
492
371
365 | 60
65
63
73
73 | 5 8.
3
0 | . 6
. 6
 | 22.0
22.0
20.5
22.0
20.0 | 13
14

 | | | | | | | | 6 | 1100 | 378 | 86 | 4 | | 20.5 | | | | | | | | SEP
1 | 6 | 1130 | 425 | 74 | 9 | | 13.0 | | | | | 09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued 307 PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |--|--
--|---|---|---| | OCT
07
14
23
29
NOV | 1923
1745
0713
1711 | 365
465
512
512 | 35
141
116
106 | 34
177
160
147 |

 | | 10
18
20
28 | 1650
1014
1600
1535 | 460
518
598
518 | 119
141
165
131 | 148
197
266
183 |
68
 | | 06
15
24
MAR | 1720
1720
1200 | 518
381
420 | 132
136
156 | 185
140
177 |
 | | 04
21
24
28 | 1737
1557
1025
1515 | 480
930
987
993 | 1990
2290
2300
3360 | 2580
5750
6130
9010 |
87
85 | | 01
09
17
24 | 1715
1848
1841
1858 | 640
668
1020
878 | 221
528
1110
352 | 382
952
3060
834 | ======================================= | | 05
05
09
12
16
24
27
31 | 1927
1500
1715
1715
2000
1930
1500
2030 | 1070
914
964
1210
2270
1650
1900 | 448
297
157
790
1210
332
398
299 | 1290
733
409
2580
7420
1480
2040
1610 | 52
56

46 | | 06
10
13
23
29
29 | 1800
1430
1900
1545
1230
1900 | 2660
2350
2230
1210
1170
1140 | 872
456
370
142
138
178 | 6260
2890
2230
464
436
548 | 49

52
70 | | 01
04
08
15
22
29 | 1510
1607
1440
0818
0855
1330
1810 | 892
794
707
560
524
371
365 | 65
69
58
107
99
86
67 | 157
148
111
162
140
86
66 | 59

60

61 | | 05
16
24
26
SEP | 1337
0750
1030
1530 | 465
360
426
381 | 208
209
99
41 | 261
203
114
42 |

78 | | 03
10
19
24 | 1945
1800
1630
1200 | 332
250
450
477 | 35
16
24
77 | 31
11
29
99 |

 | 09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO--Continued PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA TE | F
IN
TIME TA | LOW, ME
STAN- SINEOUS PI | MEDI – IEDI IE | NT, S
PIS- F
RGE, D
US- % F
NDED T | USP. SU ALL FA IAM. DI INER % FI HAN TE | ED. SED. ISP. SUSP. ALL FALL IAM. DIAM. INER # FINER IAN THAN # MM .008 MM | |------------------|--|--|--|--|---|--| | MA Y
17
20 | | 60
90 | 965 589
672 470 | | 18
17 | 24 29
23 29 | | DATE | SED.
SUSF
FALL
DIAM
% FINE
THAN
.016 M | SUSP
FALL
DIAM
R % FINE
THAN | FALL
DIAM.
R % FINEF
THAN | FALL
DIAM.
% FINER
THAN | THAN | SED.
SUSP.
FALL
DIAM.
FINER
THAN
1.00 MM | | MAY
17
20 | | 1 7:
6 6: | | | 100
100 | 100
100 | 09339900 EAST FORK SAN JUAN RIVER ABOVE SAND CREEK, NEAR PAGOSA SPRINGS, CO LOCATION.--Lat 37°23'23", long 106°50'26", Archuleta County, Hydrologic Unit 14080101, on right bank 0.3 mi upstream from Sand Creek, 4.0 mi upstream from West Fork San Juan River, and 13 mi northeast of Pagosa Springs. DRAINAGE AREA .-- 64.1 mi2. PERIOD OF RECORD .-- October 1956 to current year. Prior to October 1959, published as San Juan River above Sand Creek, near Pagosa Springs. REVISED RECORDS. -- WSP 1713: 1957. GAGE. -- Water-stage recorder. Elevation of gage is 8,900 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18-19, Nov. 22 to Dec. 5, and Dec. 9 to Mar. 20. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 500 acres of hay meadows upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 32 years, 90.1 ft3/s; 65,280 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,260 ft³/s, Sept. 14, 1970, gage height, 6.75 ft, from rating curve extended above 460 ft³/s, on basis of slope-area measurement at gage height, 6.13 ft; minimum daily determined, 3.4 ft³/s, Dec. 26, 1958. EXTREMES OUTSIDE PERIOD OF RECORD. -- Greatest flood since at least 1885 occurred Oct. 5, 1911. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|------|------|----------------------|---------------------| | May 17 | 2300 | *385 | *4.15 | | | | | Minimum daily, 7.0 ft3/s, Dec. 14. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 ТО | SEPTEMBER | 1988 | | | |--------------------------------------|--------------------------------|---------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--|------------------------------------|-----------------------------------|----------------------------------|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
14
14
13 | 23
34
29
29
27 | 11
10
11
13
14 | 8.5
8.0
8.5
9.0 | 9.0
8.5
8.5
8.0 | 19
20
20
19
18 | 29
30
33
40
47 | 113
97
90
91
102 | 155
143
158
224
281 | 100
91
80
74
68 | 56
56
46
40
43 | 52
43
38
35
32 | | 6
7
8
9
10 | 13
12
12
12
12 | 51
42
33
28
27 | 14
13
13
11
11 | 10
10
10
9.5
8.5 | 8.0
8.5
8.5
8.5 | 18
18
16
15
16 | 59
78
89
85
78 | 109
97
89
85
90 | 303
340
311
294
297 | 65
61
59
55
56 | 65
52
43
37
32 | 29
26
24
22
21 | | 11
12
13
14
15 | 12
12
15
19
18 | 25
22
21
22
21 | 12
10
8.5
7.0
8.0 | 8.5
8.0
8.0
8.5 | 8.5
8.5
9.0
9.0 | 13
12
13
12
13 | 81
93
104
109
106 | 98
121
160
190
225 | 294
259
223
185
181 | 56
50
47
44
44 | 29
32
26
23
22 | 50
55
48
43
37 | | 16
17
18
19
20 | 15
14
14
14
13 | 19
19
14
14
16 | 9.0
10
12
12
12 | 9.0
9.5
9.0
8.5
8.5 | 9.0
9.5
10
9.5
8.5 | 12
11
11
12
13 | 108
97
85
79
79 | 246
302
341
264
211 | 160
163
160
172
184 | 43
39
37
35
33 | 25
48
35
32
26 | 33
29
29
25
23 | | 21
22
23
24
25 | 13
12
12
14
24 | 18
15
14
14
13 | 11
9.5
11
10
10 | 8.5
9.5
8.5
8.0 | 9.0
9.5
10
12 | 20
23
25
28
29 | 82
77
74
68
62 | 164
143
136
142
147 | 166
145
147
145
140 | 32
29
28
27
27 | 23
23
41
45
38 | 25
35
29
25
23 | | 26
27
28
29
30
31 | 19
17
16
16
19 | 13
13
12
12
11 | 10
9.5
8.5
9.0
10
9.5 | 8.5
8.5
9.0
9.0 | 14
15
16
17 | 36
50
53
41
38
33 | 60
63
68
75
90 | 158
181
209
222
230
181 |
120
122
122
111
101 | 26
27
31
36
43
51 | 33
68
52
60
56
55 | 21
21
21
19
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 454
14.6
24
12
901 | 651
21.7
51
11
1290 | 329.5
10.6
14
7.0
654 | 272.0
8.77
10
8.0
540 | 289.5
9.98
17
8.0
574 | 677
21.8
53
11
1340 | 2228
74.3
109
29
4420 | 5034
162
341
85
9980 | 5806
194
340
101
11520 | 1494
48.2
100
26
2960 | 1262
40.7
68
22
2500 | 932
31.1
55
19
1850 | TOTAL 35796.5 MEAN 98.1 MAX 718 MIN 7.0 AC-FT 71000 TOTAL 19429.0 MEAN 53.1 MAX 341 MIN 7.0 AC-FT 38540 CAL YR 1987 WTR YR 1988 310 SAN JUAN RIVER BASIN ### 09342500 SAN JUAN RIVER AT PAGOSA SPRINGS, CO LOCATION.--Lat 37°15'58", long 107°00'37", in NE±SW± sec.13, T.35 N., R.2 W., Archuleta County, Hydrologic Unit 14080101, on right bank at former bridge site in Pagosa Springs, 0.2 mi upstream from McCabe Creek, 0.6 mi downstream from bridge on U.S. Highway 160, and 2.0 mi upstream from Mill Creek. DRAINAGE AREA . - - 298 mi 2. PERIOD OF RECORD.--October 1910 to December 1914, May 1935 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1313: 1914(M). GAGE.--Water-stage recorder. Datum of gage is 7,052.04 ft above National Geodetic Vertical Datum of 1929. Jan 29 to Mar. 6, 1911, nonrecording gage at site 0.5 mi upstream, at different datum. Mar. 7 to Oct. 4, 1911, nonrecording gage at present site, at different datum. Nov. 23, 1911, to Nov. 14, 1914, nonrecording gage at site 300 ft downstream, at different datum. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of large areas upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 57 years, 381 ft 3/s; 276,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft³/s, Oct. 5, 1911, gage height, 17.8 ft, from floodmarks, from velocity-area study; minimum daily, 9.7 ft³/s, Oct. 5-6, 1956. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1885, that of Oct. 5, 1911. Flood of June 29, 1927, reached a stage of 13.5 ft, discharge about 16,000 ft 3/s, from information by local residents. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | May 18 | 0030 | *1,920 | *4.62 | June 6 | 2400 | 1,820 | 4.52 | Minimum daily discharge, 42 ft³/s, Dec. 14. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|-----------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------|--|---------------------------------|--|--------------------------------------|-------------------------------------|--|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 50 | 110 | 62 | 50 | 55 | 130 | 159 | 675 | 691 | 358 | 166 | 192 | | 2 | 49 | 193 | 65 | 49 | 55 | 132 | 160 | 556 | 611 | 332 | 214 | 152 | | 3 | 49 | 145 | 76 | 54 | 55 | 130 | 182 | 516 | 672 | 301 | 193 | 136 | | 4 | 47 | 144 | 84 | 56 | 53 | 118 | 228 | 500 | 1190 | 274 | 147 | 125 | | 5 | 47 | 142 | 88 | 58 | 50 | 114 | 283 | 562 | 1360 | 242 | 177 | 117 | | 6
7
8
9
10 | 47
47
47
47
45 | 272
222
168
147
140 | 83
81
79
64
68 | 61
61
60
53 | 51
52
54
55
55 | 118
120
100
99
109 | 373
556
652
585
510 | 590
524
478
433
452 | 1530
1530
1400
1270
1260 | 234
216
200
188
210 | 342
305
235
189
150 | 113
105
100
93
90 | | 11 | 45 | 132 | 74 | 55 | 55 | 86 | 494 | 507 | 1240 | 226 | 128 | 134 | | 12 | 45 | 117 | 60 | 55 | 55 | 78 | 555 | 682 | 1170 | 185 | 146 | 201 | | 13 | 46 | 113 | 52 | 51 | 55 | 86 | 643 | 913 | 1000 | 157 | 120 | 248 | | 14 | 86 | 113 | 42 | 53 | 57 | 75 | 678 | 1090 | 816 | 139 | 104 | 218 | | 15 | 84 | 113 | 53 | 55 | 59 | 85 | 656 | 1260 | 789 | 125 | 94 | 173 | | 16 | 73 | 99 | 55 | 58 | 58 | 83 | 674 | 1360 | 679 | 141 | 129 | 153 | | 17 | 63 | 96 | 75 | 59 | 61 | 71 | 607 | 1530 | 649 | 123 | 295 | 141 | | 18 | 58 | 79 | 74 | 57 | 65 | 71 | 528 | 1710 | 650 | 115 | 238 | 144 | | 19 | 55 | 83 | 73 | 53 | 59 | 78 | 459 | 1450 | 691 | 103 | 212 | 129 | | 20 | 53 | 96 | 70 | 53 | 55 | 90 | 431 | 1130 | 699 | 124 | 183 | 122 | | 21 | 50 | 97 | 65 | 56 | 58 | 118 | 434 | 871 | 612 | 108 | 154 | 190 | | 22 | 49 | 89 | 58 | 56 | 63 | 150 | 431 | 721 | 522 | 94 | 139 | 274 | | 23 | 47 | 86 | 67 | 54 | 69 | 165 | 400 | 681 | 533 | 85 | 129 | 216 | | 24 | 49 | 84 | 62 | 54 | 75 | 183 | 345 | 698 | 514 | 82 | 149 | 181 | | 25 | 100 | 77 | 62 | 52 | 80 | 176 | 296 | 688 | 490 | 87 | 144 | 162 | | 26
27
28
29
30
31 | 81
76
79
76
101 | 83
79
70
72
69 | 63
55
51
55
66
58 | 53
53
54
56
57
57 | 88
99
113
124
 | 219
323
361
250
217
187 | 268
284
320
380
514 | 739
823
971
1020
1080
847 | 418
373
410
440
422 | 82
86
90
108
167
242 | 162
232
192
199
184
192 | 149
139
131
123
118 | | TOTAL | 1891 | 3530 | 2040 | 1714 | 1883 | 4322 | 13085 | 26057 | 24631 | 5224 | 5643 | 4569 | | MEAN | 61.0 | 118 | 65.8 | 55.3 | 64.9 | 139 | 436 | 841 | 821 | 169 | 182 | 152 | | MAX | 101 | 272 | 88 | 61 | 124 | 361 | 678 | 1710 | 1530 | 358 | 342 | 274 | | MIN | 45 | 69 | 42 | 49 | 50 | 71 | 159 | 433 | 373 | 82 | 94 | 90 | | AC-FT | 3750 | 7000 | 4050 | 3400 | 3730 | 8570 | 25950 | 51680 | 48860 | 10360 | 11190 | 9060 | CAL YR 1987 TOTAL 160754 MEAN 440 MAX 2770 MIN 42 AC-FT 318900 WTR YR 1988 TOTAL 94589 MEAN 258 MAX 1710 MIN 42 AC-FT 187600 ### 09343300 RIO BLANCO BELOW BLANCO DIVERSION DAM, NEAR PAGOSA SPRINGS, CO LOCATION.--Lat 37°12'11", long 106°48'45", in NW1 sec.11, T.34 N., R.1 E., Archuleta County, Hydrologic Unit 14080101, on left bank 250 ft downstream from Blanco Diversion Dam, 1.1 mi downstream from Leche Creek, and 12 mi southeast of Pagosa Springs. DRAINAGE AREA. -- 69.1 mi². PERIOD OF RECORD. -- March 1971 to current year. GAGE.--Water-stage recorder. Datum of gage is 7,848.81 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation). REMARKS.--Estimated daily discharges: Dec. 1, 3, 4, 14-16, 21, 22, Dec. 28 to Jan. 2, Jan. 9-18, 21-28 Jan. 30 to Feb. 23, Mar. 8, 9, 11-15, and Mar. 17-20. Records good except for estimated daily discharges, which are fair. Flows controlled by diversion dam upstream. AVERAGE DISCHARGE. -- 17 years, 50.4 ft 3/s; 36,510 acre-ft/yr. COOPERATION.--Records collected by U.S. Bureau of Reclamation, computed by Colorado Division of Water Resources, and reviewed by Geological Survey. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,810 ft³/s June 8, 1985, gage height, 4.75 ft; minimum daily, 6.9 ft³/s, Dec. 29, 1976. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 360 ft³/s at 1815 Aug. 1, gage height, 3.71 ft; minimum daily, 5.5 ft³/s, Jan. 4. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|-----------------------------|----------------------------|-------------------------------|----------------------------|------------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------| | 1
2
3
4
5 | 17
17
16
16
16 | 69
88
77
82
65 | 24
25
26
26
27 | 12
10
7.0
5.5
7.3 | 16
15
13
14
12 | 38
38
34
31
29 | 47
50
68
94
115 | 42
42
42
42
44 | 32
23
18
18 | 22
22
22
22
22
22 | 39
20
20
20
20 | 21
20
20
20
20 | | 6
7
8
9
10 | 16
16
15
15 | 108
79
65
63
58 | 24
25
23
21
23 | 12
14
15
14
12 | 13
13
14
16
16 | 31
31
26
27
30 | 166
197
181
153
142 | 44
43
42
43
42 | 20
22
22
22
23 | 22
21
22
22
22 | 20
20
20
20
21 | 20
20
20
20
20 | | 11 | 15 | 49 | 23 | 12 | 15 | 24 | 151 | 41 | 23 | 21 | 21 | 20 | | 12 | 15 | 42 | 22 | 10 | 16 | 26 | 105 | 41 | 22 | 22 | 21 | 21 | | 13 | 19 | 41 | 19 | 8.0 | 17 | 26 | 41 | 41 | 21 | 21 | 21 | 21 | | 14 | 33 | 40 | 18 | 8.0 | 16 | 25 | 39 | 42 | 21 | 21 | 21 | 20 | | 15 | 25 | 37 | 18 | 8.0 | 16 | 23 | 44 | 42 | 22 | 21 | 22 | 21 | | 16 | 22 | 33 | 18 | 14 | 18 | 22 | 45 | 44 | 21 | 21 | 21 | 21 | | 17 | 21 | 30 | 21 | 14 | 21 | 23 | 44 | 58 | 21 | 21 | 21 | 20 | | 18 | 19 | 22 | 20 | 14 | 18 | 23 | 44 | 66 | 21 | 21 | 21 | 20 | | 19 | 19 | 28 | 21 | 14 | 18 | 21 | 43 | 45 | 23 | 21 | 20 | 20 | | 20 | 18 | 32 | 20 | 14 | 18 | 27 | 42 | 44 | 22 | 21 | 21 | 20 | | 21 | 17 | 33 | 18 | 14 | 20 | 45 | 41 | 45 | 21 | 21 | 20 | 21 | | 22 | 16 | 28 | 18 | 14 | 20 | 54 | 42 | 44 | 21 | 20 | 20 | 21 | | 23 | 16 | 26 | 17 | 14 | 20 | 61 | 42 | 42 | 21 | 19 | 22 | 20 | | 24 | 19 | 25 | 18 | 14 | 20 | 63 | 42 | 39 | 22 |
19 | 21 | 20 | | 25 | 106 | 23 | 18 | 10 | 22 | 64 | 42 | 40 | 21 | 19 | 21 | 21 | | 26
27
28
29
30
31 | 57
46
36
32
56
41 | 28
25
23
27
24 | 17
16
14
16
16 | 10
12
12
14
14 | 31
37
40
42 | 92
119
104
75
64
53 | 42
42
42
42
 | 40
40
40
40
40 | 22
21
27
22
21 | 20
21
21
20
20
20 | 21
23
50
22
21
21 | 20
21
20
20
20 | | TOTAL | 807 | 1370 | 628 | 366.8 | 567 | 1349 | 2230 | 1340 | 654 | 650 | 692 | 609 | | MEAN | 26.0 | 45.7 | 20.3 | 11.8 | 19.6 | 43.5 | 74.3 | 43.2 | 21.8 | 21.0 | 22.3 | 20.3 | | MAX | 106 | 108 | 27 | 15 | 42 | 119 | 197 | 66 | 32 | 22 | 50 | 21 | | MIN | 15 | 22 | 14 | 5.5 | 12 | 21 | 39 | 39 | 18 | 19 | 20 | 20 | | AC-FT | 1600 | 2720 | 1250 | 728 | 1120 | 2680 | 4420 | 2660 | 1300 | 1290 | 1370 | 1210 | CAL YR 1987 TOTAL 23412 MEAN 64.1 MAX 595 MIN 14 AC-FT 46440 WTR YR 1988 TOTAL 11262.8 MEAN 30.8 MAX 197 MIN 5.5 AC-FT 22340 312 SAN JUAN RIVER BASIN ### 09344000 NAVAJO RIVER AT BANDED PEAK RANCH, NEAR CHROMO, CO LOCATION.--Lat 37°05'07", long 106°41'20", in NW¹4 sec.24, T.33 N., R.2 E., Archuleta County, Hydrologic Unit 14080101, on left bank at downstream side of private bridge on Banded Peak Ranch, 0.5 mi downstream from Aspen Creek, 4.0 mi downstream from East Fork, and 9 mi northeast of Chromo. DRAINAGE AREA. -- 69.8 mi2. PERIOD OF RECORD.--October 1936 to current year. Monthly discharge only for some periods, published in WSP 1313. GAGE.--Water-stage recorder. Datum of gage is 7,940.6 ft above National Geodetic Vertical Datum of 1929 (river-profile survey). Prior to Oct. 1, 1949, at datum 3.00 ft, higher. REMARKS.--Estimated daily discharges: Nov. 19, Nov. 29 to Dec. 2, Dec. 14-16, 21-23, Dec. 27 to Jan. 4, Jan. 11-15, 19-28, Feb. 5-16, 21, Mar. 9, and Mar. 15-16. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 430 acres upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. AVERAGE DISCHARGE. -- 52 years, 110 ft3/s; 79,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,480 ft³/s, June 9, 1980, gage height, 4.55 ft, from rating curve extended above 840 ft³/s, on basis of float-area measurement at gage height 4.44 ft; maximum gage height, 7.02 ft, May 13, 1941, present datum; minimum daily discharge, 8.4 ft³/s, Sept. 29, 1960, result of temporary blockage by channel alteration upstream. EXTREMES OUTSIDE PERIOD OF RECORD .-- A major flood occurred Oct. 5, 1911. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------|---------|----------------|----------------------|---------------------| | June 6 | 2200 | * 525 | *2.46 | No othe | er peak greate | er than base o | lischarge. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily, 24 ft³/s, Jan. 25. | | | DISCHA. | MGE, CUBI | J FEEL PE | MI | WATER IER
EAN VALUES | ar octobe | .R 1907 10 | SEPIEMBE | к 1900 | | | |----------------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------|----------------------------------|--------------------------------|--|---------------------------------|----------------------------------|------------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 36 | 67 | 34 | 30 | 30 | 44 | 55 | 166 | 197 | 156 | 68 | 71 | | 2 | 35 | 81 | 34 | 26 | 32 | 44 | 57 | 146 | 181 | 137 | 73 | 64 | | 3 | 35 | 70 | 36 | 28 | 31 | 43 | 68 | 137 | 205 | 142 | 61 | 58 | | 4 | 34 | 70 | 38 | 28 | 31 | 41 | 79 | 142 | 279 | 129 | 66 | 54 | | 5 | 34 | 64 | 39 | 32 | 28 | 41 | 95 | 151 | 354 | 124 | 55 | 52 | | 6 | 34 | 84 | 41 | 32 | 28 | 42 | 118 | 154 | 392 | 122 | 70 | 50 | | 7 | 34 | 73 | 41 | 32 | 28 | 43 | 149 | 140 | 433 | 108 | 77 | 48 | | 8 | 33 | 67 | 41 | 34 | 28 | 36 | 154 | 129 | 428 | 102 | 67 | 44 | | 9 | 33 | 64 | 38 | 31 | 28 | 34 | 140 | 122 | 397 | 98 | 62 | 42 | | 10 | 33 | 62 | 38 | 30 | 30 | 42 | 129 | 126 | 410 | 106 | 57 | 41 | | 11 | 33 | 57 | 40 | 30 | 30 | 38 | 129 | 133 | 392 | 97 | 54 | 68 | | 12 | 33 | 53 | 38 | 28 | 30 | 37 | 142 | 173 | 338 | 89 | 61 | 73 | | 13 | 35 | 52 | 36 | 26 | 30 | 38 | 156 | 222 | 294 | 82 | 53 | 81 | | 14 | 47 | 52 | 34 | 26 | 30 | 37 | 161 | 261 | 254 | 74 | 47 | 65 | | 15 | 40 | 50 | 34 | 26 | 32 | 36 | 156 | 290 | 268 | 68 | 43 | 58 | | 16 | 37 | 48 | 34 | 32 | 32 | 32 | 156 | 306 | 254 | 74 | 45 | 53 | | 17 | 37 | 42 | 36 | 32 | 34 | 37 | 142 | 326 | 244 | 82 | 78 | 52 | | 18 | 36 | 37 | 36 | 31 | 33 | 35 | 126 | 366 | 244 | 79 | 71 | 54 | | 19 | 35 | 36 | 35 | 30 | 34 | 36 | 118 | 318 | 268 | 73 | 78 | 47 | | 20 | 34 | 41 | 35 | 26 | 35 | 40 | 118 | 265 | 272 | 79 | 58 | 46 | | 21 | 33 | 41 | 34 | 26 | 34 | 46 | 120 | 216 | 238 | 74 | 54 | 47 | | 22 | 33 | 38 | 32 | 26 | 36 | 52 | 114 | 184 | 225 | 89 | 53 | 52 | | 23 | 33 | 38 | 34 | 26 | 37 | 57 | 106 | 178 | 211 | 71 | 64 | 48 | | 24 | 39 | 38 | 34 | 26 | 38 | 61 | 98 | 191 | 237 | 70 | 70 | 44 | | 25 | 86 | 39 | 35 | 24 | 39 | 62 | 98 | 208 | 254 | 65 | 68 | 43 | | 26
27
28
29
30
31 | 54
49
44
43
54
49 | 40
38
37
36
36 | 34
32
30
32
32
32 | 26
28
30
32
31
30 | 40
41
44
44 | 74
98
98
78
70
61 | 97
100
108
122
146 | 219
261
283
290
290
235 | 208
194
216
191
168 | 61
59
64
65
69
66 | 62
142
102
97
84
78 | 42
40
38
38
36 | | TOTAL | 1225 | 1551 | 1099 | 895 | 967 | 1533 | 3557 | 6628 | 8246 | 2774 | 2118 | 1549 | | MEAN | 39.5 | 51.7 | 35.5 | 28.9 | 33•3 | 49.5 | 119 | 214 | 275 | 89.5 | 68.3 | 51.6 | | MAX | 86 | 84 | 41 | 34 | 44 | 98 | 161 | 366 | 433 | 156 | 142 | 81 | | MIN | 33 | 36 | 30 | 24 | 28 | 32 | 55 | 122 | 168 | 59 | 43 | 36 | | AC-FT | 2430 | 3080 | 2180 | 1780 | 1920 | 3040 | 7060 | 13150 | 16360 | 5500 | 4200 | 3070 | CAL YR 1987 TOTAL 46586 MEAN 128 MAX 873 MIN 30 AC-FT 92400 WTR YR 1988 TOTAL 32142 MEAN 87.8 MAX 433 MIN 24 AC-FT 63750 ### 09344400 NAVAJO RIVER BELOW OSO DIVERSION DAM, NEAR CHROMO, CO LOCATION.--Lat 37°01'48", long 106°44'16", in NE¹4 sec.9, T.32 N., R.2 E., Archuleta County, Hydrologic Unit 14080101, on left bank 600 ft downstream from Oso Diversion Dam, 5.5 mi east of Chromo, and 6 mi upstream from Little Navajo River. DRAINAGE AREA .-- 100.5 mi2. PERIOD OF RECORD. -- March 1971 to current year. GAGE.--Water-stage recorder. Datum of gage is 7,647.71 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation). REMARKS.--Estimated daily discharges: Nov. 29 to Dec. 2, Dec. 15, 16, 22, 26-29, Dec. 31 to Jan. 5, Jan. 7, 9-15, Jan. 19 to Feb. 2, Feb. 4-16, 19, and Mar. 16-28. Records good except for estimated daily discharges, which are fair. Flows controlled by diversion dam upstream. AVERAGE DISCHARGE.--17 years, 66.6 ft³/s; 48,250 acre-ft/yr. COOPERATION .-- Records collected by U.S. Bureau of Reclamation, computed by Colorado Division of Water Resources, and reviewed by Geological Survey. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,330 ft³/s, May 24, 1984, gage height, 4.92 ft; minimum daily, 10 ft³/s, Oct. 10, 11, 1981. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 280 $\rm ft^3/s$ at 2100 Apr. 7, gage height, 3.36 ft; minimum daily, 26 $\rm ft^3/s$, Jan. 25. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-------------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 38
32
33
32
32 | 68
88
70
72
68 | 40
40
41
41
44 | 34
30
34
34
38 | 34
36
34
32 | 51
52
51
49
47 | 67
70
84
104
127 | 85
84
89
93
93 | 70
56
55
55
55 | 57
58
58
58
58 | 55
55
56
55
56 | 59
59
59
58
58 | | 6
7
8
9
10 | 32
32
31
31
31 | 85
86
70
66
68 | 45
45
44
41
40 | 38
38
38
36
36 | 32
32
32
32
34 | 49
52
45
45
50 | 159
202
213
191
169 | 92
91
91
89
89 | 56
57
56
56
56 | 58
58
58
58
57 | 56
55
55
55
55 | 58
57
51
45
47 | | 11
12
13
14
15 | 31
32
33
52
47 | 67
61
59
60
59 | 42
39
38
34
34 | 36
36
34
32
32 | 34
34
34
38 | 44
42
43
41
43 | 96
45
46
48
48 | 89
90
89
90 | 55
55
57
57 | 56
56
58
58
57 | 54
55
56
49
45 | 86
70
58
56
56 | | 16
17
18
19
20 | 44
43
43
42
41 | 55
45
38
41
44 | 36
37
40
40
40 | 39
37
37
36
32 | 38
39
39
38
38 | 38
44
42
44
48 | 48
48
48
48 | 88
87
87
86
86 | 56
57
55
55
56 | 55
55
55
57 |
46
78
58
58
58 | 56
56
58
57
56 | | 21
22
23
24
25 | 46
36
38
39
89 | 49
52
47
46
40 | 38
36
40
40
41 | 28
28
28
28
26 | 38
39
40
40
42 | 52
60
66
68
70 | 48
48
48
47
47 | 86
87
86
85
85 | 55
56
55
56
57 | 56
56
54
52
54 | 56
50
61
66
56 | 54
56
57
55
53 | | 26
27
28
29
30
31 | 58
52
48
46
57
51 | 43
51
44
40
40 | 40
38
36
38
39
38 | 30
32
34
36
34
34 | 44
47
50
52
 | 90
110
110
104
93
78 | 48
48
48
59
89 | 85
85
86
87
86
88 | 57
57
58
57
57 | 56
56
56
56
54 | 56
56
55
57
58
58 | 49
46
45
45 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1292
41.7
89
31
2560 | 1722
57.4
88
38
3420 | 1225
39.5
45
34
2430 | 1045
33.7
39
26
2070 | 1090
37.6
52
32
2160 | 1821
58.7
110
38
3610 | 2439
81.3
213
45
4840 | 2723
87.8
93
84
5400 | 1695
56.5
70
55
3360 | 1746
56.3
58
52
3460 | 1739
56.1
78
45
3450 | 1668
55.6
86
45
3310 | TOTAL 28659 MEAN 78.5 MAX 405 MIN 28 AC-FT 56850 TOTAL 20205 MEAN 55.2 MAX 213 MIN 26 AC-FT 40080 CAL YR 1987 WTR YR 1988 314 SAN JUAN RIVER BASIN 09345200 LITTLE NAVAJO RIVER BELOW LITTLE OSO DIVERSION DAM, NEAR CHROMO, CO LOCATION.--Lat 37°04'32", long 106°48'38", in SW4 sec.23, T.33 N., R.1 E., Archuleta County, Hydrologic Unit 14080101, on right bank at Little Oso Diversion Dam, 3.5 mi northeast of Chromo, and 4.0 mi upstream from confluence with Navajo River. DRAINAGE AREA. -- 14.2 mi2. PERIOD OF RECORD. -- June 1971 to current year. GAGE.--Water-stage recorder. Datum of gage is 7,756.10 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). REMARKS.--Flows controlled by diversion dam upstream. AVERAGE DISCHARGE.--17 years, 8.62 ft³/s; 6,250 acre-ft/yr. COOPERATION. -- Records collected and computed by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 235 ft³/s, May 30, 1979; no flow Apr. 14, 1974, and Oct. 21, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 58 ft³/s, Apr. 8; no flow, Oct. 21. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|---------------------------------|--|--|-----------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|------------------------------------| | DAY | OCT | N OV | DE C | JAN | FEB | MA R | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.2
2.2
2.0
2.0
2.0 | 6.1
6.3
5.3
5.6
5.3 | 2.8
2.8
2.8
2.9
3.1 | 2.4
2.4
2.4
2.4
2.4 | 2.5
2.5
2.8
2.5
2.4 | 4.3
4.4
4.4
4.1
4.1 | 12
15
10
18
23 | 41
34
29
28
32 | 21
19
20
24
24 | 8.2
7.0
6.5
6.0
6.0 | 3.3
4.3
3.0
2.5
3.3 | 6.1
4.8
4.1
3.8
3.6 | | 6
7
8
9
10 | 2.0
2.0
2.0
1.9 | 6.9
5.4
4.4
4.6
4.6 | 2.9
2.9
2.9
2.8
2.8 | 2.5
2.6
2.5
2.5 | 2.4
2.4
2.2
2.4
2.4 | 4.4
4.6
4.1
4.1
4.1 | 35
44
51
49
42 | 28
27
22
24
29 | 24
23
21
20
19 | 6.1
5.1
5.1
6.3 | 4.9
3.8
2.8
2.4
2.2 | 3.5
3.0
2.9
2.6
2.6 | | 11
12
13
14
15 | 1.7
1.7
1.6
1.6
3.2 | 4.1
3.9
3.6
3.8
3.6 | 2.8
2.6
2.6
2.6
2.6 | 2.5
2.4
2.4
2.4
2.2 | 2.4
2.4
2.4
2.5
2.5 | 3.8
3.6
3.5
3.5 | 26
12
11
11 | 32
31
28
28
28 | 18
17
16
14
15 | 8.8
6.1
5.2
4.8
4.4 | 2.4
3.8
2.5
2.2
2.2 | 5.4
5.2
4.6
3.9
4.1 | | 16
17
18
19
20 | 2.6
2.4
2.2
2.2
.54 | 3.5
3.1
2.6
2.9
3.6 | 2.5
2.6
2.6
2.8
2.8 | 2.4
2.4
2.4
2.4
2.2 | 2.5
2.5
2.5
2.5
2.4 | 3.5
3.6
3.3
3.5
4.3 | 11
11
11
11 | 28
28
28
26
28 | 15
12
12
11
9.9 | 4.4
4.4
3.9
3.6
4.1 | 3.0
8.0
6.3
5.4
3.2 | 3.0
2.9
3.2
2.9
2.8 | | 21
22
23
24
25 | .00
1.3
1.9
2.2
7.1 | 3.6
3.1
2.9
2.9
2.6 | 2.5
2.5
2.5
2.5
2.5 | 2.2
2.2
2.2
2.2
2.2 | 2.4
2.5
2.5
2.6
2.6 | 6.3
8.0
9.4
10 | 10
11
9.9
11 | 26
25
26
26
26 | 9.0
8.8
8.8
8.8 | 3.5
3.3
3.0
3.0 | 2.8
2.6
2.6
2.8
4.3 | 2.9
3.8
3.0
2.6
2.5 | | 26
27
28
29
30
31 | 4.4
3.5
2.8
2.5
4.1
3.6 | 2.9
2.9
2.9
2.9
2.9 | 2.4
2.4
2.4
2.4
2.4
2.4 | 2.2
2.2
2.4
2.4
2.5
2.5 | 2.9
3.5
3.8
4.4 | 14
16
20
17
15 | 10
10
10
17
36 | 24
25
25
25
25
24 | 8.0
7.8
9.4
11
9.6 | 2.9
2.9
3.6
3.5
3.8 | 6.0
9.4
7.2
13
9.6
7.2 | 2.5
2.4
2.4
2.2
2.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 73.14
2.36
7.1
.00
145 | | 82.1
2.65
3.1
2.4
163 | 73.5
2.37
2.6
2.2
146 | 76.3
2.63
4.4
2.2
151 | 216.4
6.98
20
3.3
429 | 559.9
18.7
51
9.9
1110 | 856
27.6
41
22
1700 | 446.1
14.9
24
7.8
885 | 151.5
4.89
11
2.8
301 | 139.0
4.48
13
2.2
276 | 101.5
3.38
6.1
2.2
201 | CAL YR 1987 TOTAL 3838.94 MEAN 10.5 MAX 36 MIN .00 AC-FT 7610 WTR YR 1988 TOTAL 2894.24 MEAN 7.91 MAX 51 MIN .00 AC-FT 5740 ## 09346000 NAVAJO RIVER AT EDITH, CO LOCATION.--Lat 37°00'10", long 106°54'25", in NW4NW4 sec.24, T.32 N., R.1 W., Archuleta County, Hydrologic Unit 14080101, on right bank 290 ft downstream from highway bridge, 0.2 mi southeast of Edith, 0.5 mi upstream from Colorado-New Mexico State line, and 1.3 mi upstream from Coyote Creek. DRAINAGE AREA . -- 172 mi2. PERIOD OF RECORD. -- Streamflow records, September 1912 to current year. Monthly or yearly discharge only for some periods, published in WSP 1313. Water-quality data available, November 1970 to September 1974. Sediment data available April 1973 to September 1974. REVISED RECORDS. -- WSP 1243: 1943, 1945. WSP 1633: Drainage area. CAGE.--Water-stage recorder. Elevation of gage is 7,033.00 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Bureau of Reclamation). Prior to Jan. 1, 1929, nonrecording gage at site 240 ft upstream, at different datum. June 2, 1935, to June 27, 1941, water-stage recorder at sites 200 and 240 ft upstream, at datum 2.0 ft, higher. June 28, 1941, to June 20, 1961, at site 50 ft downstream at present datum. REMARKS.--Estimated daily discharges: Nov. 22, Nov. 27 to Dec. 2, Dec. 21, and Dec. 23 to Mar. 3. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,700 acres upstream from station. Highwater diversions upstream from station into Heron Reservoir through Azotea tunnel began in March 1971. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--58 years (water years 1913-70), 155 ft³/s; 112,300 acre-ft/yr, prior to diversions through Azotea tunnel: 18 years (water years 1971-88), 85.4 ft³/s; 61,870 acre-ft/yr, subsequent to diversion through Azotea tunnel. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,840 ft 3 /s, Apr. 23, 1942, gage height, 6.55 ft, from rating curve extended above 1,100 ft 3 /s; minimum daily, 8.0 ft 3 /s, Sept. 25, 1953, Aug. 7, 1977. EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Oct. 5, 1911, exceeded all other observed floods at this location. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 344 ft³/s at 2300 Apr. 7, gage height, 3.87 ft; maximum gage height, 4.47 ft, Jan. 3 (backwater from ice); minimum daily discharge, 31 ft³/s, Oct. 12. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUI. 76 73 73 36 38 38 51 60 129 78 68 58 μц 72 55 58 52 79 77 83 28 ΔO 217 98 84 58 63 87 QЦ 68.4 TOTAL. 46.7 58 45.4 65 88.5 MEAN 45.1 65.6 40.2 72.8 63.0 70.2 MA X AC-FT CAL YR 1987 TOTAL 37046 MEAN 101 MAX 369 MIN 31 AC-FT 73480 WTR YR 1988 TOTAL 25905 MEAN 70.8 MAX 281 MIN 31 AC-FT 51380 ## 09346400 SAN JUAN RIVER NEAR CARRACAS, CO LOCATION.--Lat 37°00'49", long 107°18'42", in SE4SW4 sec.17, T.32 N., R.4 W., Archuleta County, Hydrologic Unit 14080101, on right bank just upstream from flow line of Navajo Reservoir, 3 mi northwest of Carracas, 7.2 mi upstream from Piedra River, and at mile 332.8. DRAINAGE AREA. -- 1,230 mi², approximately. Time Minimum daily, 110 ft³/s, Dec. 14, 15. May 18 3ó TOTAL MEAN MA X MIN A C-FT Discharge (ft³/s) *2.300 PERIOD OF RECORD. -- Streamflow records, October 1961 to current year. Water-quality data available, July 1969 to August 1973. Sediment data available, August 1973. GAGE.--Water-stage recorder and crest stage gage. Elevation of gage is 6,090 ft above National Geodetic Vertical Datum of 1929, from river-profile map. REMARKS.--Estimated daily discharges: Nov. 25, Nov. 27 to Dec. 3, Dec. 10, and Dec. 12 to Mar. 10. Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 11,000 acres upstream from station. Highwater diversions upstream from station into
Rio Grande basin through Azotea tunnel (station 08284160) began in March 1971. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--9 years (water years 1962-70), 632 ft³/s; 457,900 acre-ft/yr, prior to completion of Azotea tunnel: 18 years (water years 1971-88), 657 ft³/s; 476,000 acre-ft/yr, since completion of Azotea tunnel. Date Time Gage height (ft) 321 214 259 Discharge (ft 3/s) EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,730 ft³/s, Sept. 6, 1970, gage height, 8.34 ft, from rating curve extended above 6,000 ft³/s, on basis of slope-area measurement of peak flow; minimum daily, about 5 ft³/s, Dec. 10, 1961, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD. -- Major floods occurred Sept. 5 or 6, 1909; Oct. 5, 1911; June 29, 1927. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,500 ft3/s, and maximum (*): Gage height (ft) *4.68 | 111 | niman uu | 119, 110 10 | / B , D C | C. 17, 13. | • | | | | | | | | |------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|-------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 128 | 235 | 150 | 130 | 150 | 380 | 532 | 910 | 925 | 697 | 304 | 369 | | 2 | 123 | 501 | 150 | 130 | 150 | 370 | 535 | 854 | 804 | 720 | 312 | 305 | | 3 | 118 | 370 | 170 | 130 | 150 | 360 | 629 | 769 | 761 | 597 | 325 | 268 | | 4 | 112 | 326 | 204 | 140 | 150 | 340 | 785 | 742 | 1040 | 514 | 276 | 249 | | 5 | 113 | 312 | 221 | 150 | 140 | 340 | 881 | 787 | 1500 | 434 | 261 | 238 | | 6
7
8
9
10 | 115
117
113
113
113 | 430
500
386
330
300 | 208
192
195
173
150 | 150
160
160
150
150 | 140
140
150
150 | 350
330
300
300
310 | 983
1150
1270
1210
1100 | 844
775
735
690
701 | 1650
1710
1530
1400
1350 | 398
365
331
325
333 | 349
554
392
313
276 | 228
216
201
189
176 | | 11 | 111 | 280 | 176 | 140 | 150 | 270 | 1050 | 733 | 1350 | 401 | 236 | 188 | | 12 | 111 | 257 | 150 | 140 | 150 | 232 | 1000 | 843 | 1340 | 348 | 231 | 285 | | 13 | 112 | 240 | 130 | 140 | 150 | 228 | 1000 | 1040 | 1220 | 293 | 249 | 368 | | 14 | 127 | 245 | 110 | 140 | 160 | 221 | 1030 | 1250 | 1070 | 264 | 208 | 347 | | 15 | 196 | 260 | 110 | 140 | 160 | 214 | 1040 | 1480 | 1010 | 242 | 195 | 297 | | 16 | 177 | 246 | 130 | 150 | 160 | 248 | 1090 | 1650 | 986 | 238 | 224 | 265 | | 17 | 159 | 218 | 180 | 150 | 170 | 208 | 1120 | 1800 | 914 | 231 | 557 | 248 | | 18 | 151 | 204 | 180 | 150 | 180 | 209 | 980 | 2160 | 921 | 221 | 455 | 242 | | 19 | 145 | 179 | 180 | 150 | 170 | 220 | 877 | 2040 | 921 | 197 | 3 9 4 | 235 | | 20 | 138 | 200 | 170 | 140 | 160 | 298 | 804 | 1810 | 960 | 189 | 326 | 221 | | 21 | 135 | 211 | 160 | 140 | 160 | 450 | 795 | 1380 | 906 | 214 | 284 | 221 | | 22 | 140 | 214 | 150 | 150 | 170 | 640 | 802 | 1090 | 797 | 192 | 261 | 357 | | 23 | 136 | 201 | 150 | 140 | 190 | 764 | 809 | 995 | 774 | 179 | 227 | 351 | | 24 | 135 | 198 | 160 | 140 | 210 | 836 | 768 | 920 | 801 | 173 | 261 | 301 | CAL YR 1987 TOTAL 269333 MEAN 738 MAX 3710 MIN 110 AC-FT 534200 WTR YR 1988 TOTAL 160751 MEAN 439 MAX 2160 MIN 110 AC-FT 318800 ___ # · 09349800 PIEDRA RIVER NEAR ARBOLES, CO LOCATION.--Lat 37°05'18", long 107°23'50", in NE4SW4 sec.21, T.33 N., R.5 W., Archuleta County, Hydrologic Unit 14080102, on left bank 3 mi downstream from Ignacio Creek, 4.6 mi northeast of Arboles Post Office, and 2.5 mi upstream from Navajo Reservoir. DRAINAGE AREA . -- 629 mi2. PERIOD OF RECORD.--Streamflow records, August 1962 to current year. Gage operated 1895-99 and 1910-27 at site 7.5 mi downstream at altitude 6,000 ft. Low-flow records probably not equivalent. Water-quality data available, November 1972 to August 1973. GAGE.--Water-stage recorder. Elevation of gage is 6,147.52 ft above National Geodetic Vertical Datum of 1929, Colorado State Highway Department benchmark. REMARKS.--Estimated daily discharges: Dec. 13-20, 24, Dec. 29 to Feb. 21, Apr. 14 to May 3, July 21-31, and Aug. 17-23. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,800 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 26 years, 414 ft3/s; 299,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,370 ft³/s, Sept. 6, 1970, gage height, 6.38 ft, recorded, 7.55 ft, from floodmarks, from rating curve extended above 4,400 ft³/s, on basis of slope-area measurement of peak flow; minimum discharge, 11 ft³/s, Dec. 9, 1963, Oct. 1, 1966. EXTREMES OUTSIDE PERIOD OF RECORD .-- Major floods occurred Sept. 5 or 6, 1909, and Oct. 5, 1911. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|---------------------|------|------|----------------------|---------------------| | May 19 | 0400 | *1,480 | *2.98 | | | | | Minimum daily, 60 ft3/s, Dec. 14. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|-----------------------------------|-----------------------------------|------------------------------------|----------------------------------|--|-------------------------------------|--|--------------------------------------|-------------------------------------|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 91
89
87
85
83 | 145
240
217
189
181 | 93
93
105
103
107 | 80
7 5
80
85
90 | 85
85
85
80
80 | 266
266
254
227
223 | 289
324
394
491
552 | 740
670
590
552
580 | 680
609
614
814
937 | 445
391
375
399
341 | 148
145
173
160
145 | 307
271
235
210
200 | | 6
7
8
9 | 8 1
8 1
79
79
79 | 396
389
290
239
213 | 117
105
105
97
93 | 90
95
95
90
85 | 80
80
80
85 | 216
238
182
167
191 | 572
683
860
833
729 | 607
558
525
480
494 | 1130
1180
1110
1040
986 | 307
280
250
250
254 | 399
621
446
352
294 | 185
171
151
136
128 | | 11
12
13
14
15 | 79
79
79
93
127 | 192
168
157
157
174 | 97
93
75
60
70 | 80
80
80
80 | 85
85
85
90
90 | 149
136
128
125
130 | 700
733
830
860
850 | 556
662
822
941
1060 | 988
- 980
856
723
651 | 266
246
213
189
174 | 263
235
216
192
178 | 136
232
455
389
316 | | 16
17
18
19
20 | 120
110
101
98
93 | 151
137
125
105
115 | 75
90
100
100
95 | 90
90
85
80
80 | 90
90
100
95
90 | 142
118
115
122
130 | 840
760
650
560
500 | 1170
1230
1350
1360
1110 | 644
591
584
590
608 | 171
160
154
136
136 | 295
510
440
380
330 | 273
243
222
206
192 | | 21
22
23
24
25 | 89
85
85
87
112 | 122
120
115
115
105 | 95
87
91
90
97 | 85
85
85
80 | 90
97
99
107
114 | 163
229
287
358
340 | 500
500
470
410
370 | 865
743
679
664
685 | 567
501
500
518
524 | 130
120
100
95
90 | 290
250
230
286
288 | 247
506
415
351
307 | | 26
27
28
29
30
31 | 120
110
105
105
120
139 | 115
105
95
91
95 | 95
93
81
85
95 | 80
80
80
85
90
85 | 123
147
211
249
 | 413
557
736
462
421
361 | 320
330
350
410
530 | 678
712
816
852
930
793 | 439
415
437
534
559 | 90
90
95
100
130
180 | 257
343
389
341
311
357 | 277
254
240
216
201 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2970
95.8
139
79
5890 | 5058
169
396
91
10030 | 2872
92.6
117
60
5700 | 2615
84.4
95
75
5190 | 2962
102
249
80
5880 | 7852
253
736
115
15570 | 17200
573
860
289
34120 | 24474
789
1360
480
48540 | 21309
710
1180
415
42270 | 6357
205
445
90
12610 | 9264
299
621
145
18380 | 7672
256
506
128
15220 | CAL YR 1987 TOTAL 225992 MEAN 619 MAX 2830 MIN 60 AC-FT 448300 WTR YR 1988 TOTAL 110605 MEAN 302 MAX 1360 MIN 60 AC-FT 219400 # 09352900 VALLECITO CREEK NEAR BAYFIELD, CO (Hydrologic bench-mark station) LOCATION.--Lat 37°28'39", long 107°32'35", in NE4NW4 sec.16, T.37 N., R.6 W., La Plata County, Hydrologic Unit 14080101, on right bank 60 ft upstream from Fall Creek, 0.8 mi downstream from Bear Creek, 6.7 mi north of Vallecito Dam, and 18 mi north of Bayfield.
DRAINAGE AREA .-- 72.1 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1962 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 7,906.80 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Oct. 9-27, Nov. 17-20, Nov. 27 to Dec. 2, Dec. 9-10, 12-17, 28-29, 31, Jan. 1, 7-8, 10-14, 19-20, 29, Feb. 5-22, Mar. 8-19, Apr. 2-28, and May 1-23. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. AVERAGE DISCHARGE. -- 26 years, 149 ft3/s; 108,000 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,050 ft³/s, Sept. 6, 1970, gage height, 5.51 ft, from water-stage recorder, 6.76 ft, from floodmarks, from rating curve extended above 1,400 ft³/s, on basis of slope-area measurement of peak flow; minimum daily, 6.7 ft³/s, Dec. 28, 1976. EXTREMES OUTSIDE PERIOD OF RECORD. -- Major floods occurred in October 1911 and June 1927. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft ³ /s) | Gage height (ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|-----------------------------------|------------------|------|------|----------------------|---------------------| | Aug. 6 | 1200 | *1,100 | *2.95 | | | | | Minimum daily, 14 ft³/s, Mar. 17. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|----------------------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|-----------------------------------|--|-------------------------------------|------------------------------------|--|------------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
32
31
30
29 | 59
74
69
71
74 | 30
30
34
32
31 | 20
17
16
15
20 | 17
17
17
17
17 | 25
25
24
23
23 | 49
50
50
55
60 | 190
180
170
160
170 | 217
232
406
596
557 | 260
229
216
236
212 | 152
157
137
117
107 | 154
134
120
107
100 | | 6
7
8
9
10 | 29
28
27
26
26 | 106
92
84
80
77 | 29
29
29
26
28 | 20
19
19
20
18 | 15
15
15
15
15 | 23
24
20
20
22 | 70
90
95
90
85 | 180
170
160
150
160 | 568
623
561
552
564 | 208
192
176
159
154 | 614
607
326
214
169 | 98
90
86
81
7 9 | | 11
12
13
14
15 | 26
26
26
46
50 | 72
66
65
65
61 | 29
24
20
17
20 | 18
18
18
18
20 | 15
16
16
16
17 | 18
16
17
16
17 | 90
100
110
110
120 | 200
270
350
420
480 | 536
454
389
308
326 | 153
147
144
137
122 | 144
137
122
107
100 | 88
229
256
205
177 | | 16
17
18
19
20 | 44
38
34
32
30 | 53
46
40
42
44 | 22
26
31
28
25 | 19
19
16
18 | 17
17
18
17
16 | 16
14
15
17
20 | 120
120
100
100
100 | 530
550
530
540
400 | 320
338
338
367
397 | 115
107
105
102
96 | 167
352
272
213
173 | 168
157
153
140
122 | | 21
22
23
24
25 | 30
28
28
32
60 | 45
43
41
40
40 | 24
24
24
24
24 | 20
19
18
17
17 | 16
16
18
19 | 23
29
35
37
39 | 100
100
90
90
85 | 330
260
240
314
355 | 363
333
314
332
350 | 96
92
88
84
84 | 151
147
137
127
133 | 315
364
257
209
177 | | 26
27
28
29
30
31 | 50
44
42
45
54
53 | 38
34
34
32
32 | 24
23
20
20
23
22 | 16
16
17
17
18
17 | 22
23
24
25 | 49
61
66
58
56
52 | 90
90
100
110
143 | 300
331
429
438
369
265 | 368
409
381
333
281 | 82
84
92
100
98
109 | 120
167
168
157
168
170 | 156
145
127
115
108 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1108
35.7
60
26
2200 | 1719
57.3
106
32
3410 | 792
25.5
34
17
1570 | 559
18.0
20
15
1110 | 505
17.4
25
15
1000 | 900
29.0
66
14
1790 | 2762
92.1
143
49
5480 | 9591
309
550
150
19020 | 12113
404
623
217
24030 | 4279
138
260
82
8490 | 6032
195
614
100
11960 | 4717
157
364
79
9360 | CAL YR 1987 TOTAL 65440 MEAN 179 MAX 1030 MIN 13 AC-FT 129800 WTR YR 1988 TOTAL 45077 MEAN 123 MAX 623 MIN 14 AC-FT 89410 # 09352900 VALLECITO CREEK NEAR BAYFIELD, CO--Continued (Hydrologic Bench-Mark Station) ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical analyses: October 1963 to September 1968; October 1969 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURES: November 1962 to September 1982. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: (Water years 1963-82) Maximum, 20.0°C July 10, 1974; minimum, 0.0°C on many days during winter months each year WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE
CIF
CON
DUC
ANC | IC
- P
T- (ST
E A | AND-
RD | EMPER-
ATURE
WATER
DEG C) | TUR-
BID-
ITY
(FTU) | D
S O | | COLI-
FORM,
FECAL
0.7
UM-MF
(COLS. | TO C
, FE
KF
(CC | CREP-COCCI
CCAL,
AGAR
DLS.
PER
DML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVEI
(MG/L
AS CA) | DIS-
SOLVED
(MG/L | |--------------------------|--|---|---|---|---|---|---|---|--|---|--|--|---|--|------------------------------------| | DEC
18 | 0945 | 36 | 6 | 6 6 | .7 | 0.0 | 0.2 | 1 | 0.5 | K | .0 | ко | 34 | 10 | 2.1 | | MAR
22 | 1000 | 29 | 5 | 8 7 | • 5 | 2.0 | 6.2 | 1 | 1.4 | K | :0 | 26 | 37 | 11 | 2.2 | | JUN
13 | 1230 | 389 | 4 | 4 8 | .1 | 7.0 | 0.5 | 1 | 0.3 | K | :0 | K11 | 20 | 5 .7 | 1.3 | | SEP
26 | 1200 | 157 | 6 | 8 8 | .6 | 8.5 | 1.6 | | | K | :3 | | 20 | 9.0 | 2.0 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | | AS- BON
UM, WA
S- DIS
VED FI
/L MG/ | ATE B
TER
IT D
ELD | CAR-
ONATE
WATER
IS IT
FIELD
G/L AS
CO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3 | DI:
SO:
(M | FATE
S-
LVED
G/L
SO4) | CHLO-
RIDE,
DIS-
SOLVE
(MG/L
AS CL | RI
D SC
(M | .UO-
IDE,
DIS-
DLVED
IG/L
S F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS;
RESIDUE
AT 180
DEG. (
DIS-
SOLVEI
(MG/L) | SUM OF CONSTI- TUENTS, DIS- SOLVED | | DE C
18 | 1.0 | 0.1 | 0 | .7 | 31 | 0 | 26 | | 8.8 | 1.7 | | 0.3 | 4.2 | 47 | 44 | | MAR
22 | 1.2 | 0.1 | 0 | . 8 | 35 | 0 | 29 | | 8.5 | 0.7 | | 0.1 | 4.2 | 46 | 49 | | JUN
13 | 0.5 | 0.0 | 0 | . 4 | 16 | 1 | 16 | | 6.6 | 0.2 | | 0.3 | 2.5 | 48 | 28 | | SEP
26 | 0.9 | 0.1 | 0 | .7 | 27 | 0 | 22 | | 7.7 | 0.6 | | 0.1 | 3.5 | 40 | 40 | | DEC 18 MAR 22 JUN 13 SEP | A C | S- D
VED SO
NS (T
R P
FT) D | IDS,
IS-
LVED
ONS
ER
AY)
4.54
3.58 | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
<0.01
<0.01 | NITRO
GEN,
NO2+NO
DIS-
SOLVE
(MG/L
AS N)
<0.10 | NIT GE AMMOI TOT (MG AS <0.4 | RO - GH
N, AMM
NIA D
AL SOO!
(M
N) AS | TRO-
EN,
ONIA
IS-
LVED
G/L
N) | 0. | O- GE
, MO
IC OR
L T
L (| ITRO-
N,AM-
NIA +
GANIC
OTAL
MG/L
S N)
1.0
0.6
<0.2 | PHOSE PHORE TOTA (MG/AS F | DUS DI
L SOL
L (MC
C) AS | S- PHC
10US OF
S- DI
VED SOL
1/L (MC
P) AS | | | 26 | 0 | .05 1 | 7.0 | <0.01 | <0.10 | <0.0 | 01 <0 | .01 | | | 0.4 | <0.0 | 01 <0. | 01 <0 | .01 | | DAT | E TI | IN
D
SO
ME (U | UM-
UM,
IS-
LVED
G/L
AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM
DIS-
SOLVED
(UG/L
AS BA | DIS-
SOLV
(UG: | M, CADI
- DI
VED SOI
/L (U | MIUM
IS-
LVED
G/L
CD) | CHRO
MIUM
DIS-
SOLV
(UG/
AS C | , CO
D
ED SO
L (| BALT,
IS-
LVED
UG/L
S CO) | COPPE
DIS-
SOLV
(UG/
AS C | ED SOL | S- I
VED SC | AD,
IS-
LVED
G/L
PB) | | DEC
18 | 09 | 0945 20 < | | <1 | 1 | 6 < | 0.5 | <1 | | 1 | <3 | | 1 | 10 | < 5 | | MA R
22 | 10 | 00 | 20 | <1 | 1 | 8 < | 0.5 | <1 | | < 1 | <3 | | 6 | 16 | <5 | | JUN
13 | 12 | 30 | 60 | <1 | 1. | 3 < | 0.5 | < 1 | | <1 | <3 | | 3 | 18 | <5 | | SEP
26 | 12 | 00 | 50 | <1 | 1. | 3 < | 0.5 | 2 | | <1 |
< 3 | | 2 | 10 | < 5 | K BASED ON NON-IDEAL COLONY COUNT. ## 320 # 09352900 VALLECITO CREEK NEAR BAYFIELD, CO--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | LITHIUM DIS- SOLVED (UG/L AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA -
DIUM,
DIS -
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |------------------|----------------------------------|--|--|---|--|---|--|--|--|--| | DEC
18 | <14 | <1 | <0.1 | <10 | 3 | <1 | 1.0 | 28 | <6 | < 3 | | MAR
22 | <14 | 1 | <0.1 | <10 | <1 | <1 | <1.0 | 30 | <6 | 11 | | JUN
13
SEP | <4 | 13 | <0.1 | <10 | 2 | <1 | <1.0 | 16 | < 6 | 9 | | 26 | <4 | 9 | <0.1 | <10 | 2 | <1 | <1.0 | 24 | <6 | 7 | # RADIOCHEMICAL ANALYSES, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA TE | TIME | GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) | GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) | GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) | GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) | GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) | GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) | RADIUM
226,
DIS-
SOLVED,
RADON
METHOD
(PCI/L) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U) | |-----------|------|--|--|---|---|--|--|---|--| | DE C | | | | | | | | | | | 18 | 0945 | <0.4 | <0.4 | 0.8 | <0.4 | 0.7 | <0.4 | 0.02 | 0.09 | | JUN
13 | 1230 | <0.4 | <0.4 | 1.0 | <0.4 | 1.0 | <0.4 | 0.07 | 0.16 | # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |------------------|------|---|--|---|---| | DEC 18 | 0945 | 36 | | 50 | 0 | | MAR
22
JUN | 1000 | 29 | 3 | 0.23 | 69 | | 13
SEP | 1230 | 389 | 14 | 15 | 77 | | 26 | 1200 | 157 | 1 | 0.42 | 7 | ## 09353000 VALLECITO RESERVOIR NEAR BAYFIELD, CO LOCATION.--Lat 37°23'00", long 107°34'30", in SW4SW4 sec.18, T.36 N., R.6 W., La Plata County, Hydrologic Unit 14080101, in gatehouse above outlet gates at Vallecito Dam on Los Pinos (Pine) River, 300 ft left of spillway, 0.4 mi upstream from Jack Creek, and 11 mi northeast of Bayfield. PERIOD OF RECORD. -- April 1941 to current year. REVISED RECORDS. -- WSP 959: 1941. WSP 1513: 1956. GAGE.--Water-stage recorder. Elevation of gage is 7,580 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum. REMARKS.--Reservoir is formed by earth and rockfill dam; dam completed in March 1941. Capacity of reservoir, 125,640 acre-ft between elevations 7,580 ft, sill of outlet gate, and 7,665 ft, top of spillway gates. Dead storage, 3,395 acre-ft. Figures given are usable contents. Reservoir is used to store water for irrigation in Los Pinos (Pine) River basin. COOPERATION . -- Records provided by Pine River Irrigation District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 128,200 acre-ft, July 27, 1957, elevation, 7,665.72 ft; minimum, 1,520 acre-ft, Oct. 24-25, 1944, elevation, 7,584.10 ft. No usable storage prior to April 1941. EXTREMES FOR CURRENT YEAR.--Maximum contents, 107,340 acre-ft, June 29, elevation, 7,658.10 ft; minimum, 52,560 acre-ft, Feb. 14-15, elevation, 7,634.13 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0900, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | | | | | | | D | ate | • | | | | | | | | | Elevation | Contents (acre-feet) | Change in contents (acre-feet) | |--|---|----|----|---|---|---|---|---|---|------|-----|---|------|------|---|---|--|---|---|---|--|---|---| | Sept.
Oct.
Nov.
Dec. | 30.
31.
30. | | • | : | : | : | : | : | : | : | | |
 | • | | ٠ | | • | • | • | 7,644.05
7,637.00
7,635.47
7,634.96 | 73,320
58,220
55,170
54,170 | -21,390
-15,100
-3,050
-1,000 | | CAL | YR | 19 | 87 | | | | | | | | | |
 |
 | | | | • | | | - | - | +1,490 | | Jan. Feb. Mar. Apr. May June July Aug. Sept. | 31.
29.
31.
30.
31.
31.
30. | | | | : | : | | | |
 | | | | | • | | | • | | • | 7,634.48
7,634.47
7,636.85
7,644.76
7,652.93
7,658.07
7,659.42
7,649.35
7,647.76 | 53,230
53,210
57,920
74,920
94,280
107,260
88,170
85,600
81,840 | -940
-20
+4,710
+17,000
+19,360
+12,980
-19,090
-2,570
-3,760 | | WTR | YR | 19 | 88 | | | | | | | | | |
 |
 | | | | | | | - | - | -12,870 | #### 09354500 LOS PINOS RIVER AT LA BOCA, CO LOCATION. -- Lat 37°00'34", long 107°35'56", in NEINWI sec.22, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on downstream end of right abutment of the Denver & Rio Grande Western Railroad Co. bridge, at southeast edge of La Boca, 0.1 mi upstream from Spring Creek, and 2 mi upstream from maximum elevation of Navajo Reservoir. DRAINAGE AREA. -- 510 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --Streamflow records, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available, July 1969 to August 1973. GAGE .-- Water-stage recorder. Datum of gage is 6,143.59 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Dec. 13 to Feb. 17. Records good except for estimated daily discharges, which are poor. Flow regulated by Vallecito Reservoir (station 09353000) 24 mi upstream since April 1941. Diversions for irrigation of about 33,000 acres upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 38 years, 240 ft3/s; 173,900 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,400 ft³/s, July 27, 1957, gage height, 8.95 ft, from rating curve extended above 5,100 ft³/s; minimum daily, 6.1 ft³/s, May 1, 1977. EXTREMES OUTSIDE PERIOD OF RECORD .-- A flood on Oct. 5, 1911 has not yet been exceeded. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,050 $\rm ft^3/s$ at 1400 Aug. 6, gage height, 5.64 ft; minimum daily, 55 $\rm ft^3/s$, Dec. 14, May 10. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | R OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|--|------------------------------------|----------------------------------|--|----------------------------------|--|-----------------------------------|--|------------------------------------|--|--|------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 179
173
179
173
173 | 348
460
316
280
271 | 206
192
213
210
203 | 110
110
110
110
110 | 120
120
120
120
120 | 473
456
373
354
340 | 103
107
103
110
115 | 133
113
66
61
73 | 179
161
150
148
143 | 264
241
227
241
224 | 247
241
180
170
1 7 0 | 185
182
173
167
164 | | 6
7
8
9
10 | 167
155
155
158
173 | 374
350
309
284
287 | 213
213
213
213
213 | 110
110
110
110
110 | 120
120
120
120
120 | 284
252
147
130
137 | 122
137
150
152
139 | 69
89
85
81
55 | 145
143
152
162
147 | 210
199
189
195
195 | 653
434
282
255
224 | 161
145
133
120
118 | | 11
12
13
14
15 | 176
185
199
226
316 | 299
295
291
304
335 | 210
209
140
55
85 | 110
110
110
120
85 | 100
100
100
100
100 | 104
97
91
87
85 | 130
125
125
132
147 | 81
109
99
110
122 | 181
253
204
185
173 | 209
170
150
150 | 223
254
221
203
192 | 147
184
192
176
167 | |
16
17
18
19
20 | 284
169
141
142
155 | 322
304
294
287
295 | 85
85
85
85 | 100
120
120
120
120 | 100
90
87
87
83 | 91
79
76
81
83 | 172
285
228
189
167 | 122
127
208
254
238 | 195
192
185
176
173 | 145
155
148
123
127 | 265
374
269
238
224 | 170
167
198
179
173 | | 21
22
23
24
25 | 176
167
179
240
342 | 317
304
283
214
206 | 85
85
85
85 | 120
120
120
120
120 | 85
91
93
101
118 | 97
112
125
132
113 | 153
164
173
164
148 | 210
191
179
133
140 | 170
158
167
170
177 | 142
133
142
166
173 | 223
223
223
185
185 | 198
306
236
234
220 | | 26
27
28
29
30
31 | 300
287
283
287
348
296 | 213
213
210
203
202 | 85
95
110
110
110 | 120
120
120
120
120
120 | 133
175
265
343 | 125
140
161
126
120
115 | 133
118
130
135
137 | 147
155
150
143
172
192 | 195
223
286
398
306 | 153
152
143
150
167
219 | 182
236
244
248
221
193 | 217
174
150
143
152 | | TOTAL
MEAN
MAX
MIN
AC-FT | 6583
212
348
141
13060 | 8670
289
460
202
17200 | 4258
137
213
55
8450 | 3535
114
120
85
7 010 | 3551
122
343
83
7040 | 5186
167
473
76
10290 | 4393
146
285
103
8710 | 4107
132
254
55
8150 | 5697
190
398
143
11300 | 5452
176
264
123
10810 | 7682
248
653
170
15240 | 5331
178
306
118
10570 | CAL YR 1987 TOTAL 153082 MEAN 419 MAX 1840 MIN 55 AC-FT 303600 WTR YR 1988 TOTAL 64445 MEAN 176 MAX 653 MIN 55 AC-FT 127800 # 09354500 LOS PINOS RIVER AT LA BOCA, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Chemical analyses: July 1969 to May 1974, January 1988 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |---------------------|---|---|--|--|--|--|---|--|---|--|---|--| | JAN
12 | 1330 | 109 | 200 | 8.6 | 0.0 | 11.7 | 92 | 29 | 4.7 | 13 | 0.6 | 1.2 | | JUL
11 | 0930 | 218 | 255 | 8.6 | 16.5 | 8.2 | 93 | 29 | 5.1 | 13 | 0.6 | 1.8 | | | 0930 | 210 | 233 | 0.0 | 10.5 | 0.2 | 7.5 | 4.7 | J. 1 | ر ، | 0.0 | 1.0 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | JAN
12 | 99 | 20 | 3.0 | 0.30 | 5.1 | 131 | 136 | 0.18 | 38.6 | <0.10 | <0.10 | 0.04 | | JUL
11 | 106 | 14 | 2.0 | 0.20 | 8.0 | 144 | 137 | 0.20 | 84.8 | <0.10 | <0.10 | 0.03 | | | ,,,, | | | **** | 0.0 | | | ***** | 0,110 | | | | | DATE JAN 12 JUL 11 | GE
ORGA
TOT
(MC
AS | CRO- GEN CN, MON INIC ORG. CAL TO' G/L (M N) AS | ANIC PHOI
TAL TO:
G/L (MG
N) AS | TAL TOT G/L (MG P) AS | RUS, ORT | OUS INUCTOR CONTROL CO | JM,
TAL
COV- ARSE
BLE TOT
G/L (UC | NIC DI | .VED ERA | TAL TOT
COV- REC
BLE ERA | M, COBA
CAL TOT
COV- REC
BLE ERA | AL
COV -
BLE | | DATE JAN 12 JUL 11 | ERA
UU | COV - REBLE ERGAL (UCCU) AS | TAL IRO
COV- DI
ABLE SOI
G/L (UC | IS- REC
LVED ERA
G/L (UG | D, NESCAL TOTAL TOTAL RECURSE ERA | CAL TOT
COV - REC
BLE ERA
A/L (UG
MN) AS | CURY DEN
COV - REC
BLE ERA | COV - REC
BLE ERA | COV- NIU
BLE TOT | JM, REC
CAL ERA | AL CARE OV - ORGA BLE TOT /L (MC ZN) AS | NIC
AL
/L | | ,,,,, | | 10 | 1000 | 190 | - 5 | 100 | . 10 | 3 | • | - 1 | 10 1 | • • | | DATE | TOTAL
IN BOT- 1 | | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COBALT,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CO) | COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | | JAN
12 | 1330 | 4 | <10 | <10 | <50 | 6 | 4900 | <10 | 190 | <0.10 | 1 | 40 | # 09354500 LOS PINOS RIVER AT LA BOCA, CO--Continued # PESTICIDE ANALYSES, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | PCB,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOM | AL
OT - :
MA - :
IAL | ALDRIN
TOTAL
IN BOT
TOM MA
TERIA
(UG/KO | DAI
TO'
- IN I
- TOM
L TE: | MA- 7
RIAL | DDD,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | TOT
IN I
TOM
TE | | DDT
TOTA
IN BO
TOM M
TERI
(UG/K | , AZI
L TO
T- IN
A- TOM
AL TE | NON,
TAL
BOT-
I MA-
RIAL | |-------------------|------|--|--|--|--|--|--|--|--|-------------------------------|--|--|--------------------------------------| | JAN
12 | 1330 | <1 | < | 1.0 | <0. | 1 < | 1.0 | <0.1 | | 0.1 | <0 | .1 | <0.1 | | DATE
JAN
12 | (UG/ | RIN, SU
TAL T
BOT- IN
MA- TO
RIAL T | INDO-
ILFAN,
POTAL
I BOT-
IM MA-
IERIAL
IG/KG) | ENDR:
TOTA
IN BO
TOM I
TER:
(UG/I | AL
OT- I
MA- T
IAL | THION,
TOTAL,
N BOT-
OM MA-
TERIAL
UG/KG) | HEPT
CHLC
TOTA
IN B
TOM N
TERI
(UG/I | OR, C
L EP
OT- TO
MA-
B | EPTA-
HLOR
OXIDE
T. IN
OTTOM
MATL.
G/KG) | (UG/ | AL
OT-
MA-
IIAL | MALA -
THION,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/KG) | • | | DATE | TOT. | Y- P.OR, T. IN TO | THYL PARA- CHION, OT. IN SOTTOM MATL. UG/KG) | METH
TRI
THIC
TOT.
BOT:
MA: | I-
ON,
IN I
TOM T | MIREX,
TOTAL
N BOT-
OM MA-
TERIAL
UG/KG) | PARATOTAL TOTAL TOM NOTERICUS (UG/H | ON, P
L T
OT- IN
MA- TO
TAL TE | ER-
HANE
BOT-
M MA-
RIAL
G/KG) | TOX PHE TOT IN B TOM TER (UG/ | NE,
AL
OT-
MA-
IAL | TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) | | | JAN
12 | • | <2.0 | <0.1 | <(| 0.1 | <0.1 | <(|).1 | <1.00 | <10 | | <0.1 | | #### 09355000 SPRING CREEK AT LA BOCA, CO LOCATION.--Lat 37°00'40", long 107°35'47", in SELSWL sec.15, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on right bank in an excavated channel, 0.2 mi upstream from mouth, and 0.2 mi east of La Boca. DRAINAGE AREA. -- 58 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Streamflow records, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available, May 1974. GAGE.--Water-stage recorder. Elevation of gage is 6,160 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 18-21, 25, Nov. 28 to Dec. 4, Dec. 8 to Mar. 3, July 8, 9, Aug. 11, and Sept. 5-30. Records good except those for flows above 125 ft³/s, which are fair, and those for estimated daily discharges, which are poor. Part of flow is return waste from irrigation. Nearly all irrigation in this basin is water diverted from Los Pinos River which causes a considerable change in the annual pattern and natural flow. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 38 years, 32.1 ft 3/s; 23,260 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,980 ft³/s, Sept. 6, 1970, gage height, 4.62 ft, from rating curve extended above 160 ft³/s, on basis of field estimate of peak flow; maximum gage height, 5.98 ft, Mar. 9, 1960 (backwater from ice); minimum daily discharge, 0.6 ft³/s, Nov. 27, 1959. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 362 ft³/s at 1300 Aug. 6, gage height, 2.13 ft, maximum gage height, 3.58 ft, Feb. 28 (backwater from ice); minimum daily discharge, 3.4 ft³/s, Dec. 15. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE.C MAR APR MA Y JIIN JIII. AUG SEP JAN. FEB 69 21 5.0 4.2 5.0 34 6.5 4.8 61 82 88 5.0 2 69 67 4.0 4.8 48 6.1 5.4 54 60 71 64 3 69 13 4.2 4.8 90 5.7 57 50 65 56 59 6.0 14 48 80 54 7.5 4.4 4.8 67 84 6.5 72 58 6.9 5 6.9 4.6 4.6 11 55 6.5 5.0 5.0 6 71 66 48 6.9 7.3 7.4 181 48 6.5 4.4 39 55 69 12 12 50 64 87 46 30 4.6 31 6.1 8 13 7.9 5.5 5.0 4.8 15 48 44 60 55 65 Q 61 5.0 5.0 11 15 60 62 42 10 54 6.5 4.8 5.0 6.5 72 60 40 5.0 11 12 50 6.5 5.5 4.6 5.0 9.3 7.8 6.1 15 74 73 75 118 4.8 12 13 6.1 5.7 5.6 92 69 45 4.6 5.0 17 78 62 75 110 50 4.4 7.8 5**7** 5.0 5.0 67 24 66 57 7.4 3.6 6.1 30 15 69 21 3.4 4.6 5.5 6.9 41 64 60 65 85 16 57 4.2 5.5 6.9 40 **5**5 80 70 16 5.0 50 8.7 6.5 38 60 65 17 5.5 5.0 45 69 184 18 47 7.0 6.0 4.8 6.0 13 57 71 54 84 60 5.5 5.0 9.3 45 73 61 19 40 7.5 6.0 4.6 6.1 70 64 60 20 37 8.5 4.6 7.8 94 65 43 55 5.5 6.1 21 26 8.0 5.0 4.6 6.0 6.1 7.4 73 61 52 67 70 6.6 7.0 8.5 7.8 7.8 61 59 54 50 71 120 22 22 4.6 4.8 7.8 7.8 7.8 23 4.6 21 54 5.0 59 100 6.5 5.0 69 29 4.6 10 8.5 59 25 29 6.5 5.0 4.6 12 7.0 7.0 52 80 59 67 75 7.0 4.6 52 80 57 64 70 26 10 5.0 7.8 6.5 15 27 7.0 6.9 4.6 4.6 20 8.5 47 88 60 99 70 65 6.1 28 6.9 6.0 4.2 4.6 22 5.7 46 84 59 60 11 29 6.9 5.5 5.5 4.4 4.8 26 7.0 5.6 50 111 60 74 84 55 50 30 14 5.0 5.0 6.1 5.2 59 79 64 5.0 4.8 60 82 9.3 6.5 78 1350.1 381.0 144.6 TOTAL 1883 157.4 227.3 576.0 247.0 1202.2 1977 2432 2013 7.84 43.6 72 8.23 38 38.8 5.08 4.66 65.9 111 78.5 67.1 120 MEAN 12.7 18.6 60.7 6.5 67 5.0 26 90 82 184 94 6 5.5 756 MIN . 9 4.0 4.4 5.2 4.8 48 43 50 40 AC-FT 3730 4820 2680 3990 312 287 451 1140 490 2380 3920 CAL YR 1987 TOTAL 17013.1 MEAN 46.6 MAX 182 MIN 3.4 AC-FT 33750 WTR YR 1988 TOTAL 12590.6 MEAN 34.4 MAX 184 MIN 3.4 AC-FT 24970 # 09355000 SPRING CREEK AT LA BOCA, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- Chemical analyses: January 1988 to current year. # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM AD- SORP- TION RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | |------------------|--|---|--|--|--|--|---|--|---|--|---|--| | JAN
12 | 1200 | 5.0 | 1080 | 8.3 | 0.0 | 11.8 | 330 | 93 | 23 | 170 | 4 | 2.7 | | JUL
11 | 1045 | 80 | 355 | 8.6 | 17.0 | 8.5 | 100 | 31 | 6.1 | 24 | 1 | 2.4 | | | - | | | | | | | - | | | | | | DATE | ALKA -
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | | JAN
12 | 396 | 270 | 18 | 0.60 | 7.8 | 816 | 824 | 1.11 | 11.0 | 0.30 | 0.28 | 0.05 | | JUL
11 | 117 | 32 | 2.8 | 0.20 | 8.0 | 181 | 177 | 0.25 | 39.2 | <0.10 | <0.10 | 0.05 | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS,
ORTHO,
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
TOTAL
RECOV -
ERABLE
(UG/L
AS CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | | JAN
12 | 0.35 | 0.40 | 0.70 | 0.01 | <0.01 | <0.01 | 2500 | 1 | 50 | <1 | 4 | 2 | | ՄՍL
11 | 0.95 | 1.0 | | 0.13 | 0.08 | 0.04 | 7300 | 1 | 20 | <1 | 4 | 1 | | | | | | | | | | | | | | | | DATE | ERA
E (UC | AL TOT
COV - REC
BLE ERA | AL IRO OV- DI BLE SOL /L (UG | S- REC
VED ERA
/L (UG | D, NESCOV- RECOBLE ERA | COV- REC
BLE ERA | URY DEN
AL TOT
COV- REC
BLE ERA | COV- REC
BLE ERA
B/L (UC | AL SEL
OV- NIU
BLE TOT | M, REC | AL CARB
OV- ORGA
BLE TOT
// (MG | NIC
AL
L | | JAN
12
JUL | | 9 3 | 500 | 16 | ^ 5 | 280 <0 | .10 | 6 | 4 | 8 | 20 3 | 8.8 | | 11 | | 20 6 | 700 | 160 | 8 | 400 <0 | .10 | 4 | 12 | <1 | 50 9 | 1.9 | | DATE | TIME | ARSENIC
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G
AS AS) | CADMIUM
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CD) | CHRO-
MIUM,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | COBALT,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CO) | COPPER,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS CU) | IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) | LEAD,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS PB) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G) | MERCURY
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS HG) | SELE-
NIUM,
TOTAL
IN BOT-
TOM MA-
TERIAL
(UG/G) | ZINC,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS ZN) | | JAN
12 | 1200 | 8 | 1 | <10 | <50 | 5 | 3400 | <10 | 540 | <0.10 | <1 | 30 | #### 09361500 ANIMAS RIVER AT DURANGO, CO LOCATION.--Lat 37°16'45", long 107°52'47", in SW4SW4 sec.20, T.35 N., R.9 W., La Plata County, Hydrologic Unit 14080104, on left bank at abandoned power plant at Durango, 0.8 mi upstream from Lightner Creek. DRAINAGE AREA . -- 692 mi2. PERIOD OF RECORD.--June to December 1895, April 1896 to December 1898, April 1899 to December 1900, March to May 1901, April to November 1902, March to April 1903 (gage heights only, erroneously stated as discredited in WSP 1563), May to October 1903, July 1904 to December 1905, January to December 1910 (gage heights only), January to September 1911, January 1912 to current year. Monthly or yearly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 764: Drainage area. WSP 929: 1927(M). WSP 1243: 1911,
1918(M). WSP 1563: 1911-25 (monthly figures only). GAGE.--Water-stage recorder. Datum of gage is 6,501.57 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 2, 1921. REMARKS.--Estimated daily discharges: Dec. 15, 27, Dec. 31 to Jan. 2, Jan 9, 12-14, 18, and Jan. 21-27. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 4,000 acres upstream from station. Natural regulation by many lakes and regulation for power upstream from station. Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE.--83 years (water years 1897-1900, 1905, 1911-88), 850 ft3/s; 615,800 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft³/s, Oct. 5, 1911, gage height, 11 ft, present site and datum, from rating curve extended above 13,000 ft³/s; minimum daily, 94 ft³/s, Mar. 2, 1913. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1885, that of Oct. 5, 1911. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |--------|------|----------------------|---------------------| | June 8 | 0530 | *3,590 | * 5.22 | Minimum daily, 180 ft³/s, Dec. 27. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEA
MEAN VALU | | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|------------------------------|--|---------------------------------|--|--------------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 287 | 328 | 224 | 210 | 230 | 329 | 378 | 1060 | 1370 | 1490 | 406 | 650 | | 2 | 288 | 403 | 213 | 210 | 249 | 341 | 385 | 984 | 1220 | 1310 | 448 | 596 | | 3 | 276 | 376 | 220 | 214 | 255 | 343 | 381 | 860 | 1520 | 1150 | 431 | 544 | | 4 | 259 | 339 | 224 | 202 | 253 | 318 | 395 | 791 | 2550 | 1160 | 404 | 497 | | 5 | 251 | 325 | 232 | 218 | 242 | 305 | 418 | 829 | 2930 | 1120 | 367 | 462 | | 6 | 260 | 559 | 221 | 224 | 242 | 304 | 447 | 889 | 2860 | 1050 | 605 | 454 | | 7 | 246 | 584 | 212 | 219 | 244 | 283 | 545 | 850 | 3160 | 999 | 1280 | 429 | | 8 | 2 5 5 | 465 | 212 | 215 | 250 | 306 | 712 | 790 | 3180 | 933 | 1070 | 401 | | 9 | 247 | 409 | 210 | 210 | 255 | 297 | 690 | 742 | 2920 | 873 | 754 | 355 | | 10 | 265 | 380 | 210 | 212 | 255 | 309 | 649 | 758 | 2840 | 805 | 637 | 368 | | 11 | 266 | 367 | 211 | 219 | 246 | 281 | 640 | 900 | 2800 | 754 | 595 | 351 | | 12 | 253 | 328 | 203 | 210 | 246 | 270 | 642 | 1160 | 2390 | 717 | 537 | 472 | | 13 | 255 | 327 | 199 | 210 | 253 | 262 | 787 | 1550 | 2180 | 692 | 449 | 978 | | 14 | 304 | 314 | 198 | 220 | 249 | 276 | 831 | 1780 | 1670 | 652 | 398 | 852 | | 15 | 327 | 307 | 190 | 223 | 249 | 282 | 837 | 2210 | 1590 | 615 | 379 | 735 | | 16 | 305 | 287 | 184 | 227 | 253 | 288 | 903 | 2500 | 1490 | 600 | 406 | 671 | | 17 | 291 | 273 | 196 | 231 | 254 | 280 | 914 | 2490 | 1710 | 526 | 618 | 594 | | 18 | 284 | 262 | 224 | 220 | 251 | 278 | 801 | 2470 | 1740 | 481 | 761 | 546 | | 19 | 280 | 250 | 204 | 229 | 255 | 272 | 750 | 2270 | 1740 | 460 | 619 | 528 | | 20 | 283 | 267 | 195 | 229 | 259 | 238 | 744 | 1840 | 1890 | 421 | 563 | 549 | | 21 | 293 | 262 | 186 | 230 | 259 | 257 | 774 | 1450 | 1980 | 407 | 507 | 666 | | 22 | 273 | 253 | 189 | 230 | 261 | 268 | 779 | 1250 | 1810 | 393 | 509 | 986 | | 23 | 251 | 246 | 204 | 230 | 265 | 322 | 715 | 1240 | 1810 | 378 | 496 | 881 | | 24 | 249 | 244 | 221 | 230 | 268 | 333 | 665 | 1380 | 1880 | 353 | 488 | 7 77 | | 25 | 267 | 244 | 219 | 220 | 275 | 348 | 641 | 1650 | 1920 | 347 | 508 | 707 | | 26
27
28
29
30
31 | 277
292
281
271
319
325 | 241
240
232
250
228 | 213
180
197
187
191
190 | 220
230
233
230
232
232 | 283
296
311
322
 | 368
406
489
465
437
406 | 644
639
675
743
843 | 1560
1630
2040
2330
2300
1710 | 1860
1760
1790
1840
1630 | 338
341
345
339
340
351 | 471
556
639
573
586
624 | 652
619
608
536
461 | | TOTAL | 8580 | 9590 | 6359 | 6869 | 7530 | 9961 | 19967 | 46263 | 62030 | 20740 | 17684 | 17925 | | MEAN | 277 | 320 | 205 | 222 | 260 | 321 | 666 | 1492 | 2068 | 669 | 570 | 597 | | MAX | 327 | 584 | 232 | 233 | 322 | 489 | 914 | 2500 | 3180 | 1490 | 1280 | 986 | | MIN | 246 | 228 | 180 | 202 | 230 | 238 | 378 | 742 | 1220 | 338 | 367 | 351 | | AC-FT | 17020 | 19020 | 12610 | 13620 | 14940 | 19760 | 39600 | 91760 | 123000 | 41140 | 35080 | 35550 | CAL YR 1987 TOTAL 388863 MEAN 1065 MAX 5220 MIN 180 AC-FT 771300 WTR YR 1988 TOTAL 233498 MEAN 638 MAX 3180 MIN 180 AC-FT 463100 #### 09363500 ANIMAS RIVER NEAR CEDAR HILL, NM LOCATION.--Lat 37°02'17", long 107°52'25", in sec.7, T.32 N., R.9 W., La Plata County, Colorado, Hydrologic Unit 14080104, on right bank 0.8 mi downstream from Florida River, 2.5 mi upstream from Colorado-New Mexico State line, 8.5 mi north of Cedar Hill, and at mile 32.9. DRAINAGE AREA. -- 1,090 mi2, approximately. PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for October and November 1933, published in WSP 1313. REVISED RECORDS. -- WSP 1563: 1940 and 1946 (monthly figures only). GAGE.--Water-stage recorder. Elevation of gage is 5,960 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 14, 1937, at datum between 1.52 ft, and 1.36 ft, higher. Sept. 15, 1937, to Sept. 30, 1946, at datum 1.36 ft, higher. REMARKS.--Estimated daily discharges: Dec. 3 to Jan. 2, and Jan. 20 to Feb. 5. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 20,000 acres upstream from station. During water years 1944-49, Twin Rocks Canal diverted upstream from station for irrigation downstream. Slight regulation by Lemon Dam about 30 mi upstream on Florida River since November 1963 (capacity, 40,100 acre-ft). Several observations of water temperature were made during the year. AVERAGE DISCHARGE. -- 55 years, 925 ft 3/s, 670,200 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,100 ft³/s, June 19, 1949, gage height, 11.45 ft; minimum, 63 ft³/s, Jan. 21, 1935. EXTREMES OUTSIDE PERIOD OF RECORD.--A major flood occurred in October 1911 at this location. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 4,000 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date Time | Discharge
(ft³/s) | Gage Height
(ft) | |--------|------|----------------------|---------------------|---------------|----------------------|---------------------| | June 8 | 1200 | * 3,390 | *6.87 | No other peak | greater than bas | se discharge. | Minimum daily discharge, 240 ft³/s, Dec. 23. | | | DISC | CHARGE, I | CUBIC F | EET PER | SECOND, WATE | ER YEAR | OCTOBER | 19 8 7 TO S | SEPTEMBER | 1988 | | |----------------------------------|--|---------------------------------|--|--|------------------------------|--|---------------------------------|--|--------------------------------------|--|--|---------------------------------| | DA Y | OCT | иои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1 | 365 | 560 | 312 | 270 | 330 | 682 | 534 | 1070 | 1520 | 1720 | 463 | 693 | | 2 | 371 | 739 | 291 | 305 | 350 | 687 | 474 | 1100 | 1250 | 1490 | 537 | 664 | | 3 | 357 | 603 | 288 | 309 | 330 | 618 | 4 7 3 | 933 | 1680 | 1320 | 491 | 619 | | 4 | 331 | 556 | 290 | 320 | 332 | 575 | 49 8 | 850 | 2350 | 1330 | 467 | 581 | | 5 | 328 | 574 | 285 | 325 | 340 | 551 | 506 | 850 | 2700 | 1320 | 420 | 537 | | 6 | 348 | 866 | 282 | 330 | 340 | -495 | 542 | 909 | 2810 | 1200 | 717 | 529 | | 7 | 341 | 8 68 | 280 | 340 | 335 | 462 | 609 | 922 | 3000 | 1110 | 1220 | 493 | | 8 | 348 | 698 | 280 | 342 | 330 | 434 | 774 | 8 55 | 2990 | 1030 | 1200 | 481 | | 9 | 335 | 601 | 279 | 345 | 332 | 421 | 816 | 790 | 2870 | 994 | 854 | 420 | | 10 | 355 | 570 | 270 | 343 | 324 | 427 | 739 | 777 | 2720 | 933 | 714 | 413 | | 11 | 373 | 550 | 270 | 345 | 322 | 426 | 714 | 884 | 2710 | 887 | 658 | 397 | | 12 | 371 | 483 | 265 | 352 | 316 | 359 | 652 | 1120 | 2430 | 815 | 613 | 455 | | 13 | 371 | 459 | 263 | 343 | 317 | 359 | 790 | 1510 | 2330 | 741 | 527 | 934 | | 14 | 435 | 451 | 260 | 338 | 324 | 362 | 869 | 1710 | 1920 | 690 | 453 | 931 | | 15 | 470 | 449 | 260 | 342 | 316 | 371 | 885 | 2030 | 1680 | 653 | 420 | 832 | | 16 | 426 | 442 | 255 | 340 | 312 | 380 | 923 | 2310 | 1610 | 634 | 441 | 753 | | 17 | 387 | 402 | 253 | 342 | 323 | 369 | 1040 | 2380 | 1750 | 590 | 610 | 695 | | 18 | 3 7 1 | 382 | 250 | 335 | 310 | 350 | 892 | 2410 | 1820 | 521 | 843 | 637 | | 19 | 358 | 354 | 250 | 330 | 313 | 359 | 802 | 2270 | 1810 | 498 | 682 | 603 | | 20 | 354 | 376 | 250 | 329 | 320 | 325 | 791 | 1920 | 1900 | 453 | 606 | 637 | | 21 | 356 | 387 | 247 | 329 | 323 | 340 | 831 | 1550 | 2000 | 432 | 553 | 693 | | 22 | 352 | 375 | 242 | 332 | 336 | 366 | 846 | 1360 | 1870 | 419 | 519 | 1070 | | 23 | 326 | 363 | 240 | 330 | 344 | 440 | 816 | 1320 | 1830 | 391 | 554 | 1020 | | 24 | 306 | 354 | 242 | 335 | 348 | 456 | 749 | 1410 | 1880 | 381 | 623 |
918 | | 25 | 357 | 349 | 244 | 337 | 363 | 462 | 704 | 1490 | 1930 | 360 | 566 | 839 | | 26
27
28
29
30
31 | 355
362
360
350
471
448 | 336
333
327
324
333 | 245
245
252
255
260
268 | 340
349
350
351
350
352 | 403
460
564
641
 | 480
537
632
634
549
512 | 685
635
712
808
881 | 1500
1600
1900
2180
2200
1950 | 1890
1790
1840
2020
1930 | 353
355
373
360
359
416 | 551
585
7 59
665
635
681 | 782
736
722
667
598 | | TOTAL | 11438 | 14464 | 8173 | 10380 | 10298 | 14420 | 21990 | 46060 | 62830 | 23128 | 19627 | 20349 | | MEAN | 369 | 482 | 264 | 335 | 355 | 465 | 733 | 1486 | 2094 | 746 | 633 | 678 | | MAX | 471 | 868 | 312 | 352 | 641 | 687 | 1040 | 2410 | 3000 | 1720 | 1220 | 1070 | | MIN | 306 | 324 | 240 | 270 | 310 | 325 | 473 | 777 | 1250 | 353 | 420 | 397 | | AC-FT | 22690 | 28690 | 16210 | 20590 | 20430 | 28600 | 43620 | 91360 | 124600 | 45870 | 38930 | 40360 | | CAL YR
WTR YR | | | 3166
3157 | ME AN
ME AN | 122 8
719 | | 5270
3000 | MIN
MIN | 240
240 | AC-FT 8 | 88900
22000 | | #### 09365500 LA PLATA RIVER AT HESPERUS, CO LOCATION.--Lat 37°17'23", long 108°02'24", in NE4SW4 sec.14, T.35 N., R.11 W., La Plata County, Hydrologic Unit 14080105, on right bank at Hesperus 700 ft downstream from U.S. Highway 160. DRAINAGE AREA. -- 37 mi², approximately. PERIOD OF RECORD.--June to August 1904, May 1905 to September 1906, August to November 1910, June 1917 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for Nov. 11 to Dec. 31, 1910, published in WSP 289, have been found to be unreliable and should not be used. REVISED RECORDS. -- WSP 1243: 1906(M). WSP 1563: 1923 (monthly figures only). See also PERIOD OF RECORD. GAGE.--Water-stage recorder. Datum of gage is 8,104.71 ft above National Geodetic Vertical Datum of 1929. Prior to May 1, 1920, nonrecording gage, and May 1, 1920, to May 24, 1927, water-stage recorder, at several sites about 600 ft downstream at different datums. May 25, 1927, to Sept. 30, 1938, water-stage recorder at site 60 ft downstream and Oct. 1, 1938, to Sept. 30, 1941, at present site at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Nov. 18, Nov. 27 to Dec. 2, Dec. 8, 9, 12-17, Dec. 20 to Jan. 28, Jan. 31, Feb. 4-26, Mar. 5, 8, 9, 11-15, 17-20, and Mar. 29. Records good except for estimated daily discharges, which are fair. Cherry Creek ditch exports water upstream from station for irrigation of about 2,000 acres in Cherry Creek drainage. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. AVERAGE DISCHARGE.--72 years (water years 1906, 1918-88), 45.4 ft3/s; 32,890 acre-ft/yr. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood observed occurred Oct. 5, 1911. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 230 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |---------|------|----------------------|---------------------|--------|------|----------------------|---------------------| | Jan. 13 | 1515 | | *a3.3 5 | May 17 | 0045 | *290 | 3.21 | Minimum daily discharge, 6.0 ft³/s, Jan. 24. a-Backwater from ice. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|---------------------------------|-----------------------------------|--|-----------------------------------|--|--|---|------------------------------------|------------------------------------|----------------------------------|------------------------------------| | DAY | OCT | NOA | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
11
11
10
10 | 17
20
19
20
23 | 12
12
12
13
13 | 8.0
7.0
7.0
8.0 | 8.0
8.0
7.9
8.0
7.0 | 12
13
14
15
14 | 40
39
40
42
42 | 134
110
91
87
86 | 63
66
101
139
150 | 35
33
31
58
40 | 20
20
20
17
15 | 39
34
31
33
32 | | 6
7
8
9
10 | 9.7
9.1
8.8
8.7
8.4 | 62
46
37
35
33 | 13
12
11
11 | 9.0
9.0
9.0
9.0 | 7.0
7.0
7.0
7.0
7.5 | 17
18
14
16 | 4 7
65
83
80
7 5 | 82
72
65
58
61 | 168
145
125
112
112 | 34
31
29
26
2 7 | 23
48
33
26
23 | 28
25
22
21
20 | | 11
12
13
14
15 | 8.4
8.4
9.0
12
9.9 | 31
28
26
26
24 | 11
11
10
9.0
8.0 | 10
8.0
8.0
8.0
9.0 | 7.0
8.0
9.0
8.0
8.0 | 16
14
16
16 | 74
92
111
98
86 | 82
120
151
161
198 | 104
84
74
61
58 | 30
27
24
23
21 | 22
23
20
17
17 | 21
57
6 7
52
44 | | 16
17
18
19
20 | 8.9
9.0
9.7
9.4
9.5 | 22
20
16
18
17 | 9.0
10
11
11 | 10
10
9.0
8.0
7.0 | 9.0
8.0
8.0
8.0 | 17
16
15
17 | 98
89
76
68
65 | 208
238
198
154
107 | 55
51
54
5 7
58 | 20
18
16
14
15 | 20
24
24
19
17 | 38
33
30
28
25 | | 21
22
23
24
25 | 9.1
8.4
8.4
9.4 | 17
16
16
15
15 | 8.0
9.0
10
9.0
9.0 | 7.0
7.0
7.0
6.0
7.0 | 8.0
8.0
8.0
9.0 | 18
20
22
23
26 | 65
63
59
5 7
56 | 78
75
83
107
109 | 51
44
52
48
44 | 16
16
16
16
15 | 16
18
21
27
27 | 38
35
30
28
26 | | 26
27
28
29
30
31 | 9.8
10
10
12
15 | 15
14
14
13
13 | 9.0
9.0
8.0
9.0
9.0 | 7.0
8.0
9.0
8.3
8.0
8.0 | 9.0
9.3
10
11 | 31
44
55
45
48
44 | 54
53
62
7 5
101 | 97
120
152
157
135
87 | 39
44
48
43
38 | 14
14
13
14
14 | 23
36
39
31
40
36 | 24
22
20
19
18 | | TOTAL
MEAN
MAX
MIN
AC-FT | 307.0
9.90
15
8.4
609 | 688
22.9
62
13
1360 | 317.0
10.2
13
8.0
629 | 256.3
8.27
11
6.0
508 | 235.7
8.13
11
7.0
468 | 689
22.2
55
12
13 7 0 | 2055
68.5
111
39
4080 | 3663
118
238
58
72 7 0 | 2288
76.3
168
38
4540 | 715
23.1
58
13
1420 | 762
24.6
48
15
1510 | 940
31.3
67
18
1860 | CAL YR 1987 TOTAL 21092.7 MEAN 57.8 MAX 408 MIN 5.5 AC-FT 41840 WTR YR 1988 TOTAL 12916.0 MEAN 35.3 MAX 238 MIN 6.0 AC-FT 25620 ## 09366500 LA PLATA RIVER AT COLORADO-NEW MEXICO STATE LINE LOCATION.--Lat 36°59'51", long 108°11'17", in NW4SE4 sec.10, T.32 N., R.13 W., La Plata County, CO, Hydrologic Unit 14080105, on right bank at Colorado-New Mexico State line, 0.2 mi downstream from Ponds Arroyo, and 4.8 mi north of La Plata, NM. DRAINAGE AREA .-- 331 mi². PERIOD OF RECORD.--January 1920 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1313: 1934(M), 1936(M). GAGE.--Water-stage recorder. Datum of gage is 5,975.15 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 17, 1934. REMARKS.--Estimated daily discharges: Dec. 9, 10, 13, 14, 16, 17, 21, 22, Dec. 26 to Jan. 18, and Jan 22-30. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 15,000 acres, mostly upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. AVERAGE DISCHARGE. -- 68 years, 36.5 ft3/s; 26,440 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,750 ft³/s, Aug. 24, 1927, gage height, 11.36 ft, present datum, from rating curve extended above 750 ft³/s, on basis of slope-area measurement of peak flow; no flow at times in many years. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 246 ft³/s at 0415 Nov. 6, gage height, 3.93 ft, maximum gage height, 6.32 ft at 0015 Jan. 3 (backwater from ice); minimum daily discharge, 4.6 ft³/s, July 30. | | | | | | ME | EAN VALUES | 3 | | | | | | |--------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | иои | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10
9.6
9.5
9.1
8.9 | 33
37
33
29
29 | 27
27
26
26
26 | 22
18
18
20
26 | 28
30
32
31
31 | 61
66
53
50
49 | 46
42
37
36
34 | 55
60
54
44
41 | 56
40
42
6 2
69 | 31
27
27
48
30 | 4.7
8.9
7.1
6.0
6.5 | 21
20
18
19
21 | | 6
7
3
9
10 | 8.9
11
9.1
9.4
3.9 | 103
72
54
41
35 | 25
24
24
22
22 | 26
22
22
22
22 | 32
31
30
30
30 | 47
49
40
42
49 |
33
49
57
57
48 | 42
45
44
40
35 | 87
76
84
83
74 | 24
20
19
17
21 | 9.4
19
16
13 | 17
15
13
11
9.3 | | 11
12
13
14
15 | 10
10
13
16
16 | 33
31
29
33
35 | 24
24
22
20
20 | 24
20
20
20
22 | 30
31
30
29
28 | 45
43
45
41
44 | 42
35
30
28
33 | 33
37
52
76
93 | 81
67
51
43
43 | 26
20
13
8.3
6.7 | 9.1
8.8
9.5
9.8
8.9 | 7.8
11
37
28
27 | | 16
17
18
19
20 | 14
14
15
13 | 32
30
30
29
28 | 20
24
26
26
26 | 24
22
22
23
23 | 30
29
28
28
28 | 42
38
36
38
39 | 56
91
67
53
45 | 88
89
69
84
83 | 42
37
36
32
35 | 7.4
7.5
6.6
4.9
5.9 | 10
19
15
13 | 24
20
15
14
13 | | 21
22
23
24
25 | 13
14
13
15
18 | 27
30
30
28
28 | 24
24
26
25
26 | 23
20
18
16
18 | 29
31
30
28
29 | 39
40
41
43
38 | 42
44
44
52
51 | 70
60
59
66
65 | 33
31
32
38
37 | 7.9
5.6
5.9
8.2
7.4 | 9.0
10
10
11 | 13
16
14
11
9.0 | | 26
27
28
29
30
31 | 16
16
15
17
28
27 | 30
28
28
28
27 | 26
26
24
26
24
22 | 22
26
28
28
30
28 | 30
32
35
38 | 37
41
57
59
61
57 | 45
36
31
33
38 | 63
65
74
75
91
79 | 42
40
48
64
63 | 5.9
5.4
5.3
4.6
4.8 | 13
12
24
25
20
23 | 6.4
6.3
6.8
7.6
8.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 420.4
13.6
28
8.9
834 | 1060
35.3
103
27
2100 | 754
24.3
27
20
1500 | 695
22.4
30
16
1380 | 878
30.3
38
28
1740 | 1430
46.1
66
36
2840 | 1335
44.5
91
28
2650 | 1931
62.3
93
33
3830 | 1568
52.3
87
31
3110 | 436.7
14.1
48
4.6
866 | 381.7
12.3
25
4.7
757 | 459.6
15.3
37
6.3
912 | CAL YR 1987 TOTAL 27278.0 MEAN 74.7 MAX 571 MIN 8.6 AC-FT 54110 WTR YR 1988 TOTAL 11349.4 MEAN 31.0 MAX 103 MIN 4.6 AC-FT 22510 #### 09371000 MANCOS RIVER NEAR TOWAOC, CO LOCATION.--Lat 37°01'39", long 108°44'27", Ute Indian Reservation, Montezuma County, Hydrologic Unit 14080107, on left bank 700 ft upstream from bridge on U.S. Highway 666, 2.0 mi north of Colorado-New Mexico State line, 6.0 mi upstream from Aztec Creek, and 12 mi south of Towaoc. DRAINAGE AREA . -- 526 mi2. PERIOD OF RECORD.--Streamflow records, October 1920 to September 1943, February 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, August 1969 to June 1972, October 1983 to current year. Sediment data available, April to December 1961. REVISED RECORDS.--WSP 1733: 1924 (monthly figures only). WDR CO-83-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,055.98 ft above National Geodetic Vertical Datum of 1929. See WSP 1713 or 1733 for history of changes prior to Mar. 11, 1954. REMARKS.--Estimated daily discharges: Nov. 26-27, Nov. 29 to Dec 8, Dec. 11-12, 14-20, and Dec. 22 to Feb. 24. Records good except for flows above 600 ft³/s which are fair and those for estimated daily discharges, which are poor. Diversions for irrigation of about 10,000 acres upstream from station. One diversion upstream from station for irrigation of about 100 acres downstream from station. Flow regulated by Jackson Gulch Reservoir, capacity, 10,000 acre-ft since March 1949. AVERAGE DISCHARGE. -- 60 years, 54.3 ft3/s; 39,340 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,300 $\rm ft^3/s$, Oct. 14, 1941, gage height, 7.30 ft, present site and datum, from rating curve extended above 200 $\rm ft^3/s$, on basis of slope-area measurement of peak flow; maximum gage height, 8.50 ft, Sept. 6, 1970; no flow at times in most years. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | |------------------|--------------|----------------------|---------------------|---------|------|----------------------|---------------------| | Nov. 6
Aug. 7 | 0600
0700 | 750
*1.350 | 4.20
*5.18 | Aug. 31 | 0200 | 780 | 4.35 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 Minimum daily discharge, 0.34 ft³/s, July 21. | | | DISCHARGE, | CORIC | FEET PER | SECOND, | MEAN VALUE | R OCTOBER
ES | 1987 TO 3 | SEPTEMBER | 1988 | | | |--------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | ма у | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.7
8.8
7.6
6.4 | 70
117
61
41
36 | 24
24
26
30
32 | 14
14
13
12
13 | 24
28
34
26
20 | 112
86
65
51
48 | 38
32
33
34
36 | 81
95
78
62
50 | 33
22
14
8.7
15 | 38
29
27
24
48 | 18
37
26
15
12 | 84
72
78
66
40 | | 6
7
8
9
10 | 5.2
4.8
5.0
5.0
4.5 | 444
127
100
76
62 | 30
30
28
28
27 | 14
14
13
13 | 17
15
16
17
18 | 45
42
42
32
32 | 34
39
59
66
63 | 41
36
33
27
20 | 21
36
29
24
20 | 31
36
28
21
19 | 11
223
83
36
19 | 41
28
20
17
16 | | 11
12
13
14
15 | 4.5
4.8
6.1
25
76 | 56
52
50
49
52 | 26
24
20
16
15 | 13
13
13
14
14 | 19
20
22
24
22 | 37
32
29
28
27 | 53
47
52
63
65 | 11
5.8
15
17 | 20
22
23
17
11 | 18
16
13
9.7
6.5 | 11
14
15
9.7
6.2 | 26
94
182
104
60 | | 16
17
18
19
20 | 37
27
23
20
19 | 51
41
38
30
33 | 15
18
22
22
22 | 14
14
14
14
14 | 22
20
19
17
17 | 30
29
24
23
25 | 78
136
121
86
69 | 75
129
186
234
150 | 8.0
5.0
6.4
6.7
5.5 | 5.8
4.4
3.7
2.4
1.0 | 5.2
5.9
33
37
29 | 48
38
32
30
28 | | 21
22
23
24
25 | 19
18
19
19
22 | 40
37
34
33
33 | 21
20
20
20
20 | 14
14
14
14
14 | 22
28
36
44
55 | 27
31
36
37
36 | 61
64
76
92
98 | 88
51
38
34
30 | 6.4
3.7
3.7
2.2
2.0 | .34
1.9
4.8
4.1
4.1 | 21
40
60
81
41 | 28
30
34
32
32 | | 26
27
28
29
30
31 | 34
33
25
23
157
74 | 32
30
28
28
26 | 17
15
15
15
15 | 15
15
17
19
20
22 | 65
68
96
139 | 34
40
56
63
46
44 | 104
112
88
75
78 | 30
26
26
26
32
43 | 3.8
9.9
45
76
45 | 6.5
9.0
6.2
5.2
11 | 34
35
141
54
40
141 | 29
28
27
26
24 | | TOTAL
MEAN
MAX
MIN
AC-FT | 754.4
24.3
157
4.5
1500 | 1907
63.6
444
26
3780 | 672
21.7
32
15
1330 | 448
14.5
22
12
889 | 970
33.4
139
15
1920 | 1289
41.6
112
23
2560 | 2052
68.4
136
32
4070 | 1786.8
57.6
234
5.8
3540 | 545.0
18.2
76
2.0
1080 | 445.64
14.4
48
.34
884 | 1334.0
43.0
223
5.2
2650 | 1394
46.5
182
16
2760 | CAL YR 1987 TOTAL 38368.8 MEAN 105 MAX 525 MIN 4.5 AC-FT 76100 WTR YR 1988 TOTAL 13597.84 MEAN 37.2 MAX 444 MIN .34 AC-FT 26970 #### 09371002 NAVAJO WASH NEAR TOWAOC, CO LOCATION.--Lat 37°12'03", long 108°41'50", Ute Mountain Ute Indian Reservation, Montezuma County, Hydrologic Unit 14080107, on left bank 150 ft upstream from Towacc Road crossing, 0.2 mi downstream from Ismay Draw and 1.6 mi east of Towacc, Co. DRAINAGE AREA . -- 26.3 mi². PERIOD OF RECORD. -- October 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,600 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 30, 1986, (fragmentary) USBR operated staff gage or water-stage recorder at same site and datum. REMARKS.--Estimated daily discharges: Oct. 5-29, Nov. 18-25, 28-29, Dec. 11-21, Dec. 25 to Jan. 10, Jan. 15-27, 30-31, Feb. 2-19, Apr. 1-13, May 2-6, and July 12 to Sept. 30. Records fair except for estimated daily discharges, and flows above 30 ft /s, which are poor. Flow regulated by Montezuma Valley Irrigation District through series of canals and ditches from Dolores Project. Most of water is return flow. Diversions from Dolores River basin to San Juan River basin for irrigation of about 2450 acres upstream from station. No diversions upstream for irrigation downstream from station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 165 ft³/s, Nov. 6, 1987, gage height, 2.76 ft, from rating curve extended above 62 ft³/s; minimum daily, 0.47 ft³/s, Mar. 28, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 165 ft³/s at 0100 Nov. 6, gage height, 2.76 ft; minimum daily, 0.47 ft³/s, Mar. 28. | | | DISCHARGE, | CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUE | | 1987 TO S | SEPTEMBER | 1988 | | | |--------------------------------------
----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------| | DAY | OCT | иол | DE C | JAN | FEB | MA R | APR | ма у | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22
19
18
14
14 | 24
31
26
19
18 | 2.5
2.3
2.2
2.6
3.0 | 1.1
1.0
1.0
.95 | 2.2
2.2
2.2
2.0
1.9 | 2.7
2.7
2.3
3.9
7.0 | 4.6
4.6
4.2
3.8 | 9.4
9.5
9.0
9.5
8.0 | 18
15
15
13
11 | 19
19
19
22
20 | 17
20
16
13
12 | 22
19
17
16
14 | | 6
7
8
9
10 | 15
15
14
13
14 | 60
28
23
20
18 | 2.9
2.2
2.0
1.8
1.7 | 1.0
1.0
1.0
1.0 | 1.9
2.0
2.2
2.4
2.4 | 9.2
9.2
11
9.6
7.6 | 5.0
3.2
3.6
3.6
4.2 | 11
17
23
22
12 | 11
9.2
8.3
10
13 | 15
12
11
14
13 | 17
40
30
20
17 | 13
12
11
11 | | 11
12
13
14
15 | 15
12
16
30
28 | 17
16
17
17 | 1.6
1.4
1.4
1.3 | 1.0
.96
1.0
.82 | 2.6
2.8
3.4
2.8
3.0 | 3.1
1.5
1.4
1.1 | 4.4
4.0
3.4
2.4
3.7 | 8.0
7.4
13
12
9.2 | 11
13
12
9.6
9.6 | 9.6
9.5
9.5
10
9.5 | 17
16
16
15
14 | 14
28
46
36
26 | | 16
17
18
19
20 | 22
20
20
19
18 | 17
14
13
13 | 1.3
1.6
1.8
1.6 | .90
.90
.90
.90 | 2.8
2.6
2.4
2.2
3.0 | .89
.89
.82
.82 | 10
9.2
11
13
12 | 8.4
9.5
12
22
21 | 18
23
22
24
19 | 12
14
12
9.5
7.5 | 16
14
13
13
14 | 22
20
19
19 | | 21
22
23
24
25 | 17
17
17
20
32 | 10
7.5
4.8
3.2
2.8 | 1.6
1.6
1.8
1.8 | .95
.95
.90
.90 | 3.6
4.2
3.7
3.4
3.1 | .69
.89
.68
.75 | 17
18
16
13 | 21
20
17
17
17 | 17
17
19
18
17 | 7.5
8.0
9.0
10 | 15
15
14
16
15 | 19
18
16
15 | | 26
27
28
29
30
31 | 26
22
20
30
45
26 | 2.9
2.8
2.4
2.4
2.5 | 1.4
1.2
1.2
1.2
1.2 | .90
.90
.96
.89
2.0 | 3.4
3.9
3.4 | .61
.47
1.6
6.0
4.6 | 10
8.9
14
15
17 | 15
13
14
14
17 | 20
21
24
24
21 | 12
10
10
9.5
10 | 17
18
22
20
36
32 | 15
15
14
14
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 630
20.3
45
12
1250 | 461.3
15.4
60
2.4
915 | 53.8
1.74
3.0
1.1
107 | 31.63
1.02
2.2
.82
63 | 81.1
2.80
4.2
1.9
161 | 95.15
3.07
11
.47
189 | 256.4
8.55
18
2.4
509 | 436.9
14.1
23
7.4
867 | 482.7
16.1
24
8.3
957 | 376.1
12.1
22
7.5
746 | 570
18.4
40
12
1130 | 549
18.3
46
10 | CAL YR 1987 TOTAL 4331.2 MEAN 11.9 MAX 60 MIN 1.0 AC-FT 8590 WTR YR 1988 TOTAL 4024.08 MEAN 11.0 MAX 60 MIN .47 AC-FT 7980 #### 09371500 McELMO CREEK NEAR CORTEZ. CO LOCATION.--Lat 37°19'23", long 108°40'22", in NE4 sec.1, T.35N., R.71 W., Montezuma County, Hydrologic Unit 14080202, on left bank 150 ft downstream from mouth of Mud Creek, and 4 mi southwest of Cortez. DRAINAGE AREA . -- 230 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1926 to September 1929, April 1940 to September 1945, October 1950 to September 1954 (monthly discharge only for some periods, published in WSP 1313), January 1982 to current year. REVISED RECORDS .-- WSP 1313: 1927, 1927 (M). GAGE.--Water-stage recorder. Elevation of gage is 5,700 ft above National Geodetic Vertical Datum of 1929, by barometer. Prior to Sept. 30, 1929, at site 3 mi downstream at different datum. Mar. 29, 1940 to Nov. 2, 1941, at site 150 ft upstream at datum 4.20 ft, higher. Nov. 3, 1941 to Sept. 30, 1945, at present site at datum 4.00 ft, higher. Oct. 1, 1950 to Sept. 30, 1954, at present site at datum 2.50 ft, higher, Jan. 1, 1982, to present, at former site at same datum. REMARKS.--Estimated daily discharges: Oct. 25-26, Oct. 30 to Nov. 1, Nov. 28-29, Dec. 2, Dec. 13-23, Dec. 25 to Feb. 1, Feb. 5-17, and Sept. 14-27. Records good except for those above 150 ft³/s, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 200 acres upstream from station. Flow is mainly return flows from irrigated lands for Montezuma Irrigation District (water imported from Dolores River basin). AVERAGE DISCHARGE.--18 years (water years 1927-29, 1941-45, 1951-54, 1983-88), 56.7 ft³/s; 41,080 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 5,560 ft³/s, Sept. 9, 1927, gage height, 6.45 ft, from rating curve extended above 240 ft³/s, on basis of slope-area measurement at gage height, 5.72 ft; minimum not determined. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 602 ft³/s at 1000 Nov. 6, gage height, 6.07 ft; minimum daily, 22 ft³/s, Mar. 29-30. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DE C FEB APR MA Y JUN JUL AUG SEP JAN MA R 78 ŘЦ и 88 81 26 87 88 **Q** 1 236 75 78 79 hЦ 47 77 90 28 26 63 28 78 62 70 32 67 32 79 183 ---TOTAL MEAN 73.3 27.4 38 55.2 93 28.3 39.5 77 95.2 42.4 57.5 82.8 99.0 MA X MIN AC-FT CAL YR 1987 TOTAL 25798 MEAN 70.7 MAX 420 MIN 22 AC-FT 51170 WTR YR 1988 TOTAL 23871 MEAN 65.2 MAX 307 MIN 22 AC-FT 47350 ## 09371500 McELMO CREEK NEAR CORTEZ, CO -- Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Jan. 1, 1982 to current year. Water-quality analysis since August 1987. PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Feb. 6, 1982 to current year. WATER TEMPERATURES: Feb. 6, 1982 to current year. INSTRUMENTATION. -- Water-quality monitor since January 1982. SPE- REMARKS. -- Stream is not well mixed at location of monitor. Specific conductance readings from the monitor were adjusted to represent average specific conductance of stream cross section at this location. Daily maximum and minimum specific conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum 4,180 microsiemens Jan. 31, 1985; minimum, 785 microsiemens Aug. 30, 1988. WATER TEMPERATURES: Maximum 26.5°C July 18-19 1985; minimum, 0.0°C many days during winter months. 30... SEP 28... 4.0 227 3.9 235 770 980 16 21 0.30 11 0.40 1310 1610 1.78 2.19 305 360 0.92 EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum 4,030 microsiemens Jan. 2; minimum, 785 microsiemens Aug. 30. WATER TEMPERATURES: Maximum 26.3°C June 23; minimum 0.0°C, many days during November through February. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 HARD- HARD-NESS MAGNE- SODIUM | DATE | 2 | TIME | STREA
FLOV
INSTA
TANEO
(CFS | AM- CI
M, CO
AN- DU
DUS AN | E-
FIC
N-
CT-
CE
/CM) | PH
(STAND
ARD
UNITS) | TEMPE - ATUR WATE (DEG | R- TO
E (1
R | ARD-
ESS
DTAL
MG/L
AS
ACO3) | NESS
NONCA
WH WA
TOT #
(MG/L
CACO | RB
LDAN
AS | CALCI
DIS-
SOLV
(MG/
AS C | UM S
ED SO
L (N | GNE-
SIUM,
DIS-
DLVED
IG/L
MG) | SODIUM
DIS-
SOLVED
(MG/L
AS NA | SOF
TI
RAT | DIUM
AD-
RP-
ION
TIO | |------------------|-----------------|------|---|---|--------------------------------------|-------------------------------|---|--|--|--|--|---------------------------------------|---|---|--|--|----------------------------------| | OCT 27 | | 1300 | 74 | | 1960 | 8.1 | 10 | .0 | 1100 | 9 | 70 | 240 | 12 | 20 | 100 | | 1 | | NOV
24 | | 1200 | 60 | | 2230 | 8.1 | 2 | .0 | 1100 | 8 | 30 | 240 | 12 | 20 | 120 | | 2 | | DEC
16 | | 1350 | 41 | | 2860 | 8.0 | o | .0 | 1400 | 12 | 200 | 300 | 17 | 0 | 170 | | 2 | | JAN
26 | | 1250 | 25 | | 3140 | 8.1 | 0 | .0 | 1900 | 15 | 00 | 380 | 23 | 80 | 260 | | 3 | | FEB 23 | | 1215 | 61 | | 2210 | 7.0 | 1 | .5 | 1300 | 12 | 200 | 250 | 17 | 0 | 230 | | 3 | | MAR
29
APR | | 1330 | 20 | | 3520 | 8.2 | 8 | .0 | 2000 | 17 | 00 | 370 | 26 | 0 | 270 | | 3 | | 26
MAY | | 1505 | 60 | | 1950 | 8.2 | 14 | •5 | 860 | 6 | 570 | 180 | 10 | 0 | 110 | | 2 | | 26
JUN | | 1245 | 63 | | 1610 | 8.0 | 17 | .0 | 950 | 9 | 30 | 200 | 1 1 | 0 | 100 | | 1 | | 23
JUL | | 1230 | 70 | | 1510 | 8.2 | 22 | .0 | 800 | 5 | 70 | 180 | 8 | 15 | 80 | | 1 | | 25
AUG | | 1400 | 87 | | 1530 | 8.1 | 21 | .0 | 790 | 5 | 70 | 180 | 8 | 33 | 72 | | 1 | | 30
SEP | | 1300 | 102 | | 1660 | 7.3 | 19 | .0 | 870 | 6 | 40 | 200 | ç | 10 | 79 | | 1 | | 28 | | 1200 | 70 | | 1770 | 7.0 | 11 | •5 | 1000 | 8 | 10 | 220 | 12 | 0 | 110 | | 2 | | | DATE | 5 | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | DI
SO
(M | FATE
S-
LVED
G/L | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVEI
(MG/L
AS F) | DI
SC
(M
A | ICA,
SS-
DLVED
MG/L
SS
(O2) | SOLI:
SUM (
CONS'
TUEN'
DI:
SOL'
(MG | OF
TI-
IS,
S-
VED |
SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) |) SO
(T
P | IDS,
IS- N
LVED
ONS
ER | NITRO-
GEN,
02+N03
DIS-
SOLVED
(MG/L
AS N) | | | OCT
2
NOV | 27 | | 4.6 | 128 | 110 | 0 | 26 | 0.40 |) 1 | 10 | 1 | 680 | 2.29 | 33 | 6 | 1.30 | | | | 24 | | 3.4 | 260 | 120 | 0 | 27 | 0.40 |) 1 | 1 | 1 | 890 | 2.57 | 30 | 6 | 1.90 | | | | 6 | | 3.8 | 297 | 190 | 0 | 37 | 0.40 |) 1 | 13 | 5. | 780 | 3.79 | 30 | 8 | 2.70 | | | | 26 | | 4.0 | 352 | 210 | 0 | 55 | 0.40 |) 1 | 13 | 3 | 280 | 4.46 | 22 | 5 | 5.80 | | | MA F | 23 | | 5.6 | 132 | | | 35 | 0.40 |) | 9.4 | | | | - | - | 4.00 | | | APF | 29 | | 4.9 | 268 | 210 | 0 | 52 | 0.40 |) | 7.8 | 3 | 260 | 4.43 | 17 | 8 | 6.70 | | | MA Y | 26
? | | 3.4 | 190 | 100 | 0 | 23 | 0.30 |) | 6.2 | 1' | 550 | 2.10 | 25 | 2 | 2.20 | | | | 26 | | 5.4 | 23 | 92 | 0 | 22 | 0.40 |) 1 | 12 | 1 | 390 | 1.89 | 23 | 7 | 1.80 | | | JUL | 23 | | 3.4 | 232 | 72 | 0 | 15 | 0.40 |) 1 | 12 | 1: | 240 | 1.69 | 23 | 4 | 1.20 | | | AUC | 25 | | 3.6 | 227 | 70 | 0 | 14 | 0.30 |) 1 | 10 | 1: | 20 0 | 1.64 | 28 | 3 | 1.00 | | # 09371500 McELMO CREEK NEAR CORTEZ, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | | - | | | | | | |----------------------------------|------------------------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | 2220
2210
2210
2180
2150 | 2910
3040
3080
3180
3250 | 3720
3860
3580
3660
3510 | 2750
2700
2660
2630
2700 | 2660
2780
2860
2950
2990 | 3490
3470
3460
3470
2750 | 2330
2120
2080
2010
1900 | 1620
1660
1630
1620
1570 | 1370
1310
1300
1330
1290 | 1850
1570
1590
1570
1580 | 1700
1680
1690
1700
1750 | | 6
7
8
9
10 | | 2080
2190
2190
2150
2140 | 3330
3340
3400
3380
3430 | 3440
3520
3650
3590
3600 | 2710
2650
2550
 | 2960
2940
3000
3050
3070 | 3070
3200
3070
3030
2830 | 1980
1870
1750
1770
1730 | 1490
1390
1440
1470
1510 | 1330
1390
1400
1350
1290 | 1580
1720
1610
1600
1570 | 1730
1770
1760
1800
1790 | | 11
12
13
14
15 | | 2130
2140
2160
2160
2190 | 3510
3390
3380
3510
3460 | 3540
3580
3620
3000
3160 | 2650 | 3090
3260
3180
3140
3150 | 2760
2550
2780
2680
2870 | 1620
1550
1520
1660
1600 | 1490
1450
1440
1440
1400 | 1320
1360
1480
1500
1520 | 1590
1590
1640
1650
1640 | 1800
1930
1980
1870
1840 | | 16
17
18
19
20 | | 2170
2140
2170
2110
2080 | 2910
3700
3760
3750
3790 | 3520
3230
3060
3040
3050 | 2630
2600
2590
2670
2560 | 3080
3030
3130
3090
3120 | 3190
3330
3000
2830
2790 | 1570
1610
1670
1850
1710 | 1370
1400
1420
1370
1350 | 1480
1500
1500
1540
1570 | 1610
1650
1670
1730
1680 | 1820
1810
1770
1650
1620 | | 21
22
23
24
25 | | 2100
2180
2290
2250
2400 | 3470
3460
3720
3670
3560 | 3080
3160
3160
3060
3050 | 2360
2300
2260
2310
2320 | 3270
3380
3440
3440
3450 | 2740
2290
2170
2050
1890 | 1570
1540
1540
1600
1630 | 1420
1410
1480
1410
1360 | 1550
1540
1540
1520
1480 | 1680
1700
1730
1820
1790 | 1620
1790
1790
1760
1740 | | 26
27
28
29
30
31 | 2030
2150
2300
2220 | 2570
2650
2730
2820
2790 | 3600
3730
3740
3620
3510
3390 | 3110
3100
3080
3060
2880
2750 | 2340
2410
2360
2450 | 3480
3430
3480
3540
3660
3590 | 1910
2030
2060
2270
2250 | 1690
1700
1670
1700
1670
1600 | 1360
1360
1560
1570
1450 | 1470
1500
1550
1570
1570
1620 | 1760
1670
1720
1590
1580
1720 | 1720
1730
1790
1820
1820 | | MEAN | | 2260 | 3450 | 3300 | | 3180 | 2740 | 1740 | 1460 | 1450 | 1660 | 1770 | SAN JUAN RIVER BASIN 336 09371500 McELMO CREEK NEAR CORTEZ, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MA X | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MA X | MIN | |--|--|--|---|---|--|--|--|--|--|--|---|--| | | OCTO | BER | NOVE | MBER | DE CE | EMBE R | JANI | JARY | FEBI | RUARY | MA | RCH | | 1
2
3
4
5 | | | 10.2
9.6
11.4
10.3
9.8 | 9.0
8.6
8.4
7.1
7.5 | .3
.6
2.1
3.3
4.7 | .0
.0
.0 | .4
.1
.0
.0 | .0 | .2
.2
.2
.1 | .0 | 8.6
7.1
6.9
8.6
7.9 | 3.8
3.4
1.8
1.9 | | 6
7
8
9
10 | | | 9.4
8.6
8.0
7.9
7.1 | 8.1
7.2
5.5
4.9
4.8 | 4.2
4.1
2.5
2.1
3.2 | 1.5
.9
.7
.0 | .1
.1
.0 | .0
.0
.0 | .1
.1
.2
.2 | .0
.0
.0 | 8.3
7.8
7.2
8.7
6.1 | 1.9
3.6
.5
1.0
3.1 | | 11
12
13
14
15 | | | 6.6
6.3
6.2
7.0
5.8 | 4.0
3.4
3.1
6.0
3.6 | 3.4
.8
.0
.0 | .4
.0
.0
.0 | .1
.1
.2
.1 | .0
.0
.0 | .3
.6
.5 | .0
.0
.0 | 7.4
4.6
6.2
6.8
8.9 | .7
.1
.1
.7 | | 16
17
18
19
20 | | | 3.7
3.9
2.5
2.4
3.3 | 1.7
1.2
.0
.0 | .0
.2
.2
1.6
2.3 | .0
.0
.0
.1 | .1
.2
.2
.2 | .0
.0
.0 | 1.4
1.0
.4
1.3 | .0
.0
.0 | 6.2
8.3
9.1
10.6
12.6 | 3.6
1.0
.2
1.2
2.5 | | 21
22
23
24
25 | | | 3.5
3.4
3.1
2.8
3.4 | .7
.2
.3
.2 | .1
.3
1.4
.6 | .0 | .1
.1
.2
.2 | .0
.0
.0 | 2.0
3.4
4.3
5.1
5.7 | .0
.0
.0 | 13.5
13.9
14.7
13.7
14.3 | 3.2
4.7
5.1
5.8
3.6 | | 26
27
28
29
30
31 | 11.3
9.4
9.3
9.0 | 7.8
8.1
8.0
6.5 | 3.0
1.3
.3
.3 | 1.0
.0
.0
.0 | .0
.2
.3
.0 | .0 | . 1
. 2
. 4
. 4
. 4 | .0
.1
.2
.2
.0 | 5.7
6.3
8.6
7.6 | 1.1
3.1
3.7
3.1 | 16.6
17.0
12.0
9.6
7.3
6.1 | 5.2
6.3
4.9
.7
3.4
3.0 | | | | | 11.4 | • 0 | 4.7 | •0 | .4 | .0 | 8.6 | .0 | 17.0 | . 1 | | MONTH | | | 11.7 | • • | 7.1 | • 0 | • • | •• | 0.0 | •• | 1,10 | • • | | MONTH | APR | | M. | | | JNE | | JLY | | GUST | SEPTE | | | 1 2 3 4 5 | APR
11.1
13.0
13.4
12.1
13.2 | | | | | | | | | | | | | 1
2
3
4 | 11.1
13.0
13.4
12.1 | 1.6
3.2
4.1
5.7 | M <i>I</i>
13.5
14.1
16.1
18.0 | 8.5
5.2
6.1
8.8 | JI
18.4
20.2
22.0
22.2 | JNE
10.1
12.2
13.6
15.6 | 22.8
23.7
22.6
22.4 | JLY
16.9
17.6
17.9
17.7 | 22.6
22.4
24.4
24.0 | 17.5
18.5
17.9
17.7 | SEPTE
20.8
20.6
20.7
20.6 | 15.3
15.5
15.7
15.6 | | 1 23 4 5 6 7 8 9 | 11.1
13.4
12.1
13.2
15.9
15.4
16.1 | 1.6
3.2
4.1
5.7
5.3
5.5
6.7
7.6 | 13.5
14.1
16.1
18.0
14.8
14.6
13.0
15.1
16.3 | 8.5
5.2
6.1
8.8
8.8
8.0
6.0
7.3 | 18.4
20.2
22.0
22.2
22.5
22.4
21.7
22.1
21.9 | 10.1
12.2
13.6
15.6
17.0
15.1
14.1
13.5
13.7 | 22.8
23.7
22.6
22.4
21.1
22.9
23.6
24.2
23.0 | JLY 16.9 17.6 17.9 17.7 17.5 17.1 17.1 17.6 18.7 | 22.6
22.4
24.4
24.0
23.3
23.1
21.2
22.5
22.0 |
17.5
18.5
17.9
17.7
17.3
18.6
17.2
16.8
15.5 | SEPTE 20.8 20.6 20.7 20.6 20.7 20.1 19.7 20.0 19.8 | 15.3
15.5
15.7
15.6
15.1
14.1
13.9
14.0
13.8 | | 1 2 3 4 5 6 7 8 9 10 11 2 3 1 4 1 4 | 11.1
13.0
13.4
12.1
13.2
15.9
15.4
14.1
13.6
14.9
16.6
16.7
12.8 | 11. 6.2
34.1
5.7
5.3
5.7
7.6
4.7
6.2
9.6 | 13.5
14.1
16.1
18.0
14.8
14.6
13.0
15.1
16.3
18.5
18.7
19.3
19.7
20.9 | 8.5
5.2
6.1
8.8
8.0
6.0
7.3
7.3
8.9
9.4
10.4
10.9
12.5 | 18.4
20.2
22.0
22.2
22.5
22.4
21.7
22.1
21.9
20.3
19.2
20.1
20.3
20.6 | 10.1
12.2
13.6
15.6
17.0
15.1
14.1
13.7
15.5
13.7
15.5 | 22.8
23.7
22.6
22.4
21.1
22.9
23.6
23.6
23.6
23.6
24.2
23.0
23.6 | 16.9
17.6
17.9
17.7
17.5
17.1
17.1
17.6
18.7
16.7
18.0
18.7 | 22.6
22.4
24.4
24.0
23.3
23.1
21.2
22.5
22.0
21.0
21.8
22.6
23.0 | 17.5
18.5
17.9
17.7
17.3
18.6
17.2
16.8
15.5
15.6
17.1
16.2 | 20.8
20.6
20.7
20.6
20.7
20.1
19.7
20.0
19.8
19.7
17.6
16.2
16.5 | 15.3
15.5
15.7
15.6
15.1
14.1
13.8
15.9
15.2
13.0
12.9 | | 1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 16 7 8 9 10 11 2 3 14 5 16 7 8 19 | 11.1
13.0
13.4
12.1
13.2
15.9
15.4
16.1
14.1
13.6
14.9
16.6
16.7
12.8
15.5 | 11. 1.2964 3616
1.2173 57671 72964 3616 | 13.5
14.1
16.1
18.0
14.8
14.6
13.0
116.3
18.5
18.7
19.7
19.7
21.4
22.1
19.9
21.7 | 8.5
5.2
6.1
8.8
8.8
8.0
6.0
7.3
8.9
9.4
10.4
12.5
12.1
12.7
15.3
12.2 | 18.4
20.2
22.0
22.2
22.5
22.4
21.7
22.1
21.9
20.3
19.2
20.1
20.6
22.0
23.0
23.7
25.3 | 10.1
12.2
13.6
15.6
17.0
15.1
14.1
13.7
15.5
15.4
13.6
14.9
15.4
15.4
15.6
14.9 | 22.8
23.7
22.6
22.4
21.1
22.9
23.6
23.6
23.6
24.7
22.0
23.6
23.0
23.6
23.0
24.7
22.0
23.6 | 16.9
17.6
17.9
17.7
17.5
17.1
17.1
17.6
18.7
16.7
16.7
17.6
17.7 | 22.6
22.4
24.4
24.0
23.3
23.1
21.2
22.5
22.0
21.0
21.8
22.6
23.0
21.9
21.9 | 17.5
18.5
17.9
17.7
17.3
18.6
17.2
16.8
15.5
15.6
17.1
16.2
17.7 | SEPTE 20.8 20.6 20.7 20.6 20.7 20.1 19.7 20.0 19.8 19.7 17.6 16.5 16.0 16.8 17.0 17.8 15.2 | 15.3
15.5
15.7
15.6
15.1
14.1
13.8
15.9
15.2
13.0
12.2
11.7
12.2
13.9 | | 12345 67890 112345 167890 12234 | 11.1
13.0
13.4
12.1
13.2
15.9
16.1
14.1
13.6
14.9
16.6
17.8
15.5
11.9
12.8
15.4
11.9
12.8
15.9 | 62173 57671 72964 36160 9494
1 34 55 5675 72964 36160 9494 | 13.5
14.1
16.1
18.0
14.8
14.6
135.1
16.3
18.5
18.7
19.3
19.3
19.7
21.4
22.1
19.7
17.4
18.0
18.7
19.7 | 8.52
6.1
8.8
8.0
67.3
8.9
9.4
10.4
10.9
12.1
12.1
12.3
13.3
10.4
10.7
10.7
11.6 | 18.4
20.2
22.0
22.2
22.5
22.4
21.7
22.1
21.9
20.3
19.2
20.1
20.3
22.0
21.9
23.7
25.3
24.4
25.1
23.8
24.0 | 10.1
12.2
13.6
15.6
17.0
15.1
13.7
15.5
15.4
13.7
15.4
13.6
14.9
15.4
16.1
17.5
17.6
17.9
19.4 | 22.8
23.7
22.6
22.1
21.1
22.9
23.6
23.6
23.6
23.7
24.2
23.6
23.6
23.0
24.2
22.0
23.6
24.2
22.0
24.2
24.2
24.2
24.2
24.2
24.2 | 16.9
17.6
17.9
17.7
17.5
17.1
17.1
17.6
18.7
16.7
16.9
18.0
17.7
16.8
16.6
18.1
17.7 | 22.6
22.4
24.4
24.0
23.3
23.1
21.2
22.5
22.0
21.0
21.8
22.6
23.0
21.9
21.9
22.1
23.4
20.9
24.1
22.1 | 17.5
18.5
17.9
17.7
17.3
18.6
17.2
16.8
15.6
17.1
16.2
17.1
17.3
17.3
17.7
17.8
17.3
17.7 | SEPTE 20.8 20.6 20.7 20.6 20.7 20.1 19.7 20.0 19.8 19.7 17.6 16.5 16.0 17.0 17.8 15.2 16.2 17.2 16.8 16.0 | 15.3
15.5
15.7
15.6
15.1
14.1
13.8
15.9
15.2
13.0
12.2
11.7
12.2
13.9
10.3 | ## 09372000 McELMO CREEK NEAR COLORADO-UTAH STATE LINE LOCATION.--Lat 37°19'27", long 109°00'54", in NEL sec.2, T.35 N., R.20 W., Montezuma County, Hydrologic Unit 14080202, on right bank 1.5 mi upstream from Colorado-Utah State line, 2.0 mi upstream from Yellowjacket Creek, and 2.0 mi west of former town of McElmo. DRAINAGE AREA . - - 346 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Streamflow records, March 1951 to current year. Water-quality data available, November 1977 to September 1981, and August 1987 to current year. REVISED RECORDS.--WSP 1925: 1951-52 (M), 1957 (M). WRD CO-1972: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 4,890 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 6-23, Dec. 15, 17, 19-20, 23, 26-27, 29-31, Jan. 3-13, Jan. 15-20, and Jan. 24-28. Records good except for those above 200 ft³/s, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 1,780 acres upstream from station. One diversion upstream from station for irrigation of about 60 acres downstream from station. Part of flow is return water from irrigated lands of Montezuma Irrigation District (water imported from Dolores River basin). Several observations of specific conductance and water temperature were obtained and are published elsewhere in this report. AVERAGE DISCHARGE. -- 37 years, 49.4 ft3/s; 35.790 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,040 ft³/s, Aug. 7, 1967, gage height, 7.58 ft, from floodmark in gage well, from rating curve extended above 2,100 ft³/s; maximum gage height, 8.13 ft, Sept. 6, 1970; minimum daily discharge, 0.08 ft³/s, Sept. 9-10, 1977. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 620 ft3/s, and maximum (*): | Date | Time | Discharge
(ft³/s) | Gage height
(ft) | Date | Time | Discharge
(ft ³ /s) | Gage height
(ft) | |---------|------|----------------------|---------------------|----------|------|-----------------------------------|---------------------| | Nov. 6 | 0300 | * 1,120 | *6.2 5 | Aug. 30 | 2100 | 790 | 5.71 | | June 28 | 2100 | 805 | 5.74 | Sept. 12 | 1200 | 760 | 5 6 5 | Minimum daily discharge, 19 ft3/s, Apr. 13. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 55
55
53
59
60 | 174
210
144
113
164 | 53
54
56
56
60 | 34
31
30
28
30 | 46
59
81
54
40 | 77
67
56
49
43 | 30
29
29
27
23 | 34
35
33
34
29 | 76
67
62
63
67 | 130
128
121
129
126 | 90
104
77
67
61 | 105
97
88
86
76 | | 6
7
8
9
10 | 65
62
61
56
56 | 400
210
150
130
120 | 62
56
56
50
49 | 32
30
30
30
30 | 37
39
39
43
48 | 43
43
42
39
39 | 33
20
23
22
28 | 29
36
47
44
36 | 64
58
56
56
52 | 109
89
72
64
71 | 68
255
161
97
86 | 67
64
56
54 | | 11
12
13
14
15 | 65
48
62
128
125 | 110
110
120
120
130 | 50
45
43
43
42 | 30
30
30
29
30 | 49
51
56
71
56 | 40
40
37
35
36 | 29
23
19
20
24 | 32
41
42
39
39 | 60
85
75
68
71 | 75
64
52
54
50 | 87
84
81
76
68 | 79
228
373
166
135 | | 16
17
18
19
20 | 94
88
84
80
78 | 120
110
100
100
100 | 45
48
56
55
50 | 30
30
30
30
30 | 61
56
50
45
44 | 39
40
36
35
35 | 47
63
49
33
29 | 33
25
49
87
81 | 71
64
70
62
58 | 54
73
67
52
42 | 87
70
68
68
68 | 120
104
102
98
99 | | 21
22
23
24
25 | 72
70
70
78
142 | 100
90
85
83
6 5 | 49
49
50
53
43 | 32
31
30
30
28 | 57
71
79
76
76 | 35
33
31
30
30 | 25
37
54
63
54 | 64
61
46
34
34 | 49
44
51
50
64 | 42
43
46
53
58 | 79
79
72
82
81 | 99
96
83
78
77 | | 26
27
28
29
30
31 | 111
89
84
87
217 | 67
61
56
56
56 | 38
36
37
36
34 | 30
30
32
37
42
43 | 79
75
95
99 | 29
29
28
27
28
28 | 44
40
42
36
32 | 34
36
46
63
70
82 | 79
79
251
208
179 | 61
52
50
49
50
56 | 87
94
112
102
184
143 | 79
79
76
73
74 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2585
83.4
217
48
5130 | 122
400
56 | 1488
48.0
62
34
2950 |
969
31.3
43
28
1920 | 1732
59•7
99
37
3440 | 1199
38•7
77
27
2380 | 1027
34.2
63
19
2040 | 1395
45.0
87
25
2770 | 2359
78.6
251
44
4680 | 2182
70.4
130
42
4330 | 2938
94.8
255
61
5830 | 3067
102
373
54
6080 | CAL YR 1987 TOTAL 25751 MEAN 70.6 MAX 420 MIN 22 AC-FT 51080 WTR YR 1988 TOTAL 24595 MEAN 67.2 MAX 400 MIN 19 AC-FT 48780 # 09372000 MCELMO CREEK NEAR COLORADO-UTAH STATE LINE CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--Chemical analyses: November 1977 to September 1981, August 1987 to current year. # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | HARD-
NESS
NON CARB
WH WAT
TOT FLD
MG/L AS
CACO3 | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | |-----------|------|---|---|--------------------------------|--------------------------------------|---|--|--|--|--|---| | OCT | | | | | | | | | | | | | 27
NOV | 1020 | 92 | 2170 | 8.0 | 10.0 | 1100 | 900 | 230 | 120 | 120 | 2 | | 24
DEC | 1115 | 88 | 2400 | 8.0 | 2.0 | 1100 | 870 | 240 | 130 | 140 | 2 | | 16
JAN | 1300 | 45 | 3080 | 8.0 | 0.0 | 1600 | 1300 | 310 | 190 | 210 | 2 | | 26
FEB | 1050 | 26 | 3300 | 8.1 | 0.0 | 1800 | 1500 | 370 | 210 | 220 | 2 | | 23
MAR | 1035 | 97 | 2320 | 7.5 | 1.5 | 1300 | 1200 | 260 | 160 | 210 | 3 | | 29
APR | 1050 | 26 | 3330 | 8.1 | 6.0 | 1800 | 1600 | 330 | 240 | 240 | 3 | | 26
MAY | 1330 | 47 | 2150 | 7.9 | 15.0 | 990 | 760 | 200 | 120 | 150 | 2 | | 26
JUN | 1100 | 37 | 2330 | 7.8 | 18.0 | 1000 | 760 | 220 | 120 | 150 | 2 | | 23
JUL | 1030 | 51 | 1880 | 8.4 | 22.0 | 950 | 690 | 200 | 110 | 110 | 2 | | 25
AUG | 1150 | 59 | 1910 | 8.0 | 22.5 | 980 | 710 | 210 | 110 | 110 | 2 | | 30
SEP | 1040 | 84 | 1750 | 7.3 | 19.5 | 830 | 610 | 180 | 93 | 91 | 1 | | 28 | 1030 | 75 | 1800 | 6.9 | 13.0 | 1000 | 770 | 220 | 110 | 92 | 1 | | | | | | | | | SOL | IDS, | | N I | rro- | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | | |--------------------|---|---|---|---|--|---|---|---|---|---|--| | OCT | | | | | | | | | | | | | 27
NOV | 4.8 | 166 | 1100 | 27 | 0.40 | 11 | 1720 | 2.34 | 427 | 1.10 | | | 24
DEC | 3.7 | 261 | 1300 | 32 | 0.40 | 12 | 2020 | 2.75 | 480 | 1.70 | | | 16
JAN | 4.1 | 300 | 2000 | 43 | 0.40 | 13 | 2960 | 4.03 | 360 | 2.90 | | | 26
FEB | 4.1 | 327 | 1900 | 84 | 0.40 | 14 | 3010 | 4.10 | 211 | 3.20 | | | 23 | 5.4 | 153 | 1500 | 32 | 0.40 | 9.9 | 2280 | 3.10 | 597 | 2.70 | | | MAR
29
APR | 5.2 | 223 | 1900 | 5.0 | 0.40 | 3.1 | 2870 | 3.90 | 203 | 2.00 | | | 26
MAY | 4.4 | 233 | 1100 | 28 | 0.40 | 11 | 1760 | 2.39 | 221 | 1.40 | | | 26
JUN | 6.2 | 283 | 1200 | 28 | 0.50 | 12 | 1910 | 2.60 | 191 | 1.10 | | | 23 | 4.7 | 259 | 920 | 21 | 0.50 | 13 | 1540 | 2.09 | 210 | 0.71 | | | JÜL
25 | 4.7 | 266 | 940 | 22 | 0.40 | 11 | 1570 | 2.14 | 249 | 0.72 | | | AUG
30 | 4.3 | 228 | 800 | 18 | 0.30 | 12 | 1340 | 1.82 | 303 | | | | S E P
28 | 3.4 | 231 | 900 | 18 | 0.30 | 9.7 | 1500 | 2.04 | 303 | 1.40 | | #### TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO There are 24 tunnels or ditches, all of which are equipped with water-stage recorders and Parshall flumes or sharp-crested weirs. Records provided by Colorado Division of Water Resources. The locations and diversions of 8 selected diversions are given in the following list. 09010000 Grand River ditch diverts water from tributaries of Colorado River to La Poudre Pass Creek (tributary to Cache la Poudre River) in NW\(\frac{1}{2}\) sec.21, T.6 N., R.75 W., in Platte River basin. Two collection ditches beginning at headgates located in sec.28, T.5 N., R.76 W., and sec.29, T.6 N., R.75 W., intercept all tributaries upstream on each side of the Colorado River and converge at La Poudre Pass. REVISIONS (WATER YEARS).--WSP 1313: 1912-27. 09013000 Alva B. Adams tunnel diverts water from Grand Lake and Shadow Mountain Lake in NW 4 sec.9, T.3 N., R.75 W., in Colorado River basin, to Lake Estes (Big Thompson River) in sec.30, T.5 N., R.72 W., in Platte River basin. For daily discharge, see elsewhere in this report. 09021500 Berthoud Pass ditch diverts water from tributaries of Fraser River between headgate in sec.33, T.2 S., R.75 W., and Berthoud Pass, in Colorado River basin, to Hoop Creek (tributary to West Fork Clear Creek) in sec.10, T.3 S., R.75 W., in Platte River basin. 09042000 Hoosier Pass tunnel diverts water from tributaries of Blue River in Colorado River basin to Montgomery Reservoir (Middle Fork South Platte River) in sec.14, T.8 S., R.78 W., in Platte River basin; this water is again diverted to South Catamount Creek (tributary to Catamount Creek) in SE½ sec.14, T.13 S., R.69 W., in the Arkansas River basin. Collection conduits extending from the right bank of Crystal Creek (tributary to Spruce Creek) in sec.14, T.7 S., R.78 W., right bank of Spruce Creek in sec.23, T.7 S., R.78 W., right bank of McCullough Gulch in sec.26, T.7 S., R.78 W., right bank of Monte Cristo Creek in SWÅNE½ sec.2, T.8 S., R.78 W., left bank of Bemrose Creek in SWÅNE½ sec.6, T.8 S., R.77 W., and intercepting intermediate tributaries, transport diversions to north portal of the tunnel. REVISIONS (WATER YEARS).--WDR CO-86-1, WDR CO-86-2: 1984, 1985. 09050590 Harold D. Roberts tunnel diverts water from Dillon Reservoir (Blue River) in sec.18, T.5 S., R.77 W., in Blue River basin, to North Fork South Platte River (tributary to South Platte, River) in SWLSWL sec.4, T.7 S., R.74 W., in Platte River basin. Figures include a small amount of ground-water inflow between Dillon Reservoir and east portal of tunnel. 09063700 Homestake tunnel diverts water from Homestake Lake (Middle Fork Homestake Creek), in sec.17, T.8 S., R.81 W., in Eagle River basin, to Lake Fork in sec.9, T.9 S., R.81 W., in Arkansas River basin. Water is imported to Homestake Lake from tributaries of Homestake Creek by collection conduits that extend from right bank of French Creek in sec.28, T.7 S., R.81 W., and left bank of East Fork Homestake Creek in sec.9, T.8 S., R.81 W., and intercept intermediate tributaries. 09077160 Charles H. Bousted tunnel diverts water from the main stem and tributaries of Fryingpan River (tributary to Roaring Fork River), in Colorado River basin, to Lake Fork in sec.10, T.9 S., R.81 W., in Arkansas River basin. Water is transported to west portal of tunnel (at lat 39°14'44", long 106°31'47"), by a series of collection conduits extending between headgates on right bank of Sawyer Creek at lat 39°15'58", long 106°38'19" and right bank of Fryingpan River at lat 39°14'40", long 106°31'49", and intercepting intermediate tributaries. 09077500 Busk-Ivanhoe tunnel diverts water from Ivanhoe Lake (Ivanhoe Creek), tributary to Fryingpan River in sec.13, T.9 S., R.82 W., in Roaring Fork River basin, to Busk Creek (tributary to Lake Fork) in sec. 20, T.9 S., R.81 W., in Arkansas River basin. DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 (SOME PREVIOUSLY UNPUBLISHED DIVERSIONS TO THE PLATTE AND ARKANSAS RIVER BASINS ARE INCLUDED IN THIS TABLE) | Diversion | 0 c |
t. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----------|------|--------|------|--------|--------|----------|-----------|----------|--------|--------|--------|--------|--------| | | | | | | | TO PLAT | TE RIVE | RBASIN | | | | | | | 09010000 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4,720 | 8,400 | 3,010 | 1,290 | 213 | | Water | year | 1987, | 17, | 640 | | | | | | | | | | | 09010000 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,090 | 12,580 | 4,210 | 980 | 196 | | Water | year | 1988, | 19, | 050 | | | | | | | | | | | 09013000 | 10,7 | 00 15 | ,590 | 18,250 | 23,590 | 18,130 | 26,830 | 15,590 | 24,860 | 22,160 | 26,270 | 28,450 | 27,340 | | Water | year | 1988, | 257 | ,800 | | | | | | | | | | | 09021500 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 474 | 236 | .1 | 0 | | Water | year | 1988, | 710 | | | | | | | | | | | | 09050590 | 20 | 2 2, | 720 | 5,960 | 4,900 | 4,420 | 1,130 | 0 | 0 | 2,910 | 17,510 | 13,390 | 0 | | Water | year | 1988, | 53, | 150 | | | | | | | | | | | | | | | | | TO ARKAN | NSAS RIVE | ER BASIN | | | | | | |
09042000 | 1,0 | 50 | 0 | 0 | 0 | 0 | 0 | 210 | 2,360 | 2,080 | 721 | 1,440 | 979 | | Water | year | 1987, | 8,8 | 30 | | | | | | | | | | | 09042000 | | 0 | 0 | 0 | 0 | 0 | 0 | 4.2 | 1,010 | 4,970 | 1,570 | 779 | 1,270 | | Water | year | 1988, | 9,6 | 10 | | | | | | | | | | | 09063700 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7,730 | 4,380 | 3,010 | 1,730 | 95 | | Water | year | 1986, | 16, | 945 | | | | | | | | | | | 09063700 | | 0 | 0 | 2,990 | 3,170 | 2,940 | 3,150 | 6,290 | 0 | 0 | 0 | 0 | 0 | | Water | year | 1987, | 18, | 540 | | | | | | | | | | ## TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO--Continued ## TO ARKANSAS RIVER BASIN -- Continued DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 (SOME PREVIOUSLY UNPUBLISHED DIVERSIONS TO THE PLATTE AND ARKANSAS RIVER BASINS ARE INCLUDED IN THIS TABLE) | Diversion | 00 | t. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----------|------|-------|--------|------|-------|-------|-------|------|-------|--------|-------|-------|-------| | 09063700 | | 0 | 0 | 0 | 7,300 | 7,670 | 7,800 | 0 | 0 | 0 | 0 | 2,450 | 4,050 | | Water | year | 1988, | 29,280 |) | | | | | | | | | | | 09077160 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1,130 | 1,710 | 384 | 117 | 0 | | Water | year | 1987, | 3,340 |) | | | | | | | | | | | 09077160 | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12,010 | 2,310 | 0 | 0 | | Water | year | 1988, | 14,320 |) | | | | | | | | | | | 09077500 | 2 | 40 | 0 | 0 | 0 | 0 | 0 | 0 | 673 | 1,830 | 716 | 122 | 16 | | Water | year | 1987, | 3,597 | , | | | | | | | | | | | 09077500 | 1 | 38 | 0 | 0 | 0 | 0 | 0 | 0 | 857 | 2,640 | 507 | 99 | 51 | | Water | year | 1988, | 4,290 |) | | | | | | | | | | # TRANSMOUNTAIN DIVERSIONS NO LONGER PUBLISHED Following is a list of Transmountain Diversions no longer being published in this report. Diversions, in acre-feet, for these sites are available from the State of Colorado, Division of Water Resources. | TO PLAT | TE RIVER BASIN | TO ARKAN | SAS RIVER BASIN | TO RIO G | IO GRANDE BASIN | | | |----------|-------------------------------------|----------------------|--------------------------------|----------------------------------|--|--|--| | | Eureka ditch
Moffat Water tunnel | 09061500
09062000 | Columbine ditch
Ewing ditch | 09118200
09121000
09341000 | Tarbell ditch
Tabor ditch
Treasure Pass
ditch | | | | 09046000 | Boreas Pass ditch | 09062500 | Wurtz ditch | 09347000 | Don LaFont | | | | 09047300 | Vidler tunnel | 09073000 | Twin Lakes tunnel | 09348000 | ditches 1&2
Williams Cr-
Squaw Pass | | | | | | 09115000 | Larkspur ditch | | ditch | | | | | | | | 09351000 | Pine River-
Weminuche
Pass ditch | | | | | | | | 09351 5 00 | Weminuche Pass
ditch | | | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at partial-record stations are presented in three tables. The first is a table of discharge measurements at low-flow partial-record stations; the second is a table of annual maximum stage and discharge at crest-stage stations; and the third is a table containing discharge measurements made at miscellaneous sites for both low flow and high flow are given in a fourth table. #### LOW-FLOW PARTIAL-RECORD STATIONS Measurements of streamflow in the area covered by this report made at low-flow, partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. DISCHARGE MEASUREMENTS MADE AT LOW-FLOW PARTIAL-RECORD STATIONS DURING WATER YEAR 1988 | Station no. | Station name | Location | Drainage
area
(mi²) | Period
of
record | Date | Discharge
(ft³/s) | |-------------|-----------------------------------|---|---------------------------|------------------------|--|----------------------| | *09058900 | Moniger Creek near
Minturn, CO | Lat 39°43'37", long 106°28'50",
in Eagle County, on left bank
1.5 mi upstream from mouth,
7.5 mi north of Minturn. | 0.76 | 1965-88 | 10-13-87
6-16-88
6-30-88
8-01-88
8-30-88 | 1.61
.54
.10 | ^{*}Also a crest-stage partial-record station. #### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. # ANNUAL MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS DURING WATER YEAR 1988 | Station no. | Station name | Location | Drainage
area
(mi²) | Non-
contrib-
uting | Period
of
record | Date | Gage
height
(feet) | Dis
charge
(ft³/s) | |-------------|--|---|---------------------------|---------------------------|------------------------------|--------------------|--------------------------|--------------------------| | | | PINEY RI | VER BASIN | | | | | | | *09058900 | Moniger Creek near
Minturn, CO | Lat 39°43'37", long 106°28'50",
in Eagle County, on left ban
1.5 mi upstream from mouth,
7.5 mi north of Minturn. | | - | 1965-88 | 5-18-88 | 1.89 | 19 | | | | COLORADO | RIVER BASIN | | | | | | | 09061450 | Sweetwater Creek
at mouth near
Dotsero, CO | Lat 39°43'20", long 107°02'22",
in NW4NE4 sec.9, T.4 S., R.8
Eagle County, 5.3 mi north o
Dotsero. | 6 W., | - | 1979-88 | 6-6-88 | 8.78 | 318 | | 09091100 | Mamm Creek near
Silt, CO | Lat 39°43'54", long 107°42'48",
in NW4NW4 sec.18, T.6 S.,
R.92 W., Garfield County,
3.3 mi southeast of Silt. | 63.3 | - | 1979-88
1982 | unknown | 10.52
11.78 | unknown
b225 | | | | GUNNISON | RIVER BASIN | | | | | | | 09149450 | Dry Creek near
Olathe, CO | Lat 39°33'19", long 108°02'43",
SW4NE4 sec. 36, T.50 N.,
R.11 W., Montrose County,
4.9 mi southwest of Olathe. | 102 | - | 1979-87
1979-88 | unknown
5-19-88 | | a360
115 | | | | SAN JUAN | RIVER BASIN | | | | | | | 09361400 | Junction Creek
near Durango,
CO | Lat 37°20'04", long 107°54'35",
sec.36, T.36N., R.10 W.,
La Plata County, on left
bank 4.5 mi upstream from
mouth and 4.5 mi northwest
of Durango. | 26.3 | | 1959-65,
1972,
1979-88 | 5-15-88 | 3.05 | 125 | ^{*} Also a low-flow partial-record station. a Correction.--The maximum discharge for water year 1987 is 360 ft 3 /s, the previous published figure was in error. b Revised.--WDR CO-82-2 (M), published incorrectly. ## GREEN RIVER BASIN 401751107062000 UPPER FOIDEL CREEK PRECIPITATION GAGE, NEAR OAK CREEK, CO LOCATION.--Lat $40^{\circ}17^{\circ}51^{\circ}$, long $107^{\circ}06^{\circ}20^{\circ}$, in SE $_{4}^{\downarrow}$ SE $_{4}^{\downarrow}$ sec. 24, T.5 N., R.87 W., Routt County, Hydrologic Unit 14050001, and 8.7 mi northwest of Oak Creek. # METEOROLOGICAL DATA SITE. -- Altitude is 8,050 ft above National Geodetic Vertical Datum of 1929, from topographic map. ## SNOW-COURSE DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | Date | Depth
(inches) | Water Content
(inches) | Density
(percent) | |-----------|-------------------|---------------------------|----------------------| | Jan
28 | 36.4 | 8.8 | 24.2 | | Feb 22 | 41.0 | 12.0 | 29.3 | | Apr
05 | 39.6 | 14.1 | 35.6 | RAINFALL RECORDS PERIOD OF RECORD. -- January 1976 to current year. INSTRUMENTATION. -- Belfort weighing bucket rain-gage REMARKS.--Unpublished rainfall data for water years 1976-86 are available in district office. | | | | RAINFALL | ACCUMULATED | (INCHES), | WATER | YEAR OCTO | BER 1987 | TO SEPTEM | BER 1988 | | | |----------------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | DAY | OCT | NOV | DE C | JAN | FEB | MA R | APR | MA Y | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00 | .30
.00
.03
.01 | .00
.00
.00 | | .20
.38
.47
.19 | .00
.00
.15
.00 | .00
.00
.00 | .03
.02
.00
.00 |
.00
.00
.00 | .00
.00
.00
.41 | .00
.00
.12
.00 | .00
.00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00 | .00
.03
.01
.00 | .00
.26
.26
.26 | | .09
.04
.07
.01
.22 | .02
.00
.00
.00 | .00
.00
.00 | .14
.00
.06
.00 | .00
.00
.00
.13 | .00
.00
.00 | .00
.02
.00
.00 | .00
.00
.00
.00 | | 11
12
13
14
15 | .00
.00
.33
.22 | .01
.00
.01
.04 | .26
.26
.26
.26 | | .02
.00
.20
.06 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | .00
.04
.00
.00 | .69
.82
.05
.05 | | 16
17
18
19
20 | .00
.00
.00 | .79
.37
.02
.01 | .26
.26
.26
.26 |

 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.13
.00 | .42
.42
.42
.42 | .00
.00
.00
.00 | | .00
.00
.00
.00 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00
.49 | .02
.00
.33
.03 | .26
.26
.26
.26 | | .00
.19
.02
.00 | .00
.00
.00
.02 | .00
.04
.05
.52 | .42
.42
.42
.42 | .00
.01
.00
.00 | | .00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00
.16 | .00
.02
.03
.00 | .26
.26
.26
.26
.26 | .02
.00
.04
.40 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.47 | .42
.42
.21
.44
.00 | .06
.07
.25
.00 | .00
.00
.00
.24 | .03
.00
.00
.00 | .00
.00
.00 | | TOTAL
MAX
MIN | 1.21
.49
.00 | 2.16
.79
.00 | 6.50
.26
.00 |
 | 2.30
.47
.00 | 0.21
.15
.00 | 1.22
.52
.00 | 6.24
.44
.00 | 0.52
.25
.00 | | 0.47
.22
.00 | 1.91
.82
.00 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER -
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | SEDI -
MENT,
SUS -
PENDED
(MG/L) | SEDI -
MENT,
DIS -
CHARGE,
SUS -
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | |----------------------------|--------|---|--|--------------------------------|---------------------------------------|-------------------------------------|--|---|---| | 401540106 | 502801 | L. MORRISON | C AB DAM | M SITE NR | OAK CREE | K, CO (LAT | 40 15 40 | ON LONG 10 | o6 50 28W) | | NOV 1987
10
APR 1988 | 1240 | 1.0 | 274 | 8.6 | 1.5 | 11.3 | 7 | 0.02 | 61 | | 20
MAY | 1030 | 11 | 104 | 8.2 | 2.0 | 13.9 | 378 | 11 | 60 | | 18
JUN | 1335 | 9.8 | 96 | 7.8 | 10.5 | 11.1 | 177 | 4.7 | 46 | | 09
JUL | 1105 | 1.5 | 168 | 8.2 | 14.0 | 8.4 | 45 | 0.18 | 66 | | 26
AUG | 1105 | 0.14 | 289 | 8.4 | 18.0 | 7.3 | 27 | 0.01 | 46 | | 24 | 1100 | 0.25 | 270 | 8.6 | 14.5 | 8.6 | 26 | 0.02 | 41 | | | 513001 | MIDDLE C AB | DAM SITE | E NR OAK | CREEK, CO | (LAT 40 1 | 6 08N LO | NG 106 51 | 30W) | | NOV 1987 | 1300 | 0.25 | 419 | 8.4 | 1.0 | 12.1 | 42 | 0.03 | 6 | | APR 1988
20 | 1000 | 1.0 | 303 | 7.8 | 1.0 | 12.4 | 141 | 0.39 | 32 | | MAY
18 | 1410 | 2.1 | 359 | 8.1 | 10.0 | 11.5 | 25 | 0.14 | 54 | | JUN
09 | 1050 | 0.13 | 414 | 8.1 | 8.5 | 9.7 | 51 | 0.02 | 18 | | JUL 26 | 1050 | 0.05 | 466 | 8.7 | 11.0 | 8.2 | 25 | 0.00 | | | AUG
24 | 1040 | 0.02 | 420 | 8.7 | 8.0 | 9.4 | 24 | 0.00 | 31 | | | | | | | | | | | | | - ' | 525201 | YAMPA R AB | DAM SITE | NR OAK C | REEK, CO | (LAT 40 16 | O9N LONG | 3 106 52 5 | 52W) | | NOV 1987
10 | 1315 | 32 | 381 | 8.1 | 3.0 | 11.6 | 17 | 1.5 | 49 | | MAY 1988
18 | 1020 | 191 | 315 | 8.2 | 8.5 | 11.6 | 486 | 251 | 87 | | JUN
09 | 1000 | 87 | 488 | 8.4 | 12.5 | 8.9 | 59 | 14 | 62 | | J Մ L
26 | 1045 | 91 | 511 | 8.6 | 15.0 | 9.5 | 19 | 4.7 | | | AUG
08 | 1145 | 88 | 456 | 8.9 | 16.0 | 6.1 | 28 | 6.6 | | | 24 | 1000 | 66 | 391 | 8.4 | 13.0 | 8.7 | 42 | 7.5 | 81 | | | 514601 | MARTIN C AB | DAM SITE | E NR OAK | CREEK, CO | (LAT 40 1 | 7 29N LO | NG 106 51 | 46W) | | NOV 1987 | 0940 | 0.15 | 434 | 7.9 | 1.5 | 9.5 | 62 | 0.02 | 17 | | APR 1988
20 | 1115 | 0.68 | 173 | 7.5 | 6.5 | 11.6 | 19 | 0.03 | 68 | | MAY
18 | 1310 | 1.5 | 219 | 8.2 | 12.0 | 9.9 | 9 | 0.03 | 26 | | JUL
26 | 1120 | 0.01 | 433 | 7.9 | 16.5 | 5.7 | 45 | 0.00 | 47 | | AUG
08 | 1200 | 0.02 | 416 | 8.0 | 15.0 | 5.7 | 41 | 0.00 | | | 24 | 1300 | 0.01 | 385 | 7.9 | 18.0 | 5.0 | 46 | 0.00 | 54 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |-----------------------|----------|---|---|--------------------------------------|-----------------------|-------------------|---|---|---------------------------------------| | 09010500 | COLO | RADO RIVE | R BELOW BA | KER GULCH, | NEAR GRAND LAKE, | CO. (LAT | 40 19 331 | N LONG 10 | 5 51 22W) | | OCT 1987
08
NOV | 1630 | 11 | 75 | 8.0 | MAY 1988
17
JUN | 1855 | 273 | 49 | 7.0 | | 06 | 0950 | 15 | 75 | 2.5 | 22 | 1645 | 315 | 40 | 10.5 | | DEC 17 | 0845 | 5.4 | 88 | 0.0 | JUL
21 | 1540 | 36 | 56 | 17.0 | | JAN 1988 | 1050 | 7.1 | 81 | 0.0 | AUG
24 | 1715 | 12 | 72 | 18.0 | | MAR
10 | 0950 | 6.4 | 85 | 0.0 | SEP
14 | 0850 | 17 | 7 5 | 6.0 | | APR
20 | 0930 | 42 | 70 | 0.0 | | | | | | | 09022000 | FRA | SER RIVER | AT UPPER | STATION, N | EAR WINTER PARK, | CO. (LAT | 39 50 45N | LONG 105 | 45 05W) | | OCT 1987 | 4450 | h 2 | - 1 | | MAY 1988 | 4.01.0 | 25 | | 4 = | | 06
NOV | 1150 | 4.3 | 74 | 5.5 | 19
JUN | 1245 | 37 | 63 | 1.5 | | 04
DEC | 1055 | 3.7 | 74 | 2.5 | 21
JUL | 0935 | 75 | 40 | 4.5 | | 15
JAN 1988 | 1045 | 3.1 | 78 | 0.0 | 22
AUG | 1535 | 18 | 52 | 11.0 | | 20
Mar | 1035 | 2.4 | 80 | 0.0 | 23
SEP | 1150 | 10 | 67 | 8.0 | | 08
APR | 0955 | 2.1 | 102 | 0.0 | 13 | 1115 | 6.9 | 74 | 4.0 | | 18 | 1000 | 5.5 | 130 | 0.0 | | | | | | | | 09024000 | FRAS | SER RIVER | NEAR WINTE | R PARK, CO. (LAT | 39 54 O ON | LONG 105 | 46 34W) | | | OCT 1987
06
NOV | 1600 | 12 | 80 | 7.0 | MAY 1988
19
JUN | 1120 | 30 | 76 | 3.0 | | 04 | 1500 | 6.7 | 7 9 | 4.5 | 21 | 1145 | 45 | 51 | 9.0 | | DEC 15 | 1325 | 4.6 | 114 | 0.0 | JUL
19 | 1410 | 14 | 71 | 13.5 | | JAN 1988
20 | 1245 | 5.1 | 103 | 0.0 | AUG
23 | 1350 | 10 | 63 | 13.5 | | MAR
08 | 1230 | 4.8 | 133 | 0.0 | SEP
13 | 1215 | 10 | 77 | 7.5 | | APR
18 | 1225 | 12 | 142 | 5.0 | | | | | | | | 09025000 | VASC | QUEZ CREEK | AT WINTER | PARK, CO. (LAT 39 | 9 55 13N I | ONG 105 1 | 17 05W) | | | OCT 1987
06 | 1800 | 3.7 | 56 | 6.0 | MAY 1988
19 | 0925 | 32 | 46 | 1.0 | | NOV
04 | 1610 | 4.4 | 54 | 3.0 | JUN
22 | 0910 | 42 | 31 | 6.0 | | DEC 15 | 1515 | 3.3 | 52 | 0.0 | JUL
20 | 0800 | 10 | 45 | 7.0 | | JAN 1988
21 | 0940 | 3.1 | 56 | 0.0 | AUG
25 | 0900 | 10 | 62 | 7.5 | | APR
19 | 0900 | 7.6 | 71 | 0.5 | SEP
15 | 0840 | 11 | 61 | 3.5 | | | 090254 | 00 | ELK CREEK | NEAR FRASI | ER, CO. (LAT 39 5 | 5 09N LON | G 105 49 3 | 31W) | | | OCT 1987
07 | 1515 | 0.55 | 55 | 10.0 | MAY 1988
18 | 1550 | 18 | 38 | 6.0 | | NOV
05 | 0910 | 0.36 | 51 | 0.0 | JUN
21 | 1350 | 2.8 | 41 | 15.0 | | DEC 17 | 1420 | 0.46 | 56 | 0.0 | JUL
20 | 1 7 55 | 2.2 | 42 | 12.5 | | JAN 1988 | 1130 | 0.40 | 66 | 0.0 | AUG
25 | 1045 | 1.3 | 55 | 9.5 | | MAR
09 | 0950 | 0.41 | 66 | 0.0 | SEP
15 | 1055 | 1.0 | 49 | 5.5 | | APR
19 | 1030 | 1.9 | 56 | 0.5 | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|----------|---|---|--------------------------------------|--------------|--------------|-----------|---|---|--------------------------------------| | | 09026500 | ST. | LOUIS C | REEK NEAR | FRASER, CO | . (LAT | 39 54 36N | LONG 105 | 52 40W) | | | OCT 1987
07 | 1800 | 5.8 | 85 | 7.0 | | Y 1988
18 | 1800 | 39 | 76 | 5.0 | | NOV
05 | 1115 | 4.9 | 97 | 4.0 | | 21 | 1540 | 34 | 86 | 13.5 | | DEC
16 | 1500 | 6.9 | 92 | 0.0 | | 20 | 1425 | 2 6 | 77 | 12.5 | | JAN 1988
20 | 1440 | 5.2 | 94 | 0.0 | | 23 | 1715 | 13 | 84 | 14.0 | | MAR
08 | 1505 | 5.4 | 97 | 0.0 | SEI | 15 | 1225 | 11 | 82 | 4.5 | | APR
18 | 1625 | 9.2 | 93 | 1.0 | | | | | | | | | 0903200 | 0 R | ANCH CRE | EK NEAR F | RASER, CO. | (LAT 39 | 57 00N LC | NG 105 45 | 5 54W) | | | OCT 1987
07 | 1320 | 1.8 | 58 | 5.0 | | Y 1988
18 | 1425 | E28 | 39 | 5.5 | | NOV
05 | 1225 | 4.0 | 50 | 1.0 | JUI | | 1400 | 71 | 30 | 9.0 | | DEC 16 | 1255 | 2.9 | 54 | 0.0 | JUI | | 1335 | 6.7 | 35 | 11.0 | | JAN 1988
21 | 1310 | 2.2 | 55 | 0.0 | AUG | 3
25 | 1300 | 4.2 | 48 | 10.0 | | MAR
09 | 1125 | 1.9 | 56 | 0.0 | SEI | 13 | 1415 | 3.7 | 45 | 6.0 | | APR
19 | 1350 | 6.1 | 56 | 1.0 | | | | | | | | | 0903210 | 0 0
| ABIN CRE | EK NEAR F | RASER, CO. | | 59 09N LO | NG 105 44 | 40W) | | | OCT 1987
07 | 1010 | 1.9 | 43 | 2.0 | | Y 1988
18 | 1225 | 2.8 | 26 | 3.0 | | NOV
05 | 1415 | 3.0 | 40 | 2.0 | | 23 | 1240 | 34 | 28 | 9.5 | | DEC
16 | 1030 | 1.5 | | 0.0 | | 22 | 1045 | 7.2 | 44 | 7.5 | | JAN 1988
21 | 1600 | 1.2 | 48 | 0.0 | | 25 | 1410 | 2.4 | 47 | 12.5 | | MAR
09 | 1520 | 1.1 | 54 | 0.0 | SEI | 13 | 1555 | 2.2 | 48 | 8.0 | | APR
19 | 1650 | 1.7 | 39 | 0.0 | | | | | | | | 090342 | 250 | COLORADO R | IVER AT | WINDY GAP | , NEAR GRANI | в¥, со. | (LAT 40 C | 06 30N LON | iG 106 00 | 13 W) | | OCT 1987
08 | 1030 | 64 | 145 | 8.5 | ; | R 1988 | 1110 | 248 | 155 | 6.0 | | NOV
06 | 1240 | 7 7 | 143 | 5.0 | | 26 | 0905 | 513 | 95 | 9.0 | | DEC
17 | 1215 | 73 | 120 | 0.0 | | 29 | 1140 | 628 | 90 | 12.0 | | JAN 1988
22 | 1305 | 79 | 131 | 0.0 | | 04 | 1020 | 143 | 138 | 17.0 | | FEB
24 | 1050 | 72 | 123 | 1.0 | | 08 | 1110 | 75
75 | 124 | 14.5 | | MAR
30 | 1830 | 83 | 153 | 0.5 | | 19 | 1535 | 75 | 133 | 12.5 | | | 09034900 | BOBT | AIL CREE | K NEAR JO | NES PASS, CO |). (LAT | 39 45 37N | LONG 105 | 54 21W) | | | OCT 1987
02
NOV | 1455 | 1.7 | 64 | 9.0 | | Y 1988
16 | 1230 | 21 | 34 | | | 16
DEC | 1510 | 1.5 | 66 | 0.0 | | 24 | 1515 | 72 | 33 | 7.0 | | 17
JAN 1988 | 1150 | 1.3 | 62 | 0.0 | | 15 | 1035 | 15 | 47 | 7.0 | | 27
MAR | 1200 | 0.84 | 68 | 0.0 | | 12 | 1255 | 5.5 | 53 | 10.0 | | 16
APR | 1150 | 0.78 | 68 | 0.0 | | 16 | 1520 | 2.9 | 60 | 9.0 | | 20 | 1415 | 1.5 | 60 | 0.5 | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|--------|---|---|--------------------------------------|-----------------------|------------|---|---|--------------------------------------| | 090 | 35500 | WILL | IAMS FORK | BELOW ST | EELMAN CREEK, CO. | (LAT 39 46 | 5 44N LONG | 105 55 4 | OW) | | OCT 1987
02 | 1255 | 1.1 | 76 | 4.5 | MAY 1988
16 | 1210 | 14 | 45 | 1.0 | | NOV
16 | 1220 | 0.64 | 80 | 0.0 | JUN
24 | 1245 | 157 | 33 | 8.0 | | DEC
17
JAN 1988 | 1245 | 1.0 | 73 | 0.0 | JUL
15
AUG | 1315 | 39 | 46 | 8.0 | | 27
MAR | 1200 | 0.63 | 73 | 0.0 | 12
SEP | 1040 | 15 | 53 | 8.0 | | 16
APR | 1200 | 2.8 | 68 | 0.0 | 16 | 1305 | 0.74 | 64 | 6.0 | | 20 | 1125 | 2.6 | 64 | 0.0 | | | | | | | 09035700 | , | WILLIAMS F | ORK ABOVE | DARLING (| CREEK, NR LEAL, CO | . (LAT 39 | 47 22N LO | NG 106 01 | 18W) | | NOV 1987
18
DEC | 1030 | 8.0 | 65 | 0.0 | MAY 1988
18
JUN | 1545 | 53 | 44 | 5.0 | | 17
JAN 1988 | 1430 | 5.8 | 71 | 0.0 | 08
JUL | 1610 | 208 | 34 | 5.0 | | 14
MAR | 1445 | 5.9 | 74 | 0.0 | 07
AUG | 1350 | 45 | 42 | 10.0 | | 09
APR | 1415 | 5.1 | 78 | 0.0 | 09
SEP | 1055 | 31 | 49 | 8.5 | | 14 | 1410 | 13 | 65 | 1.5 | 14 | 1105 | 8.8 | 62 | 5.0 | | | 09035 | 800 | DARLING | CREEK NEA | R LEAL, CO. (LAT 39 | 9 48 17N L | ong 106 o | 1 11W) | | | NOV 1987
19 | 1450 | 3.0 | 73 | 0.0 | MAY 1988
18 | 1300 | 18 | 54 | 2.5 | | DE C
18 | 1300 | 2.0 | 62 | 0.0 | JUN
09 | 1410 | 62 | 39 | 5.0 | | JAN 1988 | 1600 | 2.3 | 71 | 0.0 | JUL
08 | 1345 | 17 | 48 | 8.5 | | MAR
09 | 1535 | 2.1 | 75 | 0.5 | AUG
10 | 1545 | 5.6 | 63 | 8.0 | | APR
15 | 1130 | 4.8 | 70 | 2.0 | SEP
15 | 1515 | 4.1 | 68 | 4.0 | | 09035 | 900 | SOUTH | FORK OF W | ILLIAMS F | ORK NEAR LEAL, CO. | (LAT 39 L | 17 44N LON | G 106 01 | 49W) | | NOV 1987
18 | 1410 | 7.9 | 94 | 0.0 | MAY 1988
19 | 1100 | 111 | 54 | 1.0 | | DEC 18 | 1150 | 9.4 | 91 | 0.0 | JUN | 1420 | 173 | 41 | 7.0 | | JAN 1988
15 | 1140 | 7.3 | 92 | 0.0 | 15 | 1030 | 162 | 42 | 3.0 | | MAR
11 | 1120 | 6.3 | -
95 | 0.0 | 08
AUG | 1050 | 61 | 54 | 7.0 | | APR
14 | 1510 | 13 | 78 | 1.5 | 09
SEP | 1215 | 20 | 70 | 7.0 | | 28 | 1315 | 9.8 | 81 | 2.5 | 14 | 1300 | 13 | 80 | 4.5 | | | 09036 | 000 | WILLIAMS | FORK NEAD | R LEAL, CO. (LAT 39 | 9 49 53N L | ONG 106 0 | 3 15W) | | | NOV 1987
18 | 1610 | 26 | 83 | 0.5 | MAY 1988
19 | 1340 | 257 | 53 | 2.0 | | DEC
18
JAN 1988 | 1510 | 26 | 52 | 0.5 | JUN
09
JUL | 1120 | 667 | 39 | 5.5 | | 15
MAR | 1350 | 19 | 65 | 0.5 | 07
AUG | 1615 | 161 | 54 | 11.0 | | 11
APR | 1340 | 16 | 91 | 0.5 | 09
SEP | 1430 | 64 | 63 | 10.5 | | 15 | 1400 | 42 | 74 | 2.0 | 14 | 1510 | 34 | 78 | 6.5 | | 0 9 | 039000 | TRO | UBLESOME | CREEK NEA | R PEARMONT, CO. (LA | AT 40 13 0 | 3N LONG 1 | 06 18 45 W |) | | OCT 1987
09 | 1140 | 7.1 | 109 | 5.5 | MAY 1988
17 | 1255 | 149 | 74 | 8.5 | | JAN 1988
07 | 1635 | 13 | 94 | 0.0 | JUN
22 | 1245 | 58 | 72 | 15.0 | | FEB 25 | 1440 | 16 | | 0.0 | JUL
21 | 1110 | 14 | 77 | 11.0 | | MAR
10 | 1305 | 13 | 85 | 0.0 | AUG
24 | 1140 | 15 | 102 | 12.5 | | APR
20 | 1245 | 27 | 87 | 5.0 | SEP
14 | 1325 | 28 | 120 | 9.0 | | DATE | | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | DUCT -
ANCE | TEMPER-
ATURE
WATER
(DEG C) | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|--------------|---|----------------|--------------------------------------|---------|-----------------------|-----------|---|---|--------------------------------------| | | 0904649 | 0 | BLUE RIVE | R AT BLUE | RIVER, | CO. (LAT 39 | 9 27 21N | LONG 106 | 01 52W) | | | OCT 1987 | 0915 | 16 | 139 | 6.5 | | MAY 1988
26 | 1225 | 51 | 45 | 6.0 | | NOV
18 | 0925 | 11 | 110 | 2.0 | | JUN
16 | 0955 | 76 | 50 | 10.0 | | DEC 14 | 1350 | 11 | 80 | 1.0 | | JUL
28 | 1020 | 36 | 70 | 8.0 | | JAN 1988
11 | 1115 | 10 | 50 | 1.0 | | AUG
25
SEP | 1040 | 40 | 80 | 9.0 | | MAR
O8
APR | 1105 | 5.7 | 130 | 4.0 | | 19 | 0955 | 22 | 90 | 10.0 | | 12 | 1030 | 11 | 110 | 1.5 | | | | | | | | | 090466 | 00 | BLUE RIVE | ER NEAR D | ILLON, | CO. (LAT 39 | 32 55N L | ONG 106 0 | 2 19W) | | | OCT 1987 | 1116 | 35 | 145 | 7 5 | | MAY 1988
26 | 1445 | 168 | 120 | 5.0 | | 14
NOV
18 | 1145
1125 | 34 | 150 | 7.5
1.0 | | JUN
16 | 1425 | 327 | 50 | 9.0 | | DEC 14 | 1030 | 26 | 120 | 0.0 | | JUL 28 | 1335 | 82 | 110 | 9.0 | | 23
JAN 1988 | 1105 | 27 | 60 | 1.5 | | AUG
26 | 1030 | 74 | 110 | 9.0 | | 11
MAR | 1430 | 29 | 80 | 1.0 | | SEP 20 | 1400 | 62 | 110 | 8.0 | | 08
APR | 1250 | 29 | 150 | 1.5 | | | | | | | | 12 | 1345 | 37 | 140 | 2.5 | | | | | | | | | 09047500 | | SNAKE RIVE | R NEAR MON | NTEZUMA | , CO. (LAT | 39 36 20N | LONG 105 | 56 33W) | | | OCT 1987 | 1145 | 21 | 98 | 4.0 | | MAY 1988
27 | 1050 | 145 | 60 | 4.0 | | NOV
18 | 1340 | 17 | 75 | 0.0 | | JUN
16 | 1655 | 287 | 70 | 6.0 | | DEC
14 | 1530 | 18 | 160 | 0.0 | | JUL
29 | 1230 | 67 | 80 | 9.0 | | JAN 1988
12 | 1015 | 11 | 60 | 0.0 | | AUG
25 | 1410 | 45 | 95 | 9.0 | | MAR
07
APR | 1405 | 12 | 150 | 0.0 | | SEP
20 | 1320 | 27 | 70 | 7.0 | | 15
27 | 1115
1635 | 23
23 | 85
90 | 1.5
1.5 | | | | | | | | | 09047700 | | KEYSTONE G | JLCH NEAR | DILLON | , CO. (LAT | 39 35 40N | LONG 105 | 58 19W) | | | OCT 1987
13
NOV | 1330 | 2.6 | 77 | 5.0 | | MAY 1988
27
JUN | 0855 | 14 | 60 | 4.0 | | 18
DEC | 1610 | 4.5 | 60 | 0.0 | | 17
JUL | 0945 | 26 | 60 | 6.0 | | 15
JAN 1988 | 1550 | 1.7 | 45 | 0.0 | | 29
AUG | 0925 | 9.0 | 70 | 9.0 | | 12
MAR | 1350 | 4.6 | 45 | 0.0 | | 31
SEP | 1055 | 4.0 | 60 | 10.0 | | 07
APR | 1155 | 2.2 | 50 | 0.0 | | 20 | 1010 | 3.2 | 50 | 8.0 | | 15
27 | 0940
1420 | 4.3
3.6 | 90
80 | 0.0
1.0 | | | | | | | | 09050100 | TENMIL | E CREEK | BELOW NORTH | H TENMILE | CREEK, | AT FRISCO, | CO. (LAT | 39 34 37 | N LONG 10 | 6 06 33W) | | OCT 1987
06 | 1135 | 27 | 905 | 3.5 | | MAY 1988
24 | 1145 | 200 | 493 | 12.0 | | JAN 1988
28 | 1320 | 25 | 1190 | 0.0 | | JUN
21 | 1625 | 409 | 241 | 12.0 | | FEB
23 | 1300 | 29 | 1310 | 0.0 | | AUG
02 | 1440 | 60 | 439 | 13.5 | | MAR
29 | 1720 | 22 | 485 | 0.0 | | SEP
07 | 1115 | 24 | 463 | 8.0 | | APR
26 | 1600 | п9 | 186 | 5.0 | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |----------------|--------|---|---|--------------------------------------|---------------|--------------|--------------|---|--|--------------------------------------| | | 090501 | 700 | BLUE RIV | ER BELOW | DILLON, CO. | (LAT 39 | 37 32N L | ong 106 o | 3 57W) | | | OCT 1987
O6 | 1400 | 124 | 242 | 5.0 | | 1988
3 | 1410 | 320 | 302 | 4.0 | | JAN 1988
26 | 1430 | 63 | 323 | 3.5 | AUG
O | | 1230 | 101 | 271 | 5.5 | | FEB 23 | 1435 | 100 | 323 | 4.0 | | 6 | 1315 | 102 | 277 | 5.5 | | MAR
29 | 1810 | 98 | 358 | 4.0 | 2 | 9 | 1200 | 103 | 266 | 5.5 | | APR
26 | 1330 | 109 | 341 | 4.0 | | | | | | | | 09051050 | S: | rraight cr | EEK BELOW | LASKEY (| GULCH NEAR DI | LLON, C | O (LAT 39 | 38 23N L | ONG 106 0 | 2 23W) | | OCT 1987
06 | 1000 | 5.6 | 106 | 1.5 | | 1988
6 | 1200 |
5.3 | 243 | 1.5 | | DEC
02 | 1330 | 3.8 | 126 | 0.5 | MA Y
2 | 3 | 1200 | 18 | 149 | 4.5 | | JAN 1988
26 | 1230 | 3.5 | 115 | 0.0 | | 1 | 1130 | 77 | 59 | 7.0 | | FEB 23 | 1100 | 2.8 | 140 | 0.0 | | 2 | 1100 | 14 | 89 | 9.0 | | MAR
29 | 1517 | 5.7 | 225 | 0.0 | SEP
O | 6 | 1130 | 7.0 | 108 | 7.0 | | | 09058 | 2000 | ROCK CR | EEK NEAR | DILLON, CO. | (LAT 39 | 43 23N L | ONG 106 0 | 7 41W) | | | OCT 1987
13 | 1500 | 4.8 | 60 | 6.0 | | 1988
1 | 1505 | 4.6 | 45 | 1.5 | | NOV 17 | 1620 | 8.8 | 85 | 0.0 | | 6 | 1445 | 17 | 80 | 1.0 | | DEC 16 | 1530 | 4.8 | 30 | 0.0 | | 3 | 1655 | 29 | 50 | 1.0 | | JAN 1988
12 | 1510 | 2.5 | 45 | 0.0 | | 5 | 1520 | 85 | 45 | 5.0 | | MAR 11 | 1010 | 4.5 | 20 | 0.0 | | 7 | 1600 | 20 | 60 | 8.0 | | | | ,,,, | | | 0 | 1
5 | 1510
1400 | 9·3
10 | 50
40 | 4.0
4.0 | | 09052400 | | BOULDER C | REEK AT U | PPER STAT | ION, NEAR DI | LLON, C | O. (LAT 3 | 9 43 41N 1 | LONG 106 | 10 22W) | | OCT 1987
14 | 1530 | 3.5 | 53 | 3.0 | | 1988
5••• | 1345 | 34 | 50 | 5.0 | | NOV
17 | 0905 | 2.6 | 65 | 1.0 | | 5 | 1100 | 52 | 80 | 6.0 | | DEC
16 | 1350 | 2.5 | 40 | 0.0 | | 7 | 1310 | 13 | 45 | 9.0 | | JAN 1988
11 | 1600 | 2.4 | 40 | 0.0 | | 4 | 1430 | 6.9 | 50 | 9.0 | | MAR
11 | 1240 | 5.0 | 45 | 0.0 | SEP
1 | 4 | 1235 | 7.1 | 40 | 8.0 | | APR
11 | 1325 | 5.1 | 85 | 1.5 | | | | | | | | 09052800 |) | SLATE CR | EEK AT UP | PER STATI | ON, NEAR DIL | LON, CO | . (LAT 39 | 45 47N L | ONG 106 1 | 1 31W) | | OCT 1987
16 | 1120 | 5.5 | 54 | 4.0 | | 1988
5••• | 1125 | 57 | 40 | 4.0 | | NOV 17 | 1405 | 2.5 | 50 | 0.0 | JUN | | 1105 | 77 | 40 | 9.0 | | DEC 16 | 1125 | 4.1 | 40 | 0.0 | lur | 7 | 1015 | 27 | 50 | 8.0 | | JAN 1988
13 | 1210 | 3.8 | 60 | 0.0 | AUG | | 1130 | 13 | 60 | 8.0 | | MAR
10 | 1450 | 3.8 | 40 | 0.0 | SEP | | 1100 | 14 | 45 | 4.0 | | APR
26 | 1140 | 13 | 80 | 1.0 | · | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------|--------------|---|---|--------------------------------------|-------------------|--------------|---|---|--------------------------------------| | 0905400 | 00 | BLACK CRE | EK BELOW | BLACK LAKE, | NEAR DILLON, CO. | (LAT 39 | 47 59N LO | NG 106 16 | 04W) | | OCT 1987
15 | 1645 | 3.4 | 27 | 8.0 | APR 1988
13 | 1410 | 6.2 | 85 | 1.5 | | NOV
17 | 1150 | 5.0 | 40 | 2.0 | 29
Ma Y | 1140 | 8.5 | 90 | 2.0 | | DEC 15 | 1440 | 5.8 | 110 | 0.0 | 24
JUN_ | 1540 | 33 | 30 | 4.0 | | JAN 1988 | 1535 | 4.7 | 45 | 0.0 | 13
JUL | 1410 | 125 | 50 | 6.0 | | MA R
10 | 1205 | 4.1 | 50 | 0.0 | 25
SEP | 1600 | 39 | 30 | 11.0 | | | | | | | 02 | 1230 | 15 | 35 | 11.0 | | | 09055300 | CA | TARACT CF | REEK NEAR KR | EMMLING, CO. (LAT | 39 50 07 | 7N LONG 10 | 6 18 57W) | | | OCT 1987
15 | 1015 | 0.92 | 47 | 5.0 | APR 1988
13 | 1110 | 6.3 | 90 | 1.0 | | 15
NOV | 1035 | 0.92 | 47 | 5.0 | MA Y
24 | 1245 | 31 | 45 | 3.0 | | 16
DEC | 1020 | 2.3 | 150 | 1.0 | JUN
14 | 1350 | 82 | 45 | 9.0 | | 15
JAN 1988 | 1015 | 2.3 | 85 | 0.0 | JUL
25 | 1345 | 11 | 40 | 10.0 | | 15
MAR
10 | 1410
1045 | 1.6 | 50
80 | 0.0 | SEP
01
13 | 1205
1415 | 3.4
1.2 | 30
35 | 9.0
9.0 | | 10 | 1045 | 1.2 | 00 | 0.0 | 13 | 1419 | 1.2 | 39 | 9.0 | | | 09058000 | СО | LORADO RI | VER NEAR KR | EMMLING, CO. (LAT | 40 02 12 | N LONG 10 | 6 26 22W) | | | OCT 1987
08 | 1130 | 835 | 218 | 10.0 | AUG 1988
03 | 1810 | 868 | 236 | 18.0 | | MAR 1988
30 | 1000 | 695 | 285 | 2.0 | SEP
07 | 1545 | 813 | 203 | 13.5 | | APR
28 | 1430 | 1110 | 293 | 7.5 | 27 | 1300 | 669 | 207 | 13.5 | | 0905850 | n i | PINEY RIVE | R BELOW P | THEY LAKE | NEAR MINTURN, CO. | (I.AT 30 | 75 50N TU | NG 106 25 | 38W) | | OCT 1987 | | TABL NIVE | N DBLOW 1 | INGI BARB, | MAY 1988 | (BRI J) | 42 2 JH 20 | 100 25 | 30"/ | | 14
NOV | | 2.6 | 135 | 5.5 | 17
JUN | 1605 | 108 | 200 | 4.5 | | 23
MAR 1988 | 1420 | 2.2 | 85 | 0.0 | 15
29 | 1315
1255 | 82
191 | 26
23 | 10.0
7.5 | | 10
APR | 0900 | 2.2 | 67 | 0.0 | AUG 03 | 1240 | 8.0 | | 18.0 | | 13 | 1640 | 13 | 64 | 0.0 | 31 | 0945 | 2.1 | 52 | 9.0 | | | 09058 | 610 | DICKSON | CREEK NEAR | VAIL, CO. (LAT 39 | 42 14N I | ONG 106 2 | 7 25W) | | | OCT 1987
13 | 1410 | 1.0 | 183 | 4.0 | JUN 1988
16 | 1135 | 2.6 | 309 | 9.5 | | NOV 23 | 1630 | 0.96 | 86 | 0.5 | 30
AUG | 1135 | 1.6 | 337 | 11.0 | | MAY 1988
17 | 1255 | 3.9 | 200 | 7.5 | 01
30 | 1625
0910 | 0.94
0.74 | 360 | 15.5
9.5 | | | 0905870 | 20 | CDCCMAN (| PPEV NEAD M | INTURN, CO. (LAT | 20 JI EEN | I I ONG 106 | 26 JIIWI | | | OCT 1987 | 0303070 | 30 | I NEETIN C | MEEK NEAK H | JUN 1988 | יכל וד פּנ | • LONG 100 | 20 4111) | | | 13
NOV | 1605 | 0.11 | 113 | 5.5 | 16
30 | 1325
1305 | 1.5
1.0 | 173
189 | 17.0
18.5 | | 23
APR 1988 | 1515 | 0.14 | 89 | 0.0 | AUG
03 | 1500 | 0.10 | | 19.0 | | 12
MAY | 1420 | 0.19 | 233 | 0.0 | 30 | 1045 | 0.08 | 243 | 8.0 | | 17 | 1100 | 7.3 | 84 | 2.5 | | | | | | | | 09058800 | EA | ST MEADOW | CREEK NEAR | MINTURN CO. (LAT | 39 43 54 | IN LONG 10 | 6 25 36W) | | | OCT 1987 | 1245 | 0.89 | | 5.0 | JUN 1988
29 | 1437 | 8.4 | 40 | | | NOV 23 | | 1.3 | 80 | J.U | AUG
31 | 1137 | 0.99 | 62 | | | APR 13 | 1218 | 1.6 | 77 | | ٠٠٠٠ ر | 1151 | V•33 | ŲŽ | | | | | | 1.1 | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|-----------------------|---|---|--------------------------------------|-----------------------|--------------|---|--|--------------------------------------| | | 09059500 | PI | NEŸ RIVER | NEAR STA | ATE BRIDGE, CO. (LAT | 39 48 00 | ON LONG 10 | 6 35 00 W) | | | OCT 1987
14
NOV | 1155 | 16 | 359 | 7.0 | JUL
12
AUG | 1620 | 49 | 194 | 17.0 | | 04 | 1020 | 2.2 | 314 | 2.5 | 10 | 1500 | 16 | 328 | 19.5 | | JUN 1988
14 | 1345 | 209 | 133 | 10.5 | SEP
13 | 1720 | 16 | 388 | 10.0 | | | 090630 | 00 | EAGLE RI | VER AT RE | ED CLIFF, CO. (LAT 3 | 9 30 34N | LONG 106 | 22 00W) | | | OCT 1987
08
18 | 1710
1710 | 11
11 | 190
90 | 5.0
5.0 | MAY 1988
18
JUN | 1550 | 100 | 157 | 10.0 | | NOV 20 | 1300 | 13 | 99 | 0.5 | 14 | 0935
1115 | 118
64 | 131
175 | 4.0
10.5 | | DE C | | | | | AUG | | | | | | 09 | 1445
1500 | 19
19 | 185
185 | 0.0 | 04
SEP | 1345 | 17 | | 15.5 | | MAR 1988
09 | 1725 | 12 | 193 | 0.0 | 01 | 0940 | 11 | 240 | 8.0 | | | 09063200 | WE. | ARYMAN CRI | EEK NEAR | RED CLIFF, CO. (LAT | 39 31 14 | N LONG 10 | 6 19 06W) | | | OCT 1987
13
NOV | 1205 | 2.2 | 115 | 4.0 | MAY 1988
18
JUN | 1045 | 10 | 258 | 3.0 | | 18
DEC | 1445 | 1.7 | 180 | 0.0 | 13
28 | 1515
1445 | 43
21 | 205
222 | 3.5
7.0 | | 09 | 1300 | 1.7 | 248 | | AUG | | | | | | 09 | 1335
1205 | 1.7
2.2 | 248
115 | 0.0
4.0 | 04
SEP | 1125 | 5.4 | | 7.5 | | MAR 1988
09 | 1650 | 1.6 | 41 | 0.0 | 01 | 1435 | 2.8 | 283 | 7.5 | | | 09063400 | т | URKEY CRE | EK NEAR F | RED CLIFF, CO. (LAT | 39 31 32N | LONG 106 | 20 08W) | | | OCT 1987 | 1030 |) | 456 | 31 m | MAY 1988 | 4205 | 54 | 24.0 | | | 13
13 | 1230
12 3 2 | 4.7
4.7 | 156
156 | 4.5
4.5 | 18
JUN | 1325 | 51 | 219 | 5.5 | | NOV
18
DEC | 1535 | 2.7 | 189 | 0.0 | 13
28
AUG | 1730
1255 | 112
48 | 177
211 | 4.5
6.5 | | 09
MAR 1988 | 1340 | 3.5 | 263 | 0.0 | 04
SEP | 0915 | 14 | | 7.0 | | 09 | 1630 | 3.1 | 340 | 0.0 | 01 | 1135 | 5.9 | 275 | 7.5 | | | 09063900 | MI | SSOURI CRI | EEK NEAR | GOLD PARK, CO. (LAT | 39 23 25 | N LONG 10 | 6 28 10W) | | | OCT 1987
08
NOV | 1330 | 0.84 | 36 | 4.0 | MAY 1988
19
JUN | 1025 | 19 | 27 | 1.0 | | 20
MAR 1988 | 1040 | 1.2 | 56 | 0.0 | 14
27 | 1340
1435 | 14
12 | 25
22 | 6.0
8.0 | | 09 | 1335 | 0.72 | 51 | 1.5 | AUG | | | | | | APR
14 | 1100 | 3.9 | 40 | 0.0 | 02
29 | 1410
1640 | 8.9
1.9 | 34 | 12.0
12.0 | | | 09064000 | Н | OMESTAKE (| CREEK AT | GOLD PARK, CO. (LAT | 39 24 20 | N LONG 10 | 6 25 58W) | | | OCT 1987
08 | 1415 | 7.8 | 48 | 5.5 | MAY 1988
19 | 1240 | 67 | 30 | 3.0 | | NOV
20 | 1151 | 11 | 60 | 0.0 | JUN
14 | 1540 | 35 | 28 | 9.5 | | MAR 1988 | 1345 | 9.3 | 41 | 0.0 | AUG
02 | 1200 | 26 | | 12.5 | | APR
14 | 1215 | 18 | 38 | 0.5 | 29 | 1445 | 9.0 | 35 | 14.5 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE - CIFIC CON - DUCT - AN CE (US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |----------------------|--------------|---|---|--------------------------------------|-----------------------|--------------|---|--|---------------------------------------| | | 09064500 | но | MESTAKE C | REEK NEAR RE | D CLIFF, CO. (LAT | 39 28 2 | 24N LONG 1 | 06 22 02W |) | | OCT
1987
08
18 | 1555
1555 | 11
11 | 50
50 | 5.5
5.5 | MAY 1988
19
JUN | 1615 | 130 | 32 | 4.0 | | NOV
18 | 1316 | 9.7 | 59 | 0.0 | 14
28 | 1145
1630 | 71
51 | 31
30 | 7.5
16.0 | | DEC
09
09 |
1210 | 9.2
9.2 | 70
70 | 0.5
0.5 | AUG
02
SEP | 0950 | 36 | | 11.5 | | MAR 1988
09 | 1510 | 5.2 | 41 | 2.5 | 01 | 1655 | 8.1 | 41 | 13.5 | | APR
14 | 1410 | 52 | | 2.0 | | | | | | | | 090651 | 00 | CROSS CR | EEK NEAR MIN | ITURN, CO. (LAT 39 | 34 05N | LONG 106 | 24 45W) | | | OCT 1987
07 | 1205 | 8.1 | 40 | 8.5 | JUN 1988
17 | 0950 | 207 | 24 | 6.0 | | 07
NOV | 1430 | 8.1 | 40 | 8.5 | 28
Aug | 0915 | 151 | 23 | 9.0 | | 03
03 | 1330 | 8.6
8.6 | 30
30 | 4.5
4.5 | 04
SEP | 1545 | 28 | | 15.5 | | MAR 1988
10 | 1155 | 2.3 | 85 | 0.5 | 02 | 0915 | 9.2 | 44 | 9.5 | | МАҮ
16 | 1405 | 166 | 29 | 6.0 ⁻ | | | | | | | 090655 | 00 | GORE CREE | K AT UPPE | R STATION, N | EAR MINTURN, CO. | (LAT 39 | 37 40N LO | NG 106 16 | 24W) | | OCT 1987
07 | 1405 | 6.0 | 60 | 3.0 | MAY 1988
17 | 1600 | 116 | 35 | 4.5 | | NOV 17 | 1310 | 4.0 | 35 | 0.0 | JUN 07 | 1620 | 175 | 30 | 5.0 | | DEC 15 | 1215 | 3.1 | 27 | 0.0 | JUL
06 | 1530 | 52 | 37 | 9.5 | | JAN 1988
11 | 1330 | 2.7 | 30 | 0.0 | AUG
11 | 1345 | 8.7 | 55 | 10.0 | | MAR
07 | 1215 | 2.9 | 41 | 0.0 | SEP 13 | 1305 | 7.7 | 60 | 6.0 | | APR
12 | 1500 | 13 | 55 | 2.0 | - | | | | | | | 09066000 | BL | ACK GORE | CREEK NEAR N | MINTURN, CO. (LAT | 39 35 47 | 7N LONG 10 | 6 15 52W) | | | OCT 1987
07 | 1215 | 3.1 | 130 | 2.0 | MAY 1988
17 | 1335 | 62 | 100 | 4.5 | | NOV 17 | 1120 | 2.1 | 196 | 0.0 | JUN 07 | 1415 | 111 | 74 | 7.5 | | DEC
15 | 1555 | 2.0 | 190 | 0.0 | JUL
06 | 1225 | 15 | 110 | 9.0 | | JAN 1988
11 | 1530 | 2.4 | 194 | 0.0 | AUG
11 | 1200 | 4.4 | 148 | 9.0 | | MAR
07 | 1500 | 2.3 | 190 | 0.0 | SEP
16 | 1130 | 2.5 | 170 | 3.5 | | APR 27 | 1145 | 6.7 | 108 | 1.5 | | | | | | | | 0906610 | 00 | BIGHORN C | REEK NEAR MI | ENTURN, CO. (LAT 3 | 19 38 241 | N LONG 106 | 17 34W) | | | OCT 1987
08 | 1020 | 1.6 | 50 | 2.0 | MAY 1988
17 | 1030 | 38 | 32 | 3.0 | | NOV
17 | 1500 | 1.4 | 69 | 0.0 | JUN
07 | 1140 | 59 | 29 | 4.0 | | DEC
15 | 1020 | 0.87 | 72 | 0.0 | JUL
06 | 1000 | 20 | 34 | 5.5 | | JAN 1988 | 1120 | 0.77 | 70 | 0.0 | AUG
11 | 1025 | 3.8 | 51 | 7.0 | | MAR
07 | 1025 | 0.82 | 78 | 0.0 | SEP
13 | 1500 | 2.8 | 61 | 5.5 | | APR
12 | 1205 | 4.3 | 63 | 1.5 | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------------------|--------------|---|---|--------------------------------------|-----------|------------------|--------------|---|---|--------------------------------------| | | 0906615 | 0 1 | PITKIN CR | EEK NEAR | MINTURN, | CO. (LAT | 39 38 37N | LONG 106 | 18 07W) | | | OCT 1987
07 | 1545 | 2.6 | 50 | 2.0 | | MAY 1988
16 | 1600 | 34 | 41 | 4.0 | | NOV
16 | 1630 | 2.2 | 81 | 0.0 | | JUN
06 | 1520 | 56 | 34 | 5.5 | | DEC
14 | 1525 | 1.5 | 85 | 0.0 | | ՄԱ
05 | 1600 | 20 | 40 | 8.5 | | JAN 1988
12 | 1350 | 1.0 | 90 | 0.0 | | AUG
08 | 1440 | 5.6 | 62 | 8.0 | | MAR
08 | 1425 | 1.1 | 93 | 0.0 | | SEP
13 | 1145 | 3.7 | 74 | 4.5 | | APR
11 | 1425 | 2.8 | 102 | 2.0 | | | | | | | | | 090662 | 00 | BOOTH CRI | EEK NEAR | MINTURN, | CO. (LAT | 39 39 02N | LONG 106 | 19 16W) | | | OCT 1987
08 | 1515 | 1.0 | 50 | 2.0 | | MAY 1988
16 | 1420 | 40 | 62 | 5.5 | | NOV
16
DEC | 1440 | 2.1 | 116 | 1.0 | | JUN
06
JUL | 1315 | 63 | 42 | 5.0 | | 14
JAN 1988 | 1340 | 1.3 | 63 | 0.0 | | 05
AUG | 1415 | 15 | 52 | 9.5 | | 12
MAR | 1130 | 1.0 | 65 | 0.0 | | 08
SEP | 1310 | 3.1 | 92 | 10.5 | | 08
APR | 1215 | 1.0 | 137 | 0.0 | | 13 | 1025 | 1.6 | 124 | 6.0 | | 11 | 1630
1405 | 4.2
5.4 | 125
110 | 4.5
5.0 | | | | | | | | | 0906630 | 10 | MIDDLE CRI | EEK NEAR | MINTURN, | CO. (LAT | 39 38 50N | LONG 106 | 22 48W) | | | OCT 1987
08 | 1250 | 0.44 | 50 | 2.0 | | MAY 1988
16 | 1225 | 10 | 135 | 4.0 | | NOV
16 | 1315 | 0.34 | 236 | 1.0 | | JUN 06 | 1110 | 36 | 90 | 3.5 | | DEC
14 | 1200 | 0.28 | 232 | 0.0 | | JUL
05 | 1200 | 6.6 | 120 | 8.0 | | JAN 1988
12 | 1005 | 0.21 | 240 | 0.0 | | AUG
08 | 1120 | 2.0 | 172 | 8.5 | | MAR
08 | 1035 | 0.26 | 248 | 0.0 | | SEP
12 | 1405 | 1.2 | 188 | 9.0 | | APR
11 | 1110 | 0.65 | 215 | 3.0 | | | | | | | | | 09066400 | RE D | SANDSTONE | E CREEK N | NEAR MINT | URN, CO. | (LAT 39 40 | 58n Long | 106 24 031 | ч) | | OCT 1987
13 | | 0.68 | 83 | 5.5 | | JUN 1988
15 | 1510 | 38 | 55 | 6.0 | | 13
MAR 1988 | 1655 | 0.64 | 83 | 5.5 | | 16
29 | 1555
0930 | 31
20 | 56
59 | 7.0
6.0 | | 10
APR | 1010 | 0.81 | 63 | 0.0 | | AUG
05 | 0915 | 3.1 | | 7.0 | | 13
MAY | 1805 | 4.5 | 79 | 0.0 | | 30 | 1450 | 1.0 | 109 | 9.5 | | 20 | 0940 | 44 | 58 | 1.0 | | | | | | | | | 090700 | 00 | EAGLE RIV | VER BELOW | W GYPSUM, | | 39 38 58N | LONG 106 | 57 11W) | | | OCT 1987 | 1530 | 186 | 1190 | 11.0 | | MAY 1988
03 | 1540 | 490 | 800 | 7.0 | | NOV
02 | 1535 | 250 | 1000 | 9.5 | | JUN
06 | 1550. | 2430 | 157 | 11.0 | | DEC 07 | 1520 | 206 | 1030 | 3.0 | | JUL
11 | 1335 | 507 | 510 | 19.0 | | JAN 1988
13 | 1145 | 132 | 1150 | 0.0 | | AUG
11 | 0900 | 182 | 908 | 16.0 | | FEB
22
MAR | 1555 | 171 | 1110 | 1.0 | | SEP
12 | 1545 | 200 | 1260 | 13.0 | | 28 | 1550 | 228 | 1000 | 5.5 | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|--------------|---|---|--------------------------------------|--------------------|-----------------------|---|---|--------------------------------------| | | 09070500 | С | OLORADO RI | VER NEAR | DOTSERO, CO. (LAT | 39 38 40N | LONG 107 | 04 40W) | | | OCT 1987
13 | 1325 | 1230 | 552 | 10.5 | MAY 1988
03 | 1350 | 2670 | 337 | 7.0 | | NOV
02 | 1335 | 1110 | 620 | 9.0 | JUN
06 | 1325 | 5950 | 196 | 11.0 | | DE C
07 | 1555 | 1020 | 573 | 1.0 | JUL
11 | 1345 | 2150 | 418 | 16.0 | | FEB 1988
22 | 1415 | 1000 | 510 | 1.0 | AUG
11 | 1235 | 1440 | 473 | 18.0 | | MAR
28 | 1410 | 1310 | 535 | 5.0 | SEP
12 | 1420 | 1520 | 550 | 12.5 | | 090 | 71300 | GRIZZ | LY ÇREEK N | IEAR GLENW | OOD SPRINGS, CO. | (LAT 39 43 | 04N LONG | 107 18 5 | 1W) | | OCT 1987 | 4320 | | | | JUL_1988 | 41:00 |). <i>C</i> | 2112 | 45.0 | | 13
NOV
04 | 1330 | 1.0 | 230 | 6.0 | 13
AUG | 1400 | 4.6 | 249 | 17.0 | | APR 1988
28 | 1445
1200 | 0.92 | 220
460 | 6.0
0.0 | 10
SEP | 1020
1420 | 1.5 | 263
231 | 11.0 | | JUN
07 | 1040 | 152 | 99 | 1.5 | 14 | 1420 | 1 • 1 | 231 | 0.0 | | 0,111 | , , , , , | .,,_ | ,,, | , | | | | | | | 09073300 | ROARI | NG FORK R | IVER ABOVE | DIFFICUL | T CREEK NEAR ASPEN | N, CO. (LA | T 39 08 2 | 8n Long 10 | 06 46 25W) | | OCT 1987
06 | 1045 | 18 | 57 | 10.0 | MAY 1988
04 | 0900 | 37 | 65 | 2.0 | | 04 | 1205 | 20 | 100 | 4.0 | 25
JUN | 0820 | 85 | 50 | 4.5 | | DEC
09 | 0740 | 16 | 87 | 0.0 | 17
JUL | 0855 | 127
44 | 40 | 6.5 | | FEB 1988
01
24 | 1355
0815 | 16
15 | 955 | 0.0 | 13
AUG
10 | 0 8 20
0800 | 44 | 55
70 | 10.0
9.5 | | APR
06 | 0800 | 20 | 105
102 | 0.5 | SEP
14 | 0755 | 40 | 70 | 6.5 | | | | | | | | | | | 0.9 | | | 09073400 | RO | ARING FORE | RIVER NE | AR ASPEN, CO. (LAT | r 39 10 48 | N LONG 10 | 6 48 05 W) | | | OCT 1987
06 | 1214 | 36 | 68 | 12.0 | MAY 1988
04 | 1100 | 67 | 85 | 4.0 | | NOV
04 | 1405 | 36 | 111 | 6.0 | 25
JUN | 1035 | 156 | 60 | 6.0 | | DEC
09
JAN 1988 | 1015 | 42 | 97 | 0.0 | 17
JUL
13 | 1130
1015 | 252
72 | 60
70 | 8.0
11.0 | | 12
FEB | 1500 | 28 | 115 | 0.0 | AUG
10 | 0950 | 53 | 85 | 10.0 | | 24
APR | 1010 | 33 | 122 | 0.0 | SEP
14 | 0935 | 62 | 60 | 6.5 | | 06 | 0945 | 33 | 117 | 2.0 | | -,,,, | | | | | | 0907400 | 00 | HUNTER CF | EEK NEAR | ASPEN, CO. (LAT 39 |) 12 21N L | ong 106 4 | 7 49 W) | | | OCT 1987
06 | 0840 | 8.1 | 62 | 11.0 | MAY 1988
03 | 1505 | 46 | 52 | 6.0 | | NOV
04 | 0830 | 9.2 | 90 | 2.0 | 24
JUN | 1440 | 111 | 40 | 7.5 | | DEC
08 | 1455 | 8.1 | 82 | 0.0 | 16
JUL | 1535 | 60 | 38 | 10.5 | | JAN 1988
12 | 1315 | 6.9 | 100 | 0.0 | 12
AUG | 1550 | 41 | 45 | 16.5 | | FEB
23 | 1510 | 6.0 | 117 | 0.0 | 09
SEP | 1450 | 19 | 60 | 16.5 | | APR
05 | 1625 | 7.8 | 87 | 5.5 | 13 | 1545 | 30 | 50 | 9.0 | | | 0907480 | 00 | CASTLE CF | REEK ABOVE | ASPEN, CO. (LAT | 39 05 15N | LONG 106 | 48 42W) | | | OCT 1987 | 1400 | 21 | 330 | 9.0 | MAY 1988
03 | 0810 | 17 | 430 | 0.0 | | NOV
03 | 0920 | 19 | 330
465 | 3.0 | 24
JUN | 0800 | 45 | 315 | 2.5 | | DEC 08 | 0725 | 12 | 485 | 0.0 | 16
JUL | 0910 | 125 | 220 | 4.5 | | JAN 1988
12 | 0805 | 9.9 | 190 | 0.0 | 12
AUG | 0805 | 53 | 250 | 6.0 | | FEB
23 | 0805 | 7.4 | 875 | 0.0 | 09
SEP | 0755 | 32 | 290 | 6.0 | | APR
05 | 0815 | 10 | 515 | 0.0 | 13 | 0810 | 26 | 365 | 5.5 | | | | | | | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE
-
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | 1 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |-----------------------|--------------|---|---|--------------------------------------|--------------|-----------|--------------|---|---|---------------------------------------| | | 090757 | 00 | MAROON C | REEK ABOVE | ASPEN, CO. | (LAT 3 | 9 07 25N | LONG 106 | 54 17W) | | | OCT 1987
07
NOV | 1611 | 35 | 422 | 9.0 | 03 | 1988
3 | 1010
1005 | 19
80 | 790
455 | 3.0
6.5 | | 03
DE C | 0700 | 32 | 800 | 4.0 | JUN | 6 | 1135 | 191 | 260 | 8.0 | | 08
FEB 1988 | 1025 | 23 | 800 | 1.0 | JUL | 2 | 1055 | 99 | 330 | 9.0 | | 23
APR | 1040 | 27 | 1290 | 0.0 | AUG | 9 | 1055 | 59 | 455 | 9.0 | | 05
14 | 1120
1300 | 21
16 | 920
870 | 3.5
8.0 | SEP | 3 | 1020 | 47 | 240 | 7.5 | | | 0907 | 6520 | OWL CR | EEK NEAR AS | SPEN, CO. (I | LAT 39 | 13 25N LO | NG 106 52 | 45W) | | | OCT 1987
07 | 1741 | 0.14 | 362 | 14.0 | | 1988
3 | 1255 | 8.9 | 255 | 6.0 | | NOV 03 | 1125 | 0.23 | 580 | 4.0 | | 4 | 1235 | 7.4 | 30 | 10.0 | | DE C 08 | 1255 | 0.29 | 540 | 0.0 | | ó | 1345 | 2.0 | 420 | 15.5 | | JAN 1988
12 | 1010 | 0.42 | 715 | 0.0 | | 2 | 1405 | 1.2 | 485 | 17.0 | | FEB 23 | 1300 | 0.18 | 440 | 0.0 | | 9 | 1305 | 0.21 | 540 | 13.0 | | APR 05 | 1425 | 2.1 | 620 | 0.0 | | 3 | 1335 | 0.29 | 95 | 9.5 | | 0, | 1425 | 2., | 020 | 0.0 | | | | | | | | | 0908040 | 0 | FRYINGPAN | RIVER NEAD | R RUEDI, CO. | | 39 21 56N | LONG 105 | 49 30W) | | | OCT 1987 | 1135 | 138 | 142 | 7.0 | 02 | 1988 | 1440 | 202 | 260 | 4.0 | | NOV
02 | 1435 | 142 | 205 | 8.0 | JUN | 3 | 1445 | 223 | 240 | 5.5 | | DEC
07 | 1355 | 141 | 230 | 6.5 | JUL | 5 | 1425 | 318 | 235 | 6.5 | | JAN 1988
11 | 1405 | 141 | 205 | 3.5 | AUG | 1 | 1355 | 164 | 210 | 7.0 | | FEB
22 | 1355 | 187 | 345 | 4.0 | O8
SEP | 3 | 1325 | 140 | 170 | 8.0 | | APR
04 | 1400 | 187 | 350 | 4.0 | 12 | 2 | 1430 | 178 | 195 | 7.5 | | 09081600 | CRYST | AL RIVER | ABOVE AVA | LANCHE CREE | EK, NEAR REI | DSTONE, | CO. (LAT | 39 13 56 | N LONG 107 | 13 36W) | | OCT_1987 | | | -0- | | | 1988 | | | | | | 07
NOV_ | 0930 | 64 | 380 | 10.0 | 25 | i | 1355
1420 | 206
6 7 1 | 415
230 | 8.5
9.0 | | 03
DEC | 1345 | 81 | 690 | 9.0 | | 7 | 1515 | 907 | 205 | 11.5 | | 09
JAN 1988 | 1335 | 55 | 700 | 3.5 | | 3 | 1335 | 262 | 310 | 15.5 | | 13
FEB | 1150 | 33 | 1060 | 3.5 | AUG
10 |) | 1345 | 115 | 515 | 16.0 | | 02
24 | 0845
1300 | 46
75 | 840
840 | 2.5
4.0 | SEP
14 | 4 | 1340 | 147 | 495 | 9.0 | | APR
06 | 1255 | 76 | 750 | 7.5 | | | | | | | | 09085 | 5000 | ROARIN | G FORK RI | VER AT GLE | WOOD SPRING | GS, CO. | (LAT 39 | 32 37N LO | NG 107 19 | 44W) | | NOV 1987
05 | 0800 | 620 | 658 | 5.5 | 04 | 1988 | 1135 | 826 | 440 | 8.5 | | DEC
09 | 1050 | 530 | 630 | 2.0 | | 3 | 1235 | 4100 | 220 | 8.5 | | JAN 1988
11 | 1145 | 498 | 624 | 2.0 | | ١ | 1135 | 1010 | 520 | 16.0 | | FEB 24 | 1040 | 474 | 615 | 1.5 | | 2 | 0855 | 520 | 713 | 15.5 | | MA R
30 | 1115 | 590 | 582 | 3.5 | SEP
15 | 5 | 1055 | 695 | 650 | 11.5 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |----------------|----------------------|---|---|--------------------------------------|------------------|--------------|---|---|--------------------------------------| | - | 85100 | COLORA | ADO RIVER | BELOW GLENV | WOOD SPRINGS, CO | | 33 18N LON | G 107 20 | 13W) | | OCT 1987
08 | 0800 | 1800 | 650 | 13.0 | MAY 1988
04 | 1445 | 3470 | 560 | 9.5 | | NOV
05 | 1015 | 1840 | 1000 | 8.0 | JUN
 | 1530 | 10100 | 261 | 10.5 | | DEC
09 | 1520 | 1510 | 1010 | 2.5 | JUL
14 | 1450 | 2890 | 530 | 13.0 | | JAN 1988
11 | 1520 | 1670 | 970 | 2.0 | AUG
11 | 1545 | 2110 | 910 | 19.0 | | FEB 24 | 1355 | 730 | 1140 | 4.0 | SEP
15 | 1445 | 2260 | 1100 | 12.0 | | MAR
30 | 1455 | 1920 | 960 | 4.0 | | | | | | | | 09089500 | ī | WEST DIVI | DE CREEK NE | AR RAVEN, CO. (L | AT 39 19 ! | 52N LONG 10 | 7 34 46W) | | | OCT 1987
06 | 1125 | 1.6 | 564 | 6.5 | JUN 1988
09 | 0955 | 117 | 150 | 7.0 | | 06
NoV | 1135 | 1.8 | 564 | 6.5 | 09
15 | 1010
1240 | 117
65 | 150
158 | 7.0
13.0 | | 06
DEC | 1140 | 4.7 | 520 | 6.0 | JUL
15 | 1020 | 6.4 | 299 | 16.5 | | 10
JAN 1988 | 1115 | 3.1 | 538 | 0.0 | 15
AUG | 1120 | 6.7 | 299 | 16.5 | | 14
FEB | 1115 | 3.3 | | 0.0 | 08
08 | 1400
1410 | 1.4
1.4 | 340
340 | 22.0
22.0 | | 25
MAR | 1055 | 2.5 | 340 | 0.0 | 08
SEP | 1420 | 1.4 | 340 | 22.0 | | 31
APR | 1105 | 7.8 | 315 | 0.5 | 16
16 | 1015
1020 | 2.4
2.4 | 324
324 | 7.0
7.0 | | 05
20 | 1010
1115 | 69
153 | 258
192 | 5.0
3.5 | 16
16 | 1035
1130 | 2.2
2.4 | 324
324 | 7.0
7.0 | | MAY
05 | 1115 | 69 | 258 | 5.0 | | | | | | | 20 | 1250 | 153 | 192 | 3.5 | | | | | | | | 09093700 | (| COLORADO I | RIVER NEAR | DE BEQUE, CO. (L | AT 39 21 | 15N LONG 10 | 8 09 07W) | | | OCT 1987
01 | 1100 | 1820 | 1080 | 13.0 | APR 1988
21 | 1300 | 3900 | 662 | 10.0 | | 22
NOV | 1200 | 1670 | 1160 | 8.0 | MAY
23 | 1000 | 6310 | 471 | 10.5 | | 19
DEC | 1100 | 1870 | 1120 | 1.5 | JUN
16 | 1100 | 6740 | 502 | 15.0 | | 10
FEB 1988 | 1100 | 1660 | 1200 | 2.5 | JՄL
21 | 1100 | 2040 | 927 | 21.0 | | 09
24 | 1400
1400 | 1450
1690 | 1190
1100 | 0.5
4.0 | SEP
01 | 0900 | 1940 | 1010 | 18.0 | | MAR
17 | 1100 | 1540 | 1150 | 3.5 | | | | | | | | 0909550 | 0 | COLORADO | RIVER NEAR | CAMEO, CO. (LAT | 39 14 201 | LONG 108 | 16 00W) | | | OCT 1987
O8 | 1200 | 2050 | 1140 | 12.0 | MAY 1988
04 | 1300 | 3850 | 644 | 11.0 | | 14
21 | 1000
1000 | 2170
1970 | 1110
1170 | 11.0
8.0 | 11
18 | 1300
1000 | 3440
9980 | 719
380 | 13.5
11.5
11.5 | | 21
28 | 1400
1000 | 1970
1970 | 1170
1370 | 8.0
9.0 | 18
25 | 1200
1100 | 9980
5960 | 380
514 | 11.5
13.5 | | NOV
05 | 1300 | 2150 | 1140 | 9.5 | JUN
01 | 1100 | 7740 | 452 | 10.0 | | 12
18 | 1000
1300 | 2290
1930 | 1160
1140 | 6.0
1.5 | 08
15 | 1300
1000 | 11400
6660 | 350
491 | 13.0
13.5
13.5 | | 25
DE C | 1100 | 1950 | 1140 | 2.0 | 15
22 | 1300
1300 | 6660
6770 | 491
4 45 | 17.0 | | 02
09 | 1200
1000 | 1820
1820 | 1140
1090 | 0.0
2.0 | JUL _ | 0940 | 5230 | 600 | 17.5 | | 09
JAN 1988 | 1200 | 1820 | 1090 | 2.0 | 06
13 | 1000
1200 | 4520
3000 | 590
741 | 18.5
20.5 | | 28
FEB | 1300 | 1720 | 1240 | 0.0 | 20
20 | 1100
1300 | 2070
2070 | 935
935 | 20.0 | | 26
MAR | 1300 | 2000 | 1140 | 3.5 | 27
AUG | 1300 | 2130 | 1010 | 21.0 | | 02
02 | 0900
1200 | 1970
1970 | 1120 | 5.5
5.5 | 03
17 | 1100
0930 | 2400
2210 | 893
945 | 20.5 | | 09
16 | 1300
1400 | 1730
1800 | 1060
1370 | 6.0
4.0 | 24
31 | 0900
1000 | 2210
2130 | 964
1020 | 19.5
18.5 | | 23
30 | 1200
0935 | 1980
2030 | 1160
1100 | 7.5
4.5 | 31
SEP | 1100 | 1980 | 1020 | 18.5 | | APR
06 | 1300 | 2550 | 1020 | 10.0 | 09
16 | 1110
1200 | 1750
2290 | 1120
910 | 17.0
14.0 | | 13 | 1300
1000 | 2790
3800 | 888
667 | 11.0
12.0 | 22 | 1000
1200 | 2080
2010 | 1020
1020 | 14.5
14.5
12.0 | | 20
27 | 130 0
1010 | 3800
3190 | 667
850 | 12.0
9.0 | 30 | 1000 | 1920 | 1060 | 12.0 | | OCT 1987 | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) |
--|----------|----------|---|---|--------------------------------------|---------|--------------|------------------|---|---|--------------------------------------| | Note | | 091050 | 000 | PLATEAU | CREEK NEAR | CAMEO, | CO. (LAT 39 | 11 00N | LONG 108 | 16 10W) | | | Second 1000 124 753 6.0 3UN 16 0900 101 562 16.0 | 01 | 0800 | 102 | 570 | 8.0 | | 17 | | | | | | TOT. 1987 10.00 10 | 05 | 1000 | 124 | 753 | 6.0 | | JUN | | | | | | 09 1000 60 7447 0.0 27 1200 64 464 22.0 23 1300 63 765 3.0 ABG 31 0900 76 800 17.0 APR 1000 107 652 4.0 31 0900 76 800 17.0 PARK RESERVOIR, CO. (LAT 38 49 06N LONG 106 36 31N) O9109000 TAYLOR RIVER BELON TAYLOR PARK RESERVOIR, CO. (LAT 38 49 06N LONG 106 36 31N) PARK 1306 109 130 6.0 011 1046 74 87 | 10 | 0800 | 119 | 752 | 1.5 | | JUL | - | | - | | | MAR 16 1000 107 652 4.0 | 09 | | | | | | 27 | | | | | | 09109000 TAYLOR RIVER BELOW TAYLOR PARK RESERVOIR, CO. (LAT 38 49 06N LONG 106 36 31W) OCT 1987 14 1306 109 130 6.0 01 1046 74 87 NOV 17 1135 124 148 4.0 04 1559 74 87 6.0 BEG 7 1555 76 153 4.0 23 1750 316 52 4.0 ANALY 23 1750 316 52 4.0 OP11000 TAYLOR RIVER AT ALMONT, CO. (LAT 38 39 52N LONG 106 50 41W) OCT 1987 17 1446 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0815 124 274 0.0 OCT 1987 18 1605 74 415 7.0 APR 1988 26 0815 124 274 0.0 OCT 1987 18 1529 78 442 4.0 MAY 19 17 1605 74 415 7.0 APR 1988 26 0815 124 274 0.0 OCT 1987 18 1529 78 442 4.0 MAY 19 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 70 462 1.0 AUG 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1008 264 234 1.0 AUG 09 1008 264 234 1.0 AUG 09 0800 262 6.0 09 0800 264 262 6.0 09 0800 264 262 6.0 | MA R | | | | | | 31 | 0900 | 76 | 800 | 17.0 | | OCT 1987 14 1306 109 130 6.0 MAR 1988 74 87 6-0 DEC | | 1000 | - | | | | | | | | | | OCT 1987 14 1306 109 130 6.0 MAR 1988 74 87 6-0 DEC | | | | | | | | | | | | | 13 1306 109 | | 000 | TAYLOR | RIVER BEL | OW TAYLOR F | PARK RE | , | (LAT 38 | 3 49 06N L | ONG 106 3 | 6 31W) | | 17 | 14 | 1306 | 109 | 130 | 6.0 | | 01 | 1046 | 74 | 87 | | | OT: 1546 72 140 3.0 09 1750 316 52 4.0 JAN 1988 25 1555 76 153 4.0 23 1345 249 80 9.5 O9110000 TAYLOR RIVER AT ALMONT, CO. (LAT 38 39 52N LONG 106 50 41W) OCT 1987 14 1440 193 220 10.0 APR 1988 05 0915 135 267 NOV 1416 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0845 124 274 0.0 OCT 1987 14 1605 74 415 7.0 APR 1988 05 0812 107 428 3.0 NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG 28 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG 28 1223 719 216 8.0 OOT 1987 15 0800 304 267 4.0 AUG 28 1220 117 292 17.5 OCT 1987 15 0800 309 257 1.0 08 099 1815 663 217 6.0 NOV 181 1245 63 512 OOT 1987 15 0800 309 257 1.0 08 099 1815 663 217 6.0 NOV 181 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0800 304 267 4.0 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 309 257 1.0 08 099 1815 663 217 6.0 OCT 1988 15 0800 264 234 1.0 AUG 24 1520 435 188 20.0 OCT 1987 15 0655 364 262 6.0 OP118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 15 1209 33 217 9.0 02 0925 27 238 2.0 OP118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 OCT 1987 13 1229 33 217 9.0 02 0925 27 238 2.0 | 17 | 1135 | 124 | 148 | 4.0 | | 04 | 1559 | 74 | 87 | 6.0 | | 25 1555 76 153 4.0 23 1345 249 80 9.5 09110000 TAYLOR RIVER AT ALMONT, CO. (LAT 38 39 52N LONG 106 50 41W) OCT 1987 14 1440 193 220 10.0 05 0915 135 267 NOV 17 1416 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0815 124 274 0.0 OCT 1987 14 1605 74 415 7.0 05 0812 107 428 3.0 NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1529 78 442 4.0 10 1220 270 274 7.0 JAN 1988 26 1008 68 417 1.0 08 1225 1280 217 9.0 OG 1529 63 512 OGI 1987 01 1245 63 309 257 1.0 08 1220 117 292 17.5 OCT 1987 15 0800 304 267 4.0 099 1815 663 217 6.0 NOV 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 15 0830 309 257 1.0 08 099 1815 663 217 6.0 OCT 1987 16 1235 24 220 0.5 APR 1988 20.0 OCT 1987 16 1235 24 240 3.0 06 0995 27 238 2.0 OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 OCT 1987 13 1209 33 217 9.0 02
0925 27 238 2.0 OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 OCT 1987 13 1209 33 217 9.0 06 0915 34 267 2.0 | 07 | 1546 | 72 | 140 | 3.0 | | 09 | 1750 | 316 | 52 | 4.0 | | OCT 1987 14 1440 193 220 10.0 MAY 17 1416 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0815 124 274 0.0 OCT 1987 14 1605 74 415 7.0 05 0812 107 428 3.0 NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 DAN 1988 26 1010 70 462 1.0 AUG 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 AUG 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 09 1220 117 292 17.5 OCT 1987 15 0800 264 234 1.0 AUG 09 0800 264 234 1.0 AUG 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 09 0800 264 234 1.0 AUG 1987 1988 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 APR 06 0655 24 240 3.0 06 0915 34 267 2.0 | | 1555 | 76 | 153 | 4.0 | | | 1345 | 249 | 80 | 9.5 | | 14 1440 193 220 10.0 05 0915 135 267 NOV 17 1416 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0815 124 274 0.0 OTT 1987 16 1529 78 442 4.0 95 0812 107 428 3.0 NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG 08 1245 63 512 OTT 1987 15 0800 304 267 4.0 AUG 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 09 1220 117 292 17.5 OCT 1987 15 0800 264 234 1.0 AUG 09 269 220 0.5 APR 06 0655 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 ARR 1988 06 0995 27 238 2.0 APR 06 0655 24 240 3.0 OG 0995 27 238 2.0 APR 13 1209 33 217 9.0 ARR 1988 02 0925 27 238 2.0 APR 13 1209 33 217 9.0 ARR 1988 02 0925 27 238 2.0 APR 13 1235 24 240 3.0 OG 0995 34 267 2.0 | | 09110 | 0000 | TAYLOR | RIVER AT AL | MONT, | CO. (LAT 38 | 39 52 N I | ONG 106 5 | 50 41W) | | | NOV 17 1416 181 267 4.0 10 1200 371 112 4.0 DEC 08 0845 121 247 1.0 23 1200 318 107 16.0 JAN 1988 26 0815 124 274 0.0 OCT 1987 11 1529 78 442 4.0 08 1220 270 274 7.0 DEC 08 1010 70 462 1.0 08 1225 1280 217 9.0 OCT 1987 15 0810 304 267 4.0 08 1220 117 292 17.5 OCT 1987 15 0800 304 267 4.0 09 1815 663 217 6.0 OCT 1987 15 0800 304 267 4.0 09 1815 663 217 6.0 OCT 1987 15 0800 264 234 1.0 AUG 09 265 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 APR 06 0955 27 238 2.0 NOV 16 1235 24 240 3.0 O66 0915 34 267 2.0 | | 1440 | 193 | 220 | 10.0 | | | 0915 | 135 | 267 | | | DEC | NOV | | | | | | MA Y | | | | 4.0 | | JAN 1988 26 0815 124 274 0.0 09112500 EAST RIVER AT ALMONT CO. (LAT 38 39 52N LONG 106 50 50W) OCT 1987 14 1605 74 415 7.0 05 0812 107 428 3.0 MAY 17 1529 78 442 4.0 10 17 08 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG 24 1220 117 292 17.5 MAR 01 1245 63 512 OST 1987 15 0800 304 267 4.0 09 15 0800 304 267 4.0 09 18 0830 309 257 1.0 08 1988 14 18 0830 309 257 1.0 08 1988 14 18 0830 309 257 1.0 08 18 0830 309 257 1.0 08 18 0830 309 257 1.0 08 18 08 090 18 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 08 09 08 09 08 09 08 09 08 09 08 | DE C | | 121 | | | | AUG | | | 107 | | | OCT 1987 14 1605 74 415 7.0 05 0812 107 428 3.0 NOV MAY 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 38 1225 1280 217 9.0 38 1225 1280 217 9.0 38 1225 1280 217 9.0 38 1225 1280 217 9.0 38 1225 1280 217 9.0 38 1225 1280 217 9.0 8.0 28 1223 719 216 8.0 24 1220 117 292 17.5 OTHER STATE STAT | | 0815 | 124 | 274 | 0.0 | | | | | | | | 14 1605 74 415 7.0 05 0812 107 428 3.0 NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 DEC 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG 08 1223 719 216 8.0 26 1010 70 462 1.0 AUG 09 1245 63 512 O9114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 09 0800 264 234 1.0 AUG 09 0800 264 234 1.0 AUG 09 0800 264 234 1.0 AUG 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 ARR 1988 06 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 0911 | 12500 | EAST F | IVER AT ALM | MONT CO | . (LAT 38 39 | 52N LON | IG 106 50 | 50W) | | | NOV 17 1529 78 442 4.0 10 1220 270 274 7.0 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 28 1223 719 216 8.0 28 1223 719 216 8.0 28 1223 719 216 8.0 29 1245 63 512 09114500 CUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 4.0 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 09 0800 264 234 1.0 AUG 091 1500 229 220 0.5 APR 06 0655 364 262 6.0 09118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 NOV 18 1209 33 217 9.0 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 1605 | 74 | 415 | 7.0 | | | 0812 | 107 | 428 | 3.0 | | 08 1008 68 417 1.0 08 1225 1280 217 9.0 JAN 1988 26 1010 70 462 1.0 AUG MAR 01 1245 63 512 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 | | 1529 | 78 | 442 | 4.0 | | | 1220 | 270 | 274 | 7.0 | | 26 1010 70 462 1.0 AUG 24 1220 117 292 17.5 MAR 01 1245 63 512 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 MAY 1988 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 29 0735 1650 172 10.0 MAR 1988 24 1520 435 188 20.0 MAR 1988 24 1500 229 220 0.5 APR 06 0655 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 APR 06 0915 34 267 2.0 | 08 | 1008 | 68 | 417 | 1.0 | | | 1225 | 1280 | 217 | | | 01 1245 63 512 09114500 GUNNISON RIVER NEAR GUNNISON, CO. (LAT 38 32 31N LONG 106 56 57W) OCT 1987 15 0800 304 267 4.0 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 29 0735 1650 172 10.0 O9 0800 264 234 1.0 AUG 29 0735 1650 172 10.0 MAR 1988 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 O9118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | 26 | 1010 | 70 | 462 | 1.0 | | AUG | | | | | | OCT 1987 15 0800 304 267 4.0 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 09 09 0800 264 234 1.0 AUG 09 09 0800 229 220 0.5 APR 06 0655 364 262 6.0 OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0915 34 267 2.0 MAR 1988 06 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 1245 | 63 | 512 | | | 24 | 1220 | 117 | 292 | 1 7. 5 | | 15 0800 304 267 4.0 09 1815 663 217 6.0 NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 29 0735 1650 172 10.0 09 0800 264 234 1.0 AUG 24 1520 435 188 20.0 APR 06 0655 364 262 6.0 09118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV APR 1335 24 240 3.0 06 0915 34 267 2.0 | | 09114500 |) (| GUNNISON F | IVER NEAR O | GUNNISO | N, CO. (LAT | 38 3 2 3 | IN LONG 10 | 16 56 57W) | | | NOV 18 0830 309 257 1.0 08 0907 2160 182 9.0 DEC 09 0800 264 234 1.0 AUG 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 09118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 0800 | 304 | 267 | 4.0 | | | 1815 | 663 | 217 | 6.0 | | 09 0800 264 234 1.0 AUG MAR 1988 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 09118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | NOV | | | | | | JUN | | _ | | | | 14 1500 229 220 0.5 APR 06 0655 364 262 6.0 09118450 COCHETOPA CREEK BELOW ROCK CREEK NEAR PARLIN, CO. (LAT 38 20 08N LONG 106 46 18M) OCT 1987 13 1209 33 217 9.0 MAR 1988 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 0800 | 264 | 234 | 1.0 | | | 0735 | 1650 | 172 | 10.0 | | 06 0655 364 262 6.0 09118450 | | 1500 | 229 | 220 | 0.5 | | 24 | 1520 | 435 | 188 | 20.0 | | OCT 1987 13 1209 33 217 9.0 02 0925 27 238 2.0 NOV 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 0655 | 364 | 262 | 6.0 | | | | | | | | 13 1209 33 217 9.0 02 0925 27 238 2.0 NOV APR 16 1235 24 240 3.0 06 0915 34 267 2.0 | 09118450 | cc | CHETOPA (| CREEK BELC | W ROCK CREE | K NEAR | PARLIN, CO. | (LAT 38 | 3 20 08N L | ONG 106 46 | 5 18M) | | NOV APR 16 1235 24 240 3.0 06 0915 34 267 2.0 | | 1200 | 33 | 217 | 0.0 | | | 0035 | 27 | 228 | 2 0 | | | NOV | | | | | | APR | | | | | | 08 1200 18 143 1.0 10 0910 27 374 4.0 | DEC | | _ | | | | MA Y | | - | | | | JAN 1988 AUG 26 1200 23 261 24 1005 52 169 15.0 | JAN 1988 | | | | | | AUG | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) |
TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|----------|---|---|--------------------------------------|-------------------|--------------|---|--|--------------------------------------| | | 0911900 | 00 | TOMICHI C | REEK AT GU | JNNISON, CO. (LAT | 38 31 18N | LONG 106 | 56 25W) | | | OCT 1987
13 | 1343 | 81 | 390 | 11.0 | JAN 1988
26 | 1445 | 86 | 382 | 0.0 | | NOV
16 | 1515 | 128 | 417 | | MA R | 0100 | 69 | 279 | | | DE C
08 | 1350 | 114 | 442 | 2.0 | 14
AUG
24 | 1300
1355 | 94
128 | 247
236 | 1.5
26.0 | | | 09124 | 1500 | IAVE EO | פע איד מאידנ | EVIEW, CO. (LAT 3 | | | | 2010 | | OCT 1987 | 09124 | , 500, | LAKE FO | NK AI GAIL | MAR 1988 | , 11 JON E. | DNG 101 13 | 10117 | | | 15
NOV | 1002 | 70 | 27 7 | 9.0 | 02
APR | 1158 | 59 | 162 | 4.0 | | 18
DEC | 1142 | 44 | 310 | 3.0 | 06
Ma y | 1215 | 65 | 212 | 7.0 | | 09
JAN 1988 | 1150 | 52 | 237 | 2.0 | 11
AUG | 1030 | 123 | 72 | 4.0 | | 27 | | 46 | 218 | | 22 | 1600 | 159 | 137 | 20.5 | | | 09126000 |) | CIMARRON R | IVER NEAR | CIMARRON, CO. (LA | AT 38 15 4 | 5N LONG 10 | 7 32 39 W) | | | OCT 1987
08 | 1010 | 29 | 160 | 8.0 | MAY 1988
11 | | 25 | 93 | 5.0 | | 20
NOV | 1345 | 36 | 170 | 13.0 | JUL 14 | 1110 | 109 | | 10.0 | | 18
DEC | 1425 | 20 | 225 | 2.0 | AUG
25 | 1105 | 100 | 96 | 15.5 | | 09
JAN 1988 | 1250 | 20 | 230 | 3.0 | | , | | , , | | | 27 | 1410 | 21 | 212 | 2.0 | | | | | | | 091 | 28000 | GUNN | ISON RIVER | BELOW GU | NNISON TUNNEL, CO | (LAT 38 | 31 45N LON | G 107 38 | 54W) | | OCT 1987
08 | 1355 | 965 | 150 | 11.0 | APR 1988
07 | 1443 | 880 | | 5.0 | | NOV
18 | 1030 | 1470 | 185 | 8.5 | MAY 12 | | 367 | 198 | 9.0 | | 19
JAN 1988 | 0857 | 1520 | 160 | 6.0 | 12
JUL | 1150 | 367 | 203 | 9.0 | | 13
MAR | 1030 | 1560 | 196 | 3.0 | 12
SEP | 0840 | 356 | 211 | 10.0 | | 29 | 0850 | 1610 | 242 | 3.5 | 01 | 1620 | 542 | 190 | 13.5 | | | 091285 | 500 | SMITH FO | RK NEAR C | RAWFORD, CO. (LAT | 38 43 40N | LONG 107 | 30 22W) | | | 0CT 1987
06 | 1545 | 8.7 | 145 | 12.0 | MAY 1988
05 | 1405 | 91 | 120 | 10.0 | | 05 | 1430 | 13 | 100 | 7.0 | 26
JUN | 1415 | 98 | 95 | 11.5 | | DEC
10 | 1315 | 8.1 | 135 | 2.5 | 22
JUL | 1520 | 44 | 110 | 18.0 | | JAN 1988
14
FEB | 0820 | 6.5 | 220 | 0.0 | 14
AUG
11 | 1345
1405 | 11
4.3 | 145
165 | 21.0 | | 25
APR | 1255 | 14 | 200 | 1.0 | SEP 15 | 1345 | 14 | 150 | 13.5 | | 07 | 1340 | 42 | 180 | 8.5 | 19 | 1347 | 14 | 150 | 13.7 | | 09132 | 500 | NORTH | FORK GUNNI | SON RIVER | NEAR SOMERSET, CO |). (LAT 38 | 55 45N LO | NG 107 26 | 53W) | | OCT 1987
06 | 0935 | 70 | 205 | 5.0 | MAY 1988
05 | 0935 | 815 | 155 | 6.0 | | NOV
05 | 0950 | 90 | 205 | 2.0 | 26
JUN | 0935 | 1070 | 85 | 6.0 | | DEC 10 | 0835 | 7 5 | 190 | 0.0 | 22
JUL | 0950 | 729 | 85 | 12.5 | | FEB 1988
02 | 1120 | 80 | 230 | 0.0 | 14
AUG | 0825 | 226 | 140 | 12.5 | | 25
APR | 0855 | 75 | 235 | 0.0 | 11
SEP | 0825 | 238 | 155 | 11.5 | | 07 | 0900 | 334 | 195 | 2.0 | 15 | 0825 | 112 | 160 | 7.5 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | D | ATE | | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |-----------------------|--------------|---|---|--------------------------------------|------------|-------------------|--------|------|----------------|---|---|---------------------------------------| | | 09134000 | ì | MINNESOTA | CREEK NEAR | PAONI | A, CO. | (LAT | 38 | 52 13 N | LONG 107 | 30 06W) | | | 0CT 1987
06 | 1205 | 3.5 | 645 | 9.0 | | MAY 05 | | | 1125
1140 | 21 | 390
255 | 9.0
6.5 | | NOV
05
DEC | 1150 | 5.7 | 750 | 5.0 | | 26.
JUN
22. | | | 1210 | 37
36 | 275 | 15.5 | | 10
JAN 1988 | 1035 | 4.7 | 680 | 0.0 | | JUL 14. | | | 1045 | 24 | 270 | 15.5 | | 14
FEB | 1035 | 3.7 | 890 | 0.0 | | AUG
11. | | | 1105 | 14 | 205 | 16.0 | | 25
APR | 1035 | 3.6 | 1120 | 0.0 | | SEP
15. | | | 1100 | 5.2 | 140 | 9.5 | | 07 | 1100 | 10 | 770 | 5.0 | | | | | | | | | | | 09135900 | 0 | LEROUX CR | EEK AT HOT | CHKISS, | | | 38 1 | 7 53N L | ONG 107 | 43 53W) | | | OCT 1987 | 1030 | 8.2 | 1590 | 11.0 | | MAY 1 | | | 1555 | 2.9 | 1390 | 17.0 | | NOV
06 | 0815 | 11 | 1400 | 8.0 | | JUN
23 | | | 1400 | 4.8 | 1020 | 23.0 | | DEC
10 | 1500 | 9.6 | 1270 | 9.0 | | JUL
14.
AUG | | | 1555 | 2.8 | 38 | 23.5 | | JAN 1988
14
FEB | 1445 | 7.9 | 1480 | 3.5 | | 11.
SEP | | | 1625 | 5.5 | 255 | 22.0 | | 02
25
APR | 1345
1445 | 7.0
7.6 | 1820
1490 | 7.0
10.0 | | 15. | ••• | | 1640 | 8.1 | 1780 | 16.5 | | 07 | 1535 | 4.5 | 1390 | 17.5 | | | | | | | | | | | 09143000 | 2 | SURFACE CR | EEK NEAR C | E DA RE DO | GE, CO. | . (LAT | 38 | 3 59 05N | LONG 10 | 7 51 13W) | | | OCT 1987
07 | 1030 | 21 | 110 | 5.0 | | MAY 1 | | | 0810 | 65 | 110 | 2.0 | | NOV
06 | 1025 | 7.8 | 170 | 5.0 | | 27.
JUN | | | 0835 | 133 | 95 | 3.5 | | DEC 11 | 0840 | 5.5 | 145 | 0.0 | | 23.
JUL | | | 0905 | 90 | 75 | 9.5 | | JAN 1988
15 | 0935 | 5.0 | 180 | 0.0 | | 07.
15. | | | 1310
0855 | 62
88 | 90
90 | 15.0
11.0 | | FEB
26 | 0900 | 6.0 | 175 | 0.0 | | AUG
12. | | | 0815 | 64 | 7 5 | 12.5 | | APR
08 | 0850 | 34 | 160 | 0.0 | | SEP
16. | | | 0810 | 9.0 | 120 | 4.0 | | | 0914350 | 0 | SURFACE C | REEK AT CE | DA RE DGE | c, co. | (LAT | 38 | 54 06N | LONG 107 | 55 14W) | | | OCT 1987
07 | 1245 | 14 | 145 | 9.0 | | MAY 1 | | | 1000 | 64 | 130 | 4.0 | | NO V
06 | 1200 | 11 | 205 | 6.0 | | | ••• | | 1020 | 7 5 | 95 | 7.0 | | DEC 11 | 1050 | 2.0 | 230 | 2.0 | | 23.
JUL | | | 1050 | 27 | 85 | 14.0 | | JAN 1988
15 | 1155 | 2.2 | | 0.0 | | AUG. | | | 1050 | 30 | 85 | 14.0 | | FEB 26 | 1135 | 3.8 | 240 | 0.0 | | 12.
SEP | | | 1110 | 25 | 75 | 15.5 | | APR
08 | 1045 | 38 | 117 | 3.0 | | 16. | ••• | | 1005 | 10 | 130 | 8.5 | | | 0914425 | 50 | GUNNISON | RIVER AT | DELTA, | CO. (L | .AT 38 | 3 45 | 01N LC | ONG 108 0 | 4 06W) | | | OCT 1987
09 | 1200 | 1340 | 1000 | 12.0 | | APR 1 | | | 1200 | 1820 | 565 | 8.0 | | NOV
16 | 1600 | 1730 | 657 | 6.5 | | MAY 09. | | | 1200 | 1300 | 708 | 11.0 | | 19
DEC | 0830 | 1700 | 570 | 4.5 | | 16.
JUN | ••• | | 1200 | 1950 | 482 | 14.5 | | 14
JAN 1988 | 1200 | 1830 | 580 | 3.0 | | 20.
JUL | | | 1300 | 1210 | 841 | 19.5 | | 11
25 | 1300
1100 | 1940
1810 | 520
425 | 3.0
0.0 | | 07.
12. | | | 1200
1100 | 590
520 | 1010
1290 | 19.0
18.5 | | FEB
22 | 1300 | 1870 | 477 | 4.0 | | 13.
18. | •• | | 1130
1245 | 420
402 | 1060
1410 | 19.5
22.0 | | MAR
21
31 | 1300
1230 | 1740
2150 | 534
480 | 7.5
5.0 | | AUG
29. | •• | | 1000 | 637 | 1350 | 17.0 | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------------|--------------|---|---|--------------------------------------|-----------------------|-------------------|---|--|--------------------------------------| | | 09146200 | UN | COMPAHGRE | RIVER NEAR | RIDGWAY, CO. | (LAT 38 11 0 | D2N LONG 1 | 07 44 43W |) | | OCT 1987
06
NOV | 0835 | 7 5 | 664 | 6.0 | MAY 1988
12
25 | 3
1130
1110 | 176
251 | 288
323 | 9.0
10.0 | | 18
JAN 1988 | 1235 | 51 | 810 | 0.5 | JUN 08 | 1415 | 586 | 223 | 13.0 | | 14
MA R | | 41 | 688 | 0.0 | 29
AUG | 1335 | 495 | 433 | 12.0 | | 02
APR | | 65 | 865 | 5.0 | 03
SEP | 1535 | 132 | 721 | 22.0 | | 06 | | 68 | 630 | 5.0 | 21 | 1025 | 165 | 541 | 12.0 | | | 0914700 | 0 | DALLAS CRE | CEK NEAR RI | DGWAY, CO. (LAT | | LONG 107 | 45 28 W) | | | OCT 1987
06 | 0935 | 18 | 795 | 5.5 | MAY 1988
12 | 3
1240 | 1.3 | 782 | 16.0 | | NOV
18 | 1105 | 20 | 934 | 0.0 | JUN
08 | 1530 | 11 | 597 | 19.0 | | JAN 1988 | 1110 | 18 | 622 | 0.0 | 29
AUG | 1255 | 262 | 475 | 12.0 | | MAR
02 | 1135 | 30 | 682 | 5.0 | 04
SEP | 0900 | 55 | 582 | 12.0 | | APR
06 | 1220 | 36 | 560 | 7.0 | 21 | 1140 | 34 | 704 | 14.0 | | | 09147500 | Ţ | IN COMPAHGRE | RIVER AT | COLONA, CO. (LA | AT 38 19 531 | N LONG 107 | 46 44 W) | | | OCT 1987
08
NOV | 1645 | 345 | 695 | 15.0 | APR 1988
08
MAY | 1105 | 145 | 443 | 7.0 | | 18 | 0900
1202 | 148
123 | 725
730 | 3.0
6.0 | 12 | 0830
1200 | 137
137 | 612
833 | 6.0
6.0 | | DE C 10 | 1145 | 99 | | 3.0 | JUN 10 | 1200 | 269 | 172 | 8.0 | | JAN 1988
13 | 0900 | 93 | 835 | 0.0 | 30
JUL | | 300 | 247 | 10.0 | | 28
MAR | 0855 | 91 | | 3.0 | 12
SEP | 1100 | 237 | 505 | 13.5 | | 03
29 | 1034
1115 | 83
84 | 517
770 | 3.0 | 02 | 0925 | 146 | 486 | 13.0 | | | 0914950 | 0 | UN COMPAHGE | RE RIVER AT | DELTA, CO. (LA | | N LONG 108 | 04 49 W) | | | OCT 1987
05
NOV | 1700 | 416 | 1290 | 16.0 | MAR 1988
22
31 |
3
0800
1040 | 100
296 | 2310
1120 | 7.5
4.0 | | 16 | 1100
1230 | 175
172 | 2130
2140 | 3.5
4.5 | APR 19 | 0800 | 258 | 1110 | 8.0 | | DE C
15 | 0800 | 83 | 2300 | 0.0 | MA Y 09 | 1130 | 116 | 1590 | 12.0 | | JAN 1988
11 | 1200 | 129 | 2260 | 0.5 | 17
JUN | 0800 | 145 | 1610 | 13.0 | | 25
FEB | 1500 | 128 | | 0.5 | 21
JUL | 0800 | 262 | 1650 | 15.5 | | 23 | 0800 | 151 | 2150 | 0.5 | 12
14 | 1200
0900 | 192
178 | 1630
1690 | 19.5
16.5 | | | 0915150 | 0 | ESCALANTE | CREEK NEAR | DELTA, CO. (LA | | N LONG 108 | 15 34W) | | | 0CT 1987
02 | 1000 | 6.2 | 570 | 12.0 | MAY 1988 | 0900 | 176 | 250 | 8.5 | | NOV
17 | 1200 | 13 | 496 | 3.0 | 16
31 | 1000
1000 | 181
66 | 213
333 | 11.5
11.0 | | DEC
14
JAN 1988 | 1000 | 13 | 562 | 0.0 | JUN
07 | 1200 | 27
13 | 456
536 | 19.0
20.0 | | 26
FEB | 0900 | 13 | 523 | 0.0 | 20
JUL
18 | 1000
1000 | 6.0 | 600 | 20.0 | | 22
MA R | 0900 | 15 | 544 | 0.5 | AUG 26 | 1100 | 6.5 | 460 | 23.0 | | 21
APR | 1000 | 20 | 492 | 7.0 | 20 | . 100 | 3.5 | | _5,0 | | 18 | 1000 | 192 | 198 | 5.5 | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | |----------------|--------------|---|---|--------------------------------------|---------------------|--------------------------------|---|---|--------------------------------------|-----| | | 0915 | 3290 | REED W | ASH NEAR | MACK, CO. (LAT 39 | 12 41N LON | IG 108 48 | 11W) | | | | OCT 1987
23 | 0800 | 75 | 1790 | 8.5 | APR 1988
19 | 1100 | 55 | 1300 | 13.0 | | | NOV
12 | 1200 | 11 | 4630 | 9.0 | MA Y
31 | 1400 | 51 | 1390 | 16.0 | | | DE C
11 | 0800 | 80 | 1380 | 3.0 | JUN
21 | 1300 | 47 | 1700 | 20.5 | | | JAN 1988
29 | 1300 | 4.7 | 4770 | 2.5 | JUL | 1400 | 49 | 2160 | 22.0 | | | FEB
18 | 0900 | 4.2 | 4630 | 1.5 | AUG 26 | 1600 | 63 | 2030 | 23.0 | | | MA R
22 | 1300 | 4.2 | 5080 | 13.5 | | , , , , | | 2000 | 2310 | | | 09163570 | HAY PRES | SS CREEK A | BOVE FRUI | TA RESERV | OIR #3, NEAR GLAD | E PARK, CO. | . (LAT 38 | 51 03N LO | NG 108 46 5 | 56) | | OCT 1987 | | | | | FEB 1988 | , | | | | | | 08
DEC | 0800 | 0.01 | 203 | 5.0 | 16
MAR | 1400 | 0.05 | 196 | 0.5 | | | 28
JAN 1988 | | 0.04 | 198 | 0.0 | 24 | 1200 | 0.04 | 181 | 0.5 | | | 29 | 0900 | 0.04 | 190 | 0.5 | | | | | | | | | 091650 | 000 | DOLORES | RIVER BEL | LOW RICO, CO. (LAT | 37 38 20N | LONG 108 | 03 35 W) | | | | OCT 1987
06 | 1345 | 33 | 417 | 10.0 | MAY 1988
12 | 1530 | 284 | | 12.0 | | | NOV
18 | 1515 | 50 | 532 | 1.0 | 25
JUN | 1355 | 367 | 155 | 7.0 | | | JAN 1988
14 | 1420 | 20 | | 0.0 | JUL
08 | 1040 | 539 | 95 | 5.0 | | | MAR
02 | 1355 | 34 | 487 | 3.0 | 06
AUG | 1300 | 132 | 215 | 17.0 | | | APR
06 | 1445 | 74 | 350 | 10.0 | 04
SEP | 1230 | 65 | 298 | 15.0 | | | | | · | | | 22 | 1600 | 107 | 236 | 12.0 | | | | 091665 | 500 | DOLORES | RIVER AT | DOLORES, CO. (LAT | 37 28 16N | LONG 108 | 30 15W) | | | | OCT 1987
08 | 1030 | 71 | 388 | 9.0 | MAY 1988
16 | 1050 | 1910 | 150 | 8.0 | | | NOV 30 | 1030 | 42 | 445 | 0.0 | JUN
02 | 1150 | 766 | 197 | 10.5 | | | FEB 1988
25 | | 78 | 700 | 0.0 | JUL
06 | 1400 | 360 | 227 | 24.0 | | | MAR 23 | 1120 | 158 | 402 | 6.0 | AUG
04 | 1405 | 217 | 304 | 22.0 | | | APR 26 | 1035 | 632 | 237 | 5.0 | 04 | 1405 | 211 | 504 | 22.0 | | | | 09166950 | 1.0 | ST CANYON | CREEK NE | EAR DOLORES, CO. (1 | ι.Δ . Τ 3 7 26 Ι | 15N LONG 1 | 08 28 03 W |) | | | NOV 1987 | * *- | 20 | 51 0 | OHEER WE | MAY 1988 | | TON DONG | 00 20 05" | , | | | 30
FEB 1988 | 0935 | 1.4 | 240 | 0.0 | 16
26 | 1000
1510 | 35
1.5 | 85
950 | 12.0
22.0 | | | 25
MA R | 1515 | 2.6 | 680 | 0.5 | JUN
02 | 1030 | 0.81 | 482 | 14.0 | | | 23
APR | 0945 | 8.2 | 172 | 5.0 | 23
JUL | 1425 | 0.25 | 837 | 28.0 | | | 13
26 | 1045
0920 | 92
64 | 60
100 | 4.0
5.0 | 05
AUG | 1415 | 0.13 | 1080 | 25.0 | | | 23777 | 0,20 | • | , 00 | , | 31 | 1610 | 0.54 | 392 | 21.5 | | | | 09172500 | SAN | MIGUEL RI | VER NEAR | PLACERVILLE, CO. | (LAT 38 02 | 05N LONG | 108 07 15 | W) | | | OCT 1987
06 | 1130 | 91 | 385 | 9.0 | MAY 1988
12 | 0935 | 204 | 228 | 6.5 | | | NOV 18 | 0915 | 73 | 388 | 0.0 | 25
JUN | 0855 | 364 | 282 | 6.5 | | | JAN 1988 | | 67 | 368 | 0.0 | 08
29 | 1 7 30
1030 | 748
725 | 158
207 | 13.5
10.0 | | | MA R
02 | 0825 | 98 | 392 | 1.5 | AUG
03 | 1230 | 194 | 20 /
470 | 16.0 | | | APR
06 | | | | | SEP | | | | | | | 00 | 0915 | 116 | 421 | 3.0 | 21 | 1320 | 230 | 318 | 13.0 | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------|------------------|---|---|--------------------------------------|----------------------|--------------|---|--|--------------------------------------| | | 0917700 | 0 | SAN MIGUEL | RIVER AT | URAVAN, CO. (LAT 38 | 21 26N | LONG 108 | 42 44 W) | | | OCT 1987
05 | 1635 | 124 | 763 | 19.0 | MAY 1988
11 | 1940 | 305 | 454 | 18.0 | | NOV
17 | 1655 | 94 | 1270 | 2.0 | 24
JUN | 1740 | 436 | 495 | 19.5 | | JAN 1988
13 | 1630 | 76 | 950 | 0.0 | 09
29 | 0920
0850 | 868
819 | 267
495 | 12.5
15.0 | | MA R
01 | 1645 | 192 | 640 | 10.0 | AUG
03
SEP | 1005 | 174 | 817 | 20.0 | | APR
05 | 1705 | 364 | 551 | 12.0 | 21 | 1530 | 140 | 880 | 18.5 | | 09 | 238705 | LONG | C LAKE INLE | T NEAR BU | FFALO PASS, CO. (LAT | 40 28 | 25N LONG | 106 40 46 | W) | | OCT 1987
01 | 0945 | 0.04 | 25 | 8.0 | AUG 1988
30 | 1200 | 0.07 | 27 | 16.5 | | JUN 1988
07 | 1708 | 31 | 20 | 0.5 | | | | | | | 09238710 | FISH CR | EEK TRIBU | JTARY BELOW | LONG LAK | E, NEAR BUFFALO PASS | , co. (| LAT 40 28 | 36N LONG | 106 41 13W) | | JUN 1988
07 | 1810 | 33 | 26 | 1.5 | | | | | | | 0923875 | 50 | MIDDLE FO | ORK FISH CR | EEK NEAR 1 | BUFFALO PASS, CO. (L | AT 40 2 | 9 54N LONG | 3 106 41 | 30 W) | | AUG 1988
30 | 1530 | 0.16 | 22 | 16.5 | | | | | | | 09 | 92387 7 0 | GRAN | NITE CREEK | NEAR BUFF | ALO PASS, CO. (LAT 4 | 29 35 | N LONG 106 | 5 41 31W) | | | OCT 1987
01 | 1025 | 0.44 | 47 | 4.5 | AUG 1988
30 | 1400 | 0.47 | 25 | 16.0 | | (| 09239500 | 1AY | MPA RIVER A | T STEAMBO | AT SPRINGS, CO. (LAT | 40 29 | O1N LONG | 106 49 541 | W) | | NOV 1987 | 1515 | 79 | 462 | 2.0 | MAR 1988
23 | 1320 | 84 | 238 | 4.0 | | FEB 1988
25 | 0945 | 67 | 253 | 2.5 | MA Y
25 | 1210 | 1890 | 88 | 12.0 | | | 0924 | 0900 | ELK RIV | ER ABOVE | CLARK, CO (LAT 40 44 | 38N LO | NG 106 51 | 13W) | | | NOV 1987
19 | 1130 | 28 | 88 | 0.0 | JUN 1988
06 | 1045 | 1270 | 38 | 8.5 | | APR 1988
06 | 1120 | 42 | 61 | 3.5 | AUG
10 | 1025 | 90 | 69 | 12.5 | | MAY
12
20 | 1035
1035 | 277
832 | 26
37 | 5.0
6.0 | 31 | 0920 | 62 | 36 | 15.0 | | | 092 | 41000 | ELK RI | VER AT CL. | ARK, CO. (LAT 40 43 | O3N LON | G 106 54 5 | 55W) | | | NOV 1987
19 | 1330 | 42 | 100 | 0.5 | MAY 1988
12 | 1245 | 531 | 42 | 5.0 | | APR 1988
06 | 1245 | 48 | 69 | 4.5 | JUN
06 | 1255 | 1530 | 39 | 9.0 | | | 0924500 | 0 | ELKHEAD CF | EEK NEAR I | ELKHEAD, CO. (LAT 40 | 40 11N | LONG 107 | 17 05W) | | | OCT 1987 | 1 11 5 0 | 2.2 | 260 | 10.0 | MAY 1988 | 1120 | 200 | 190 | 7.5 | | 02
DEC
15 | 1450
1110 | 3.2
2.2 | ∠60
455 | 10.0
0.5 | 09
16
AUG | 1130
1045 | 428 | 180
120 | 14.0 | | FEB 1988 | 1320 | 6.8 | 495 | 1.0 | 21
31 | 1135
1225 | 3.8
0.78 |
505 | 19.0
20.0 | | MA R
09 | 1130 | 5.7 | 341 | 1.0 | 3, | | | 3-7 | · · | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
AN CE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |-----------------------|---|---|---|--------------------------------------|----------------------|--------------|---|---|---------------------------------------| | | 092476 | 500 | YAMPA RI | VER BELOW | CRAIG, CO. (LAT | 40 28 51N | LONG 107 3 | 6 49W) | | | OCT 1987
08 | 1005 | 126 | | 10.0 | JUN 198
13 | 8 0950 | 4840 | 88 | 13.5 | | 27
NOV | 0900 | 312 | 463 | 7.0 | JUL
21 | 1540 | 284 | 325 | 23.5 | | 19
JAN 1988 | 1000 | 184 | 490 | 0.0 | AUG
18 | 0950 | 150 | 445 | 26.0 | | 11
MAR
18 | 1105 | 183
248 | 620 | 0.5 | 24
31
SEP | 1348
1040 | 146
5.6 | 473
585 | 24.5
26.0 | | APR 20 | 1240
1700 | 4940 | 639
312 | 3.0
10.0 | 08 | 0955 | 15 | 576 | 17.0 | | MAY 20 | 1000 | 8050 | 105 | 10.5 | | | | | | | | , | | , - 2 | ,,,,, | | | | | | | 09250507 | Ъ | VILSON CRE | EK ABOVE | TAYLOR CRE | CEK NEAR AXIAL, | | 18 53N LO | NG 107 47 | 58W) | | OCT 1987
01
NOV | 1500 | 1.1 | 1610 | 15.0 | MAY
198
23
JUN | 1345 | 7.2 | 1090 | 19.0 | | 11
DEC | 1400 | 1.8 | 1590 | 4.0 | 13
AUG | 1436 | 0.60 | 1440 | 19.5 | | 16
FEB 1988 | 1530 | 0.75 | | 0.0 | 25
SEP | 1401 | 0.39 | 1670 | 25.0 | | 03
APR | 1115 | 1.1 | | 0.5 | 14 | 1428 | 0.98 | 1510 | 14.5 | | 04
19 | 1320
1330 | 2.8
7.7 | 805
10 5 0 | 15.0 | | | | | | | 0 | 9250510 | YAY | LOR CREEK | AT MOUTH | NEAR AXIAL, CO. | (LAT 40 18 | 48N LONG | 107 47 57 | W) | | DEC 1987 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 11.1 | 2011 0112011 | AT NOTH | JUN 198 | | 7011 2011 0 | 101 11 21 | , | | 16
APR 1988 | 1550 | 0.09 | | 0.0 | 13
JUL | 1515 | 0.05 | 1560 | 22.0 | | 04 | 1500
1509 | 0.31
0.07 | 806
950 | 5.0
15.0 | 15
SEP | 1240 | 0.27 | 1050 | 23.0 | | MAY
23 | 1600 | 0.50 | 985 | 12.5 | 14 | 1400 | 0.08 | 1950 | 12.5 | | | 09253000 | LI | TTLE SNAK | E RIVER NE | CAR SLATER, CO. | (LAT 40 59 | 58N LONG 1 | 07 08 34W |) | | OCT 1987 | | | | | MAY 198 | 8 | | | | | 06 | 1435 | 16 | 200 | 12.0 | 25
JUN | 1641 | 1210 | 56 | 8.5 | | 09
DEC
14 | 1300
1200 | 15
19 | 179
208 | 5.5
0.0 | 20
JUL
19 | 1148
1525 | 493
40 | 72
119 | 22.0 | | FEB 1988 | 1130 | 24 | 188 | 0.5 | AUG 29 | 1040 | 15 | 191 | | | APR
06 | 1135 | 73 | 191 | 3.0 | SEP 15 | 1025 | 40 | 142 | 8.0 | | 28 | 1200 | 266 | 118 | 6.5 | | | | | | | | 092550 | 000 | SLATER F | ORK NEAR S | SLATER, CO. (LAT | 40 58 54N | LONG 107 2 | 2 58W) | | | OCT 1987
06 | 1245 | 12 | 295 | 10.0 | MAY 198
25 | 8
1239 | 372 | 98 | 11.5 | | NOV
09 | 1500 | 16 | 245 | 5.0 | JUN
20 | 1430 | 84 | 107 | 19.5 | | DEC 14 | 1355 | 13 | 301 | 0.0 | JՄ L
19 | 1230 | 5.0 | 234 | 23.5 | | FEB 1988
16 | 1305 | 20 | 251 | 0.5 | AUG
29 | 1255 | 3.2 | 305 | | | APR
06
28 | 1350
1430 | 32
98 | 305
197 | 9.0
9.5 | SEP
15 | 1210 | 19 | 199 | 9.5 | | 20 | 1470 | 90 | 191 | 9.7 | | | | | | | | 092580 | 000 | WILLOW C | REEK NEAR | DIXON, WY. (LAT | | LONG 107 3 | 1 16W) | | | NOV 1987
09 | 1000 | 0.65 | 275 | 0.5 | JUN 198 | 8
1148 | 18 | 63 | 12.5 | | DEC
14
FEB 1988 | 0940 | 1.5 | 263 | 0.0 | JUL
13 | 1332 | 8.3 | 159 | 21.0 | | 04
APR | 1040 | 3.9 | 278 | 0.5 | AUG
29
SEP | 1436 | 1.2 | 154 | | | 06
28 | 1545
1630 | 8.6
9.2 | 435
315 | 11.0
13.0 | 15 | 1346 | 3.0 | 158 | 10.5 | | MAY
27 | 1100 | 28 | 98 | 11.0 | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATI | E TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------------|--------------|---|---|--------------------------------------|------------------|-------------|---|---|--------------------------------------| | | 09260050 | YA | MPA RIVER | AT DEERL | ODGE PARK, CO. | (LAT 40 27 | 02N LONG 1 | 08 31 20W) | | | OCT 1987 | 1415 | 180 | 805 | 16.0 | MAY 198 | | 5270 | 298 | 10.5 | | NOV
16 | 1035 | 522 | 675 | 5.0 | JUN
17 | . 1145 | 5840 | 325 | 18.5 | | DEC
16 | 1120 | 264 | 1040 | 0.0 | JUL
20 | . 1530 | 380 | 365 | 21.5 | | FEB 1988
05 | 1140 | 265 | 841 | 0.5 | AUG
16 | . 1139 | 151 | 621 | 23.5 | | APR
08 | 1011 | 2460 | 1070 | 11.0 | SEP
01 | . 1240 | 87 | 723 | 23.0 | | | 09302 | 450 | LOST CR | EEK NEAR | BUFORD, CO. (LA | r 40 03 01N | LONG 107 | 28 06W) | | | OCT 1987
02 | 1520 | 2.6 | 390 | 12.5 | MAY 198 | | 92 | 215 | 2.0 | | NOV
12 | 1445 | 5.2 | 380 | 1.5 | 24
JUN | 1520 | 89 | 162 | 13.0 | | DEC 09 | 1255 | 4.3 | 350 | 0.0 | 17
JUL | . 1115 | 15 | 221 | 12.5 | | JAN 1988
26 | 1000 | 2.6 | 358 | 0.0 | 20
AUG | . 1250 | 2.4 | 405 | 17.0 | | FEB 23 | 1525 | 2.9 | 340 | 0.5 | 15
SEP | . 1450 | 1.8 | | 20.0 | | MAR 23 | 1335 | 4.1 | 322 | 3.0 | 14 | . 1100 | 4.5 | 326 | 7.0 | | | | | | | | | | | | | | 093045 | 00 | WHITE RIV | JER NEAR | MEEKER, CO. (LA | | LONG 107 | 51 42W) | | | OCT 1987 | 1445 | 284 | 540 | 13.0 | MAY 198 | | 2340 | 232 | 9.5 | | NOV
13 | 1240 | 375 | 532 | 3.5 | JUN
09 | . 0930 | 2560 | 210 | 8.5 | | DEC 21 | 1225 | 309 | 498 | 0.0 | JUL
21 | . 1605 | 461 | 453 | 19.5 | | JAN 1988
21 | 1410 | 363 | 480 | 0.0 | AUG
17 | . 1610 | 249 | 540 | 18.0 | | FEB 23 | 1235 | 247 | 528 | 1.5 | SEP
15 | . 1545 | 335 | 501 | 14.0 | | APR
19 | 1020 | 901 | 429 | 6.5 | | | | | | | | 09306222 | PIC | EANCE CREE | EK AT WHI | TE RIVER, CO (LA | AT 40 05 16 | N LONG 108 | 14 35W) | | | OCT 1987
07 | 1025 | 30 | 1880 | 6.5 | MAY 198
10 | | 45 | 1710 | 18.5 | | NOV 18 | 1600 | 40 | 1600 | 1.0 | JUN 14 | | - | 2750 | 19.5 | | JAN 1988
07 | 1315 | 51 | 1740 | 0.0 | JUL
22 | | 14 | 2810 | 16.5 | | FEB 29 | 0955 | 99 | 1110 | 1.0 | AUG
17 | | | 2130 | 17.0 | | APR 13 | 0930 | 54 | 1600 | 7.0 | SEP 16 | | 17 | 2440 | 17.0 | | 09 | 342500 | SAN J | UAN RIVER | AT PAGOS | A SPRINGS, CO. | (LAT 37 15 | 58n Long 1 | 07 00 37W) | | | OCT 1987 | | | | | MAY 198 | | | | | | 08
NOV | 0935 | 45 | 180 | 8.0 | 03
13 | . 1230 | 523
85 7 | 112
88 | 5.0
9.0 | | 17
JAN 1988 | 0935 | 90 | 140 | 1.0 | 19
JUN | · · | 1450 | | 5.5 | | 11
MAR | 1010 | 61 | 104 | 1.5 | 08
JUL_ | | 1380 | 61 | 7.5 | | 03
APR | 0940 | 128 | 212 | 1.0 | O7 | | 227 | 106 | 19.0 | | 04 | 0950 | 223 | 164 | 3.5 | 23 | . 1010 | 130 | | 16.5 | | 0.05 | 09346 | 000 | NAVAJO 1 | RIVER AT | EDITH, CO. (LAT | | LONG 106 5 | 4 25W) | | | OCT 1987
08 | 1140 | 37 | 311 | 9.0 | MAY 198 | | 130 | 229 | 9.0 | | NOV 17 | 1140 | 54 | 255 | 0.0 | JUN
08 | . 1245 | 79 | 255 | 16.5 | | JAN 1988 | 1155 | 47 | 180 | 0.0 | JUL
18 | . 1210 | 60 | 256 | 20.5 | | MAR
03
17 | 1140
1420 | 66
52 | 337
321 | 3.0
3.0 | AUG
23 | . 1420 | 55 | | 20.5 | | APR 04 | 1125 | 153 | 312 | 5.0 | | | | | | | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | CON -
DUCT - | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS) | SPE -
CIFIC
CON -
DUCT -
ANCE
(US/CM) | TEMPER -
ATURE
WATER
(DEG C) | |-----------------------------|--------------|---|-----------------|--------------------------------------|-----------------------------|--------------|---|--|---------------------------------------| | | 09346400 | | SAN JUAN R | IVER NEAR | CARRACAS, CO. (LAT | 37 00 49 | 9N LONG 10 | 7 18 42W) | | | OCT 1987
08
NOV
18 | 1430
1040 | 113
207 | 422
385 | 15.5 | MAY 1988
04
24
JUN | 1045
1315 | 738
960 | 216
173 | 10.5
16.0 | | MAR 1988 | | | | 0.0 | 08 | 1545 | 1490 | 124 | 16.0 | | 18
APR | 1235 | 249 | 666 | 5.5 | JUL
08 | 1000 | 310 | 226 | 21.0 | | 07 | 1320 | 1230 | 270 | 10.5 | AUG
24 | 1000 | 219 | | 20.5 | | | 0934980 | 0 | PIEDRA RI | VER NEAR | ARBOLES, CO. (LAT 3 | 87 05 18N | LONG 107 | 23 50W) | | | OCT 1987
09
NOV | 1150 | 77 | 447 | 12.0 | MAY 1988
04
19 | 1240
1325 | 566
1340 | 232
134 | 12.0
9.5 | | 17
JAN 1988 | 1510 | 143 | 371 | 5.0 | JUN
09 | 1020 | 1100 | 118 | 13.0 | | 11
FEB | 1420 | 105 | 465 | 0.5 | JUL
08 | 1210 | 247 | 222 | 21.5 | | 25
A PR | 1350 | 109 | 520 | 2.5 | AUG
24 | 1150 | 297 | | 18.0 | | 04 | 1430 | 477 | 312 | 11.0 | | | | | | | | 093615 | 00 | ANIMAS R | IVER AT D | URANGO, CO. (LAT 37 | 7 16 45N I | LONG 107 5 | 2 47W) | | | OCT 1987
28
NOV | 1125 | 278 | 616 | 10.5 | MAY 1988
16
26 | 1150
1115 | 2740
1600 | 175
255 | 10.0 | | 25
DEC | 1115 | 246 | 665 | 4.0 | JUN
09 | 1455 | 3010 | 185 | 10.0 | | 21
JAN 1988 | 1355 | 183 | 7 77 | 2.0 | 27
JUL | 1115 | 1920 | 212 | 12.0 | | 27
FEB | 1515 | 242 | 655 | 1.0 | 26
AUG | 0900 | 344 | 545 | 17.0 | | 26 | 1130 | 276 | 620 | 6.0 | 29 | 1015 | 5 7 5 | 433 | 17.0 | | MAR
28 | 1400 | 496 | 496 | 10.0 | SEP
29 | 0840 | 547 | 425 | 9.0 | | APR
27 | 1345 | 65 7 | 480 | 12.0 | | | | | | | | 09371 | 002 | NAVAJO | WASH NEAR | TOWAOC, CO (LAT 37 | ′ 12 03N I | ONG 108 4 | 1 50W) | | | OCT 1987
29
DEC | 1230 | 25 | 1760 | 10.0 | APR 1988
13
MAY | 1420 | 3.4 | 2690 | 15.0 | | 16 | 1115 | 1.2 | 6180 | 0.0 | 16 | 1550 | 6.7 | 1900 | 22.0 | | JAN 1988
28 | 1135 | 1.0 | 6420 | 0.0 | JUL
05 | 1245 | 23 | 1300 | 20.5 | | FEB
25 | 1020 | 2.1 | 5210 | 1.0 | AUG
31 | 1355 | 32 | 1280 | 19.5 | ### GROUND-WATER LEVELS #### MOFFAT COUNTY 401506108595401 SB 3-103-7ABB1. Dinosaur, CO. Drilled public-supply well in the Entrada Formation. Diameter, 9 in. Depth, 745 ft. MP, 5.0 ft below lsd. Elevation of land surface, 6,045 ft. Records available: 1974-82, 1988. Highest water level, 146.96 ft below 1sd, Nov. 8, 1974; lowest water level, 189.73 ft below 1sd, Sépt. 29, 1988. Sept. 29, 1988 189.73 ft 403040107420801 SB 7-92-34DBD1. Rocky Mtn. Real Estate. Drilled domestic supply well in the Browns Park Formation. Diameter, 5 in. Depth, 190 ft. MP, 4.0 ft below lsd. Elevation of land surface, 6,545 ft. Records available: 1974-78, 1984, 1988. Highest water level, 68.49 ft below 1sd, Oct. 20, 1984; lowest water level, 87.95 below 1sd, Sept. 29, 1988. Sept. 29, 1988 87.95 ft (Pumping) 405126108435801 SB 10-101-3ACB1. U.S. Govt. Drilled stock well in the Wasatch/Valley Fill Formation. Diameter, 4 in. Depth, 86 ft. MP, 1.7 ft above 1sd. Elevation of land surface, 6,675 ft. Records available: 1973-82, 1988. Highest water level, 74.39 ft below 1sd, Aug. 1, 1982; lowest water level, 77.01 ft below 1sd, Dec. 6, 1973. Sept. 29, 1988 75.89 ft #### RIO BLANCO
COUNTY 395712108243402 SC 1-98-20ACC2. U.S. Govt. Drilled test hole TH 75-7A in the Green River Formation. Diameter, 9 in. Depth, 1,080 ft. MP, 1.3 ft above lsd. Elevation of land surface, 6,361 ft. Records available: 1975-83, 1988. Highest water level, 123.63 ft below 1sd, Apr. 16, 1981; lowest water level, 135.72 below 1sd, Apr. 16, 1979. Sept. 29, 1988 135.63 ft ## INDEX ---- | | Page | | Page | |---|-------------------------|--|--------------------------------------| | Access to WATSTORE DATA | 18-19 | Corral Gulch, below Water Gulch, near Rangely, | | | Accuracy of the records, explanation of | 16 | gaging-station record | 295 | | Acre-foot, definition of | 19 | water-quality record | 296
207 | | Alva B. Adams tunnel at east portal, near Estes Park, diversion by | 30 | near Rangely, gaging-station record water-quality record | 297
298 – 300 | | water-quality record | 31-32 | Cooperation | 4 | | Andenosine triphosphate, definition of | 19 | Crest-stage partial-record stations | 342 | | Algal growth potential definition of | 19
19 | Cross Creek near Minturn | 109,352 | | Algal-growth potential, definition of Animas River at Durango | 327,365 | Redstone | 137,355 | | near Cedar Hill, NM | 328 | Cubic foot per second, definition of | 20 | | Annual maximum discharge at crest-stage | | Cubic foot per second per square mile, | 20 | | partial-record stations during water year 1988 | 342 | definition of | 20 | | August P. Gumlick tunnel, diversion by | 57 | Dallas Creek near Ridgway | 172,360 | | Aquifer, definition of | 19 | Darling Creek near Leal | 54,347 | | Artesian, definition of | 19
23 | Data Collection and Computation, explanation of | 14 | | Ash mass, definition of | 19 | Definition of terms | 19 - 24 | | | | Diatoms, definition of | 22 | | Bacteria, definition of | 19 | Dickson Creek near Vail | 91 , 350
84 | | Beaver Creek (tributary to Eagle River) at Avon, gaging-station record | 117 | Discharge at partial-record stations and | 04 | | water-quality record | 118 | miscellaneous sites | 341 | | Bed load, definition of | 22 | Discharge, definition of | 20 | | Bed load discharge, definition of Bed material, definition of | 22
19 | Discharge measurements made at low-flow partial-record stations | 341 | | Bemrose-Hoosier diversion near Hoosier Pass | 67 | Dissolved, definition of | 20 | | Berthoud Pass ditch at Berthoud Pass, diversion | | Dissolved-solids concentration, definition of | 20 | | by Bighorn Creek near Minturn | 339
112 , 352 | Divide Creek basin, gaging-station records in Dolores River basin, | 140 | | Biochemical oxygen demand (BOD), definition of | 19 | gaging station records in | 18 8 | | Biomass, definition of | 19 | Dolores River, at Bedrock, | 101 | | Black Creek below Black Lake, near Dillon Black Gore Creek near Minturn | 82,350
111,352 | gaging-station record
water-quality record | 191
192 - 194 | | Blue-Green Algae, definition of | 22 | at Dolores | 189,361 | | Blue River above Green Mountain Reservoir, | 0. | below Rico | 188,361 | | near Dillon, water-quality record Blue River at Blue River | 79-81
69,348 | below West Paradox Creek, near Bedrock, water-quality record | 196-197 | | near Dillon | 70,348 | near Bedrock, gaging-station record | 198 | | basin, gaging-station records in | 66 | water-quality record | 199-201 | | below Dillonbelow Green Mountain Reservoir | 74,349
85 | Downstream order system | 13
20 | | Bobtail Creek near Jones Pass | 51,346 | Drainage basin, definition of | 20 | | Booth Creek near Minturn | 114,353 | Dry mass, definition of | 19 | | Boulder Creek at upper station, near Dillon | 77,349 | Forle Bines at Chrone water avality warned | 110 121 | | Busk-Ivanhoe Tunnel, diversion by | 339-340 | Eagle River at Gypsum, water-quality record at Red Cliff | 119 - 121
103 , 351 | | Cabin Creek near Fraser | 45,346 | below Gypsum | 122,353 | | Castle Creek above AspenCataract Creek near Kremmling | 131,354
83,350 | Eagle River basin, gaging-station records in East Fork San Juan River, above Sand Creek, | 103 | | Cells/volume, definition of | 19 | near Pagosa Springs | 309 | | Cfs-day, definition of | 20 | East Meadow Creek near Minturn | 93,350 | | Charles H. Boustead Tunnel, diversion by
Chemical oxygen demand (COD), definition of | 339 – 340
20 | East River at Almont | 155,357
42,345 | | Chemical quality of streamflow | 10-12 | Elk River above Clark | 214,362 | | Chlorophyll, definition of | 20 | at Clark | 215,362 | | Cimarron River near Cimarron | 161,358
16 | Elkhead Creek near ElkheadEscalante Creek near Delta | 225,362
175,360 | | Cochetopa Creek below Rock Creek, near Parlin | 157,357 | Explanation of the records | 13-16 | | Colorado River above Glenwood Springs, water- | | | 10 | | quality record | 125 | Fecal Coliform bacteria, definition of
Fecal Streptococcal bacteria, definition of | 19
19 | | record | 47 | Fish Creek at upper station near Steamboat | | | water-quality record | 48-50 | Springs | 212 | | at Windy Gap, near Granbybelow Baker Gulch, near Grand Lake | 46,346
29,345 | Tributary below Long Lake, near Buffalo Pass | 208,362 | | below Glenwood Springs | 139,356 | Foidel Creek, at mouth, near Oak Creek, | | | near Cameo, gaging-station record | 144 | gaging-station record | 222 | | water-quality recordnear CO-UT State line, gaging-station | 145-148,356 | water-quality recordnear Oak Creek, gaging-station record | 223 - 224
218 | | record | 182 | water-quality record | 219-221 | | water-quality record | 183-186 | Fortification Creek near Fortification, gaging- | 226 | | near De Beque,near Dotsero | 143,356
123,354 | station record | 227-228 | | near Granby | 37 | Fraser River basin, gaging-station records in | 39 | | near Kremmling | 86,350 | Fraser River at upper station, | 20 2115 | | near Radium, gaging-station record water-quality record | 87
88 – 89 | near Winter ParkFraser River near Winter Park | 39,345
40,345 | | Colorado River basin, crest-stage partial | | Freeman Creek near Minturn | 92,350 | | record stations in | 342 | Fryingpan River near Ruedinear Thomasville | 136,355
134 | | Colorado River basin, gaging-station records in | 29 | Hear Thomasville | 134 | | Color unit, definition of | 20 | | | | Contents, definition of | 20 | Gage height, definition of | 20
20 | | Control, definition of | 20
20 | Gaging station, definition of | 110,352 | | , | | , | - , | ____ | | Page | | Page | |---|---|---|------------------------| | Granby Pump Canal near Grand Lake, water- | | Meteorological data at miscellaneous sites | 343 | | quality recordGrand Lake Outlet basin, gaging-station | 34 | McCullough-Spruce-Crystal diversion near Hoosier Pass | 68 | | records in | 30 | McElmo Creek, near Colorado-Utah State line gaging-station record | 337 | | diversion by | 339 | water-quality record | 338 | | Granite Creek near Buffalo Pass | 210,362 | near Cortez, gaging-station record | 333 | | Green algae, definition of | 22 | water-quality record | 334-336 | | Green Mountain Reservoir near Kremmling | 84 | Mean Concentration, definition of | 22
20 | | Green River basin, | 204 | Mean discharge, definition of | 20 | | gaging station records in | 124,354 | Metamorphic Stage, definition of | 20 | | Ground-water levels | 366 | Methlylene blue active substances, | | | Gunnison River, at Delta | 170,359 | definition of | 20 | | below Gunnison tunnel | 162,358 | Micrograms per gram, definition of | 2. | | near Grand Junction, gaging-station record | 176 | Micrograms per liter, definition of | 2. | | water-quality record | 177-180 | Middle Creek near Minturn (Eagle River basin) | 115,353 | | near Gunnison | 156,357 | Middle Creek, near Oak Creek, gaging-station record (Green River basin) | 216 | | record stations in | 342 | water-quality record | 217 | | gaging-station records in | 150 | Middle Fork Fish Creek near Buffalo Pass | 209,362 | | Gunnison Tunnel, diversion by | 162 | Tributary below Fish Creek Reservoir | 211 | | | | Milligrams of carbon, definition of | 22 | | Hardness, definition of | 20 | Milligrams of oxygen, definition of | 22 | | Harold D. Roberts tunnel at Grant, | 220 | Milligrams per liter, definition of | 2°
166 , 359 | | diversion by | 339 | Minnesota Creek near Paonia | 341 | | near Glade Park | 187,361 | Missouri Creek near Gold Park | 106,351 | | Homestake Creek, at Gold Park | 107,351 | Moniger Creek near Minturn | 34 | | near Red Cliff | 108,352 | Monte Cristo diversion near Hoosier Pass | 66 | | Homestake tunnel near Gold Park, diversion by | 339-340 | Muddy Creek basin, gaging-station records in | 62 | | Hoosier Pass tunnel at east portal, at Hoosier | | Muddy Creek at Kremmling, gaging-station | | | Pass | 339 | record | 62 | | Hunter Creek, near Aspen | 130,354 | water-quality record | 63-69 | | Hydrologic bench-mark network, explanation of | 20 | | | | Hydrologic Unit, definition of | 20 | National Geodetic Vertical Datum of 1929, | 2. | | Identifying Estimated Daily Discharge, | | definition of | 2 | | explanation of | 16 | (NASQAN) explanation of | 2 | | Instantaneous discharge, definition of | 20 | National Trends Network, explanation of | 2. | | Introduction | 1 | Natural substrate, definition of | 23 | | | | Navajo River, at Banded Peak Ranch, | | | Keystone Gulch near Dillon | 72,348 | near Chromo | 312 | | | _ | at Edith | 315,36 | | Laboratory Measurements, explanation of | 18 | below Oso Diversion Dam | 313 | | Lakes and reservoirs: | Oh
| Navajo Wash near Towaoc | 332,365 | | Dillon Reservoir | 84
84 | North Fork Gunnison River near Somerset | 165 ,3 58 | | Lake Granby | 30 | North Fork White River at Buford, gaging-
station record | 25 | | Paonia Reservoir | 164 | water-quality record | 252 - 253 | | Ruedi Reservoir | 135 | nassi quarity issociativiti | -55- | | Shadow Mountain Lake | 33 | Organic Mass, definition of | 19 | | Silver Jack Reservoir | 160 | Organism, definition of | 21 | | Taylor Park Reservoir | 152 | Organism count/area, definition of | 2 | | Vallecito Reservoir | 321 | Organism count/volume, definition of | 21 | | Williams Fork Reservoir | 59 | Other records available | 16
5 - 12 | | Willow Creek Reservoir | 38 | Overview of Hydrologic Conditions | 133,355 | | Lake Fork at GateviewLake Granby near Granby | 159 ,3 58
35 | Owl Creek near Aspen | 133,373 | | water-quality record | 36 | Paonia Reservoir, near Bardine, contents of | 164 | | Land-surface datum, definition of | 20 | Parameter Code, definition of | 21 | | La Plata River, at Colorado-New Mexico | | Partial-record station, definition of | 21 | | State line | 330 | Particle-size, classification | 2 | | at Hesperus | 329 | Particle size, definition of | 2. | | Latitude-Longtitude System, explanation of | 13 | Percent composition, definition of | 21 | | Leroux Creek at Hotchkiss | 167,359 | Periphyton, definition of | 2°
2° | | Little Navajo River below Little Oso Diversion | 314 | Pesticide, definition ofPhytoplankton, definition of | 22 | | Dam, near ChromoLittle Snake River, below Baggs, WY, water- | 314 | Piceance Creek, above Hunter Creek, near | 2.2 | | quality record | 245 | Rio Blanco, water-quality record | 285 | | near Dixon, WY, gaging-station record | 242 | at White River, | 290,36 | | water-quality record | 243 | below Rio Blanco, gaging-station record | 27 | | near Lily | 248 | water-quality record | 278-279 | | near Slater | 240,363 | below Ryan Gulch, near Rio Blanco, gaging- | -0.4 | | Long Lake Inlet near Buffalo Pass | 207,362 | station record | 286 | | Los Pinos River, at La Boca, gaging-station | 222 | water-quality record | 287 - 289 | | recordwater-quality record | 322
323 -3 24 | tributary, near Rio Blanco, gaging-station record | 28 | | Lost Canyon Creek near Dolores | 190,361 | water-quality record | 282 - 283 | | Lost Creek near Buford | 250,364 | Picocurie, definition of | 202 20 | | Low-flow partial-record stations, discharge | | Piedra River, near Arboles | 317,369 | | measurements at | 341 | Piney River basin, crest-stage partial-record | | | | | stations in | 342 | | Mancos River near Towaoc | 331 | gaging-station records in | 90 | | Map of Colorado, crest-stage partial-record | 3 | Piney River, below Piney Lake, near Minturn | 90,350 | | lake, stream-gaging and water-quality | • | near State Bridge | 94,351 | | stations Maroon Creek above Aspen | 2
1 3 2,355. | Pitkin Creek near Minturn | 113,353
149 | | | · • • • • • • • • • • • • • • • • • • • | TACOCA OLOGO DADILIS DADILIS—DOGOTORI LOGOLAD III. | 1773 | ---- | | Page | | Page | |--|-------------------------|--|------------------| | Plateau Creek near Cameo | 149,357 | Streamflow | 5-10 | | Plankton, definition of | 21 | Streamflow, definition of | 23 | | Primary productivity, definition of | 22 | Substrate, definition of | 23 | | Publications on techniques of water-resource | 27 - 28 | Supplemental Water-Quality Data for Gaging Stations | 345-365 | | investigations | 21-20 | Surface area, definition of | 23 | | Radiochemical program, definition of | 22 | Surface Creek, at Cedaredge | 169,359 | | Ranch Creek near Fraser | 44,346 | near Cedaredge | 168,359 | | Records of Stage and Water Discharge, | a li | Surficial bed material, definition of | 23
23 | | definition ofexplanation of | 14
14 - 16 | Suspended, definition of | 23 | | Surface-Water Quality, definition of | 16 | Suspended sediment, definition of | 22 | | explanation of | 16-18 | Suspended, Sediment concentration, | | | Red Sandstone Creek near Minturn | 116,353 | definition of | 22 | | Reed Wash basin, gaging-station records in | 181 | Suspended Sediment discharge, | 0.0 | | Reed Wash near Mack | 181,361 | definition of | 22
22 | | Recoverable from bottom material, definition of | 22 | Suspended Sediment load, definition of Suspended total, definition of | 23 | | Reservoirs in Blue River basin | 84 | System for numbering wells, springs, and | | | Return period, definition of | 22 | miscellaneous sites | 13 | | Rio Blanco below Blanco diversion dam, | | | | | near Pagosa Springs | 311 | Taxonomy, definition of | 23 | | Roaring Fork River, above Difficult Creek, | 128,354 | Taylor Creek at mouth, near Axial Taylor Park Reservoir at Taylor Park | 234,363
152 | | near Aspenat Glenwood Springs | 138,355 | Taylor River, at Almont | 154,357 | | near Aspen | 129,354 | at Taylor Park | 150 | | Roaring Fork River basin, gaging-station | , | below Taylor Park Reservoir | 153,357 | | records in | 128 | Tenmile Creek below North Tenmile Creek | =2.210 | | Rock Creek at Crater (tributary to Colorado | 05 | at Frisco | 73,348 | | River), gaging-station record water-quality record | 95
96 - 98 | Texas Creek at Taylor Park Thermograph, definition of | 151
23 | | at McCoy, gaging-station record | 99 | Time-weighted average, explanation of | 24 | | water-quality record | 100-102 | Tomichi Creek at Gunnison | 158,358 | | basin, gaging-station records in | 95 | Tons per acre-foot, explanation of | 24 | | Rock Creek (tributary to Blue River) | #C 200 | Tons per day, definition of | 24 | | near Dillon | 76,349
135 | Total Coliform bacteria, definition of Total, definition of | 19
24 | | Runoff in inches, definition of | 22 | Total discharge, definition of | 24 | | | | Total, recoverable, definition of | 24 | | Sand Wash near Sunbeam, gaging-station record | 246 | Total organism count, definition of | 21 | | water-quality record | 247 | Total sediment discharge, definition of | 22 | | San Juan River basin, | 342 | Total sediment load, definition of Transmountain diversions from Colorado River | 23 | | crest-stage partial records ingaging-station records in | 309 | basin in Colorado | 339 - 340 | | San Juan River, at Pagosa Springs | 310,364 | Transmountain diversions no longer published | 340 | | near Carracas | 316,365 | Tritium Network, definition of | 24 | | San Miguel River, at Uravan | 203,362 | Troublesome Creek basin, gaging-station | 6.1 | | near Placerville | 202,361 | records in Troublesome Creek near Pearmont | 61
61,347 | | St. Louis Creek near Fraser | 43,346
22 | Turkey Creek near Red Cliff | 105,351 | | Selected references | 25 - 26 | Tarkey of sex float float officers. | 103,33. | | 7-day 10-year low flow, definition of | 23 | Uncompangre River, at Colona | 173,360 | | Shadow Mountain Lake near Grand Lake | 33 | at Delta | 174,360 | | Silver Jack Reservoir near Cimarron, | 460 | near Ridgway | 171,360 | | contents of | 160
78,349 | Vallecito Creek near Bayfield, gaging-station | | | Slater Fork near Slater | 241,363 | record | 318 | | Smith Fork, near Crawford | 163,358 | water-quality record | 319-320 | | Snake River near Montezuma | 71,348 | Vallecito Reservoir near Bayfield, contents of | 321 | | Sodium adsorption ratio, definition of | 23 | Vasquez Creek at Winter Park | 41,345 | | Solute, definition of | 23 | Magazina Chaok at Dudgola Bagant gaging | | | gaging-station record | 254 | Wagonwheel Creek at Budge's Resort, gaging-
station record | 257 | | water-quality record | 255 - 256 | water-quality record | 258-259 | | at Buford, gaging-station record | 265 | Water year, definition of | 24 | | water-quality record | 266 – 267 | Wearyman Creek near Red Cliff | 104,351 | | near Budge's Resort, gaging-station record | 260 | WDR, definition of | 24 | | water-quality recordnear Buford, gaging-station record | 261 - 262
263 | Weighted average, definition of | 24 | | water-quality record | 264 | station record | 140,356 | | South Fork Williams Fork below Old Baldy | | water-quality record | 141-142 | | Mountain, near leal | 55 | West Paradox Creek above Bedrock, water- | 40- | | near Leal | 56,347 | quality record | 195 | | Specific conductance, definition of | 23
13 | Wet mass, definition of | . 19 | | Spring Creek at La Boca, gaging-station record. | 325 | gaging-station record | 268 | | water-quality record | 326 | water-quality record | 269 - 271 | | Stage-discharge relation, definition of | 23 | above Crooked Wash, gaging-station record | 291 | | Station Identification Numbers, explanation of | 13 | water-quality record | 292-294 | | Stewart Gulch above West Fork, near Rio Blanco, water-quality record | 280 | White River, below Boise Creek, gaging-
station record | 304 | | Straight Creek below Laskey Gulch, near Dillon | 75,349 | water-quality record | 305-308 | | • , | | | | ---- | | Page | | Page | |--|------------------
--|------------------| | White River, below Meeker, gaging- | | Willow Creek near Rio Blanco, water-quality | | | station record | 273 | record | 284 | | water-quality record | 274 – 276 | Willow Creek basin, gaging-station, records in | 38 | | near Meeker | 272,364 | Willow Creek Reservoir near Granby | 38 | | Williams Fork (tributary to Colorado River) | 2,2,50. | Wilson Creek above Taylor Creek, near Axial | 233,363 | | above Darling Creek, near Leal | 53,347 | WSP. definition of | 24 | | Williams Fork basin, gaging-station | 33,3.1 | , at a second of the | | | records in | 51 | Yampa River, at Deerlodge Park | 249.364 | | Williams Fork, below Steelman Creek | 52,347 | at Steamboat Springs | 213,362 | | below Williams Fork Reservoir | 60 | below Craig | 229,363 | | near Leal | 57,347 | near Maybell, gaging-station record | 235 | | near Parshall | 58 | water-quality record | 236 – 239 | | Reservoir near Parshall | 59 | near Oak Creek, gaging-station record | 204 | | Williams Fork River at mouth, near Hamilton, | | water-quality record | 205 – 206 | | (tributary to Yampa River), gaging-station | | Yellow Creek near White River, gaging- | | | record | 230 | station record | 301 | | water-quality record | 231 – 232 | water-quality record | 302-303 | | Willow Creek (tributary to Little Snake River) | | | | | near Dixon, WY | 244.363 | Zooplankton, definition of | 22 | # FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI) The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). | Multiply inch-pound units | Ву | To obtain SI units | |--|------------------------|--| | | Length | | | inches (in) | 2.54x101 | millimeters (mm) | | | 2.54x10 ⁻² | meters (m) | | feet (ft) | 3.048x10 ⁻¹ | meters (m) | | miles (mi) | 1.609x10° | kilometers (km) | | | Area | | | acres | 4.047x10 ³ | square meters (m ²) | | | 4.047x10 ⁻¹ | square hectometers (hm²) | | | 4.047x10 ⁻³ | square kilometers (km²) | | square miles (mi ²) | 2.590x10° | square kilometers (km²) | | | Volume | | | gallons (gal) | 3.785x10° | liters (L) | | | 3.785x10° | cubic decimeters (dm³) | | | 3.785x10 ⁻³ | cubic meters (m ³) | | million gallons | 3.785x10 ³ | cubic meters (m ³) | | | 3.785x10 ⁻³ | cubic hectometers (hm³) | | cubic feet (ft ³) | 2.832x101 | cubic decimeters (dm³) | | | 2.832x10 ⁻² | cubic meters (m ³) | | cfs-days | 2.447x10 ³ | cubic meters (m ³) | | | 2.447x10 ⁻³ | cubic hectometers (hm ³) | | acre-feet (acre-ft) | 1.233x10 ³ | cubic meters (m ³) | | | 1.233x10 ⁻³ | cubic hectometers (hm³) | | | 1.233x10 ⁻⁶ | cubic kilometers (km³) | | | Flow | | | cubic feet per second (ft ³ /s) | 2.832x101 | liters per second (L/s) | | | 2.832x101 | cubic decimeters per second (dm ³ /s) | | | 2.832x10 ⁻² | cubic meters per second (m ³ /s) | | gallons per minute (gal/min) | 6.309x10 ⁻² | liters per second (L/s) | | | 6.309x10 ⁻² | cubic decimeters per second (dm ³ /s) | | | 6.309x10 ⁻⁵ | cubic meters per second (m ³ /s) | | million gallons per day | 4.381x101 | cubic decimeters per second (dm ³ /s) | | | 4.381x10 ⁻² | cubic meters per second (m³/s) | | | Mass | | | tons (short) | 9.072x10 ⁻¹ | megagrams (Mg) or metric tons | POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413 U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mail Stop 415 Box 25046, Denver Federal Center Denver, CO 80225 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE